1 /* 2 * Contains common pci routines for ALL ppc platform 3 * (based on pci_32.c and pci_64.c) 4 * 5 * Port for PPC64 David Engebretsen, IBM Corp. 6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 7 * 8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 9 * Rework, based on alpha PCI code. 10 * 11 * Common pmac/prep/chrp pci routines. -- Cort 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/pci.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/export.h> 25 #include <linux/of_address.h> 26 #include <linux/of_pci.h> 27 #include <linux/mm.h> 28 #include <linux/shmem_fs.h> 29 #include <linux/list.h> 30 #include <linux/syscalls.h> 31 #include <linux/irq.h> 32 #include <linux/vmalloc.h> 33 #include <linux/slab.h> 34 #include <linux/vgaarb.h> 35 36 #include <asm/processor.h> 37 #include <asm/io.h> 38 #include <asm/prom.h> 39 #include <asm/pci-bridge.h> 40 #include <asm/byteorder.h> 41 #include <asm/machdep.h> 42 #include <asm/ppc-pci.h> 43 #include <asm/eeh.h> 44 45 /* hose_spinlock protects accesses to the the phb_bitmap. */ 46 static DEFINE_SPINLOCK(hose_spinlock); 47 LIST_HEAD(hose_list); 48 49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 50 #define MAX_PHBS 0x10000 51 52 /* 53 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 54 * Accesses to this bitmap should be protected by hose_spinlock. 55 */ 56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 57 58 /* ISA Memory physical address */ 59 resource_size_t isa_mem_base; 60 EXPORT_SYMBOL(isa_mem_base); 61 62 63 static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops; 64 65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops) 66 { 67 pci_dma_ops = dma_ops; 68 } 69 70 const struct dma_map_ops *get_pci_dma_ops(void) 71 { 72 return pci_dma_ops; 73 } 74 EXPORT_SYMBOL(get_pci_dma_ops); 75 76 /* 77 * This function should run under locking protection, specifically 78 * hose_spinlock. 79 */ 80 static int get_phb_number(struct device_node *dn) 81 { 82 int ret, phb_id = -1; 83 u32 prop_32; 84 u64 prop; 85 86 /* 87 * Try fixed PHB numbering first, by checking archs and reading 88 * the respective device-tree properties. Firstly, try powernv by 89 * reading "ibm,opal-phbid", only present in OPAL environment. 90 */ 91 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 92 if (ret) { 93 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 94 prop = prop_32; 95 } 96 97 if (!ret) 98 phb_id = (int)(prop & (MAX_PHBS - 1)); 99 100 /* We need to be sure to not use the same PHB number twice. */ 101 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 102 return phb_id; 103 104 /* 105 * If not pseries nor powernv, or if fixed PHB numbering tried to add 106 * the same PHB number twice, then fallback to dynamic PHB numbering. 107 */ 108 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 109 BUG_ON(phb_id >= MAX_PHBS); 110 set_bit(phb_id, phb_bitmap); 111 112 return phb_id; 113 } 114 115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 116 { 117 struct pci_controller *phb; 118 119 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 120 if (phb == NULL) 121 return NULL; 122 spin_lock(&hose_spinlock); 123 phb->global_number = get_phb_number(dev); 124 list_add_tail(&phb->list_node, &hose_list); 125 spin_unlock(&hose_spinlock); 126 phb->dn = dev; 127 phb->is_dynamic = slab_is_available(); 128 #ifdef CONFIG_PPC64 129 if (dev) { 130 int nid = of_node_to_nid(dev); 131 132 if (nid < 0 || !node_online(nid)) 133 nid = -1; 134 135 PHB_SET_NODE(phb, nid); 136 } 137 #endif 138 return phb; 139 } 140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 141 142 void pcibios_free_controller(struct pci_controller *phb) 143 { 144 spin_lock(&hose_spinlock); 145 146 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 147 if (phb->global_number < MAX_PHBS) 148 clear_bit(phb->global_number, phb_bitmap); 149 150 list_del(&phb->list_node); 151 spin_unlock(&hose_spinlock); 152 153 if (phb->is_dynamic) 154 kfree(phb); 155 } 156 EXPORT_SYMBOL_GPL(pcibios_free_controller); 157 158 /* 159 * This function is used to call pcibios_free_controller() 160 * in a deferred manner: a callback from the PCI subsystem. 161 * 162 * _*DO NOT*_ call pcibios_free_controller() explicitly if 163 * this is used (or it may access an invalid *phb pointer). 164 * 165 * The callback occurs when all references to the root bus 166 * are dropped (e.g., child buses/devices and their users). 167 * 168 * It's called as .release_fn() of 'struct pci_host_bridge' 169 * which is associated with the 'struct pci_controller.bus' 170 * (root bus) - it expects .release_data to hold a pointer 171 * to 'struct pci_controller'. 172 * 173 * In order to use it, register .release_fn()/release_data 174 * like this: 175 * 176 * pci_set_host_bridge_release(bridge, 177 * pcibios_free_controller_deferred 178 * (void *) phb); 179 * 180 * e.g. in the pcibios_root_bridge_prepare() callback from 181 * pci_create_root_bus(). 182 */ 183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 184 { 185 struct pci_controller *phb = (struct pci_controller *) 186 bridge->release_data; 187 188 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 189 190 pcibios_free_controller(phb); 191 } 192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 193 194 /* 195 * The function is used to return the minimal alignment 196 * for memory or I/O windows of the associated P2P bridge. 197 * By default, 4KiB alignment for I/O windows and 1MiB for 198 * memory windows. 199 */ 200 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 201 unsigned long type) 202 { 203 struct pci_controller *phb = pci_bus_to_host(bus); 204 205 if (phb->controller_ops.window_alignment) 206 return phb->controller_ops.window_alignment(bus, type); 207 208 /* 209 * PCI core will figure out the default 210 * alignment: 4KiB for I/O and 1MiB for 211 * memory window. 212 */ 213 return 1; 214 } 215 216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 217 { 218 struct pci_controller *hose = pci_bus_to_host(bus); 219 220 if (hose->controller_ops.setup_bridge) 221 hose->controller_ops.setup_bridge(bus, type); 222 } 223 224 void pcibios_reset_secondary_bus(struct pci_dev *dev) 225 { 226 struct pci_controller *phb = pci_bus_to_host(dev->bus); 227 228 if (phb->controller_ops.reset_secondary_bus) { 229 phb->controller_ops.reset_secondary_bus(dev); 230 return; 231 } 232 233 pci_reset_secondary_bus(dev); 234 } 235 236 resource_size_t pcibios_default_alignment(void) 237 { 238 if (ppc_md.pcibios_default_alignment) 239 return ppc_md.pcibios_default_alignment(); 240 241 return 0; 242 } 243 244 #ifdef CONFIG_PCI_IOV 245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 246 { 247 if (ppc_md.pcibios_iov_resource_alignment) 248 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 249 250 return pci_iov_resource_size(pdev, resno); 251 } 252 #endif /* CONFIG_PCI_IOV */ 253 254 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 255 { 256 #ifdef CONFIG_PPC64 257 return hose->pci_io_size; 258 #else 259 return resource_size(&hose->io_resource); 260 #endif 261 } 262 263 int pcibios_vaddr_is_ioport(void __iomem *address) 264 { 265 int ret = 0; 266 struct pci_controller *hose; 267 resource_size_t size; 268 269 spin_lock(&hose_spinlock); 270 list_for_each_entry(hose, &hose_list, list_node) { 271 size = pcibios_io_size(hose); 272 if (address >= hose->io_base_virt && 273 address < (hose->io_base_virt + size)) { 274 ret = 1; 275 break; 276 } 277 } 278 spin_unlock(&hose_spinlock); 279 return ret; 280 } 281 282 unsigned long pci_address_to_pio(phys_addr_t address) 283 { 284 struct pci_controller *hose; 285 resource_size_t size; 286 unsigned long ret = ~0; 287 288 spin_lock(&hose_spinlock); 289 list_for_each_entry(hose, &hose_list, list_node) { 290 size = pcibios_io_size(hose); 291 if (address >= hose->io_base_phys && 292 address < (hose->io_base_phys + size)) { 293 unsigned long base = 294 (unsigned long)hose->io_base_virt - _IO_BASE; 295 ret = base + (address - hose->io_base_phys); 296 break; 297 } 298 } 299 spin_unlock(&hose_spinlock); 300 301 return ret; 302 } 303 EXPORT_SYMBOL_GPL(pci_address_to_pio); 304 305 /* 306 * Return the domain number for this bus. 307 */ 308 int pci_domain_nr(struct pci_bus *bus) 309 { 310 struct pci_controller *hose = pci_bus_to_host(bus); 311 312 return hose->global_number; 313 } 314 EXPORT_SYMBOL(pci_domain_nr); 315 316 /* This routine is meant to be used early during boot, when the 317 * PCI bus numbers have not yet been assigned, and you need to 318 * issue PCI config cycles to an OF device. 319 * It could also be used to "fix" RTAS config cycles if you want 320 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 321 * config cycles. 322 */ 323 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 324 { 325 while(node) { 326 struct pci_controller *hose, *tmp; 327 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 328 if (hose->dn == node) 329 return hose; 330 node = node->parent; 331 } 332 return NULL; 333 } 334 335 /* 336 * Reads the interrupt pin to determine if interrupt is use by card. 337 * If the interrupt is used, then gets the interrupt line from the 338 * openfirmware and sets it in the pci_dev and pci_config line. 339 */ 340 static int pci_read_irq_line(struct pci_dev *pci_dev) 341 { 342 struct of_phandle_args oirq; 343 unsigned int virq; 344 345 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 346 347 #ifdef DEBUG 348 memset(&oirq, 0xff, sizeof(oirq)); 349 #endif 350 /* Try to get a mapping from the device-tree */ 351 if (of_irq_parse_pci(pci_dev, &oirq)) { 352 u8 line, pin; 353 354 /* If that fails, lets fallback to what is in the config 355 * space and map that through the default controller. We 356 * also set the type to level low since that's what PCI 357 * interrupts are. If your platform does differently, then 358 * either provide a proper interrupt tree or don't use this 359 * function. 360 */ 361 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 362 return -1; 363 if (pin == 0) 364 return -1; 365 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 366 line == 0xff || line == 0) { 367 return -1; 368 } 369 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 370 line, pin); 371 372 virq = irq_create_mapping(NULL, line); 373 if (virq) 374 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 375 } else { 376 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", 377 oirq.args_count, oirq.args[0], oirq.args[1], 378 of_node_full_name(oirq.np)); 379 380 virq = irq_create_of_mapping(&oirq); 381 } 382 383 if (!virq) { 384 pr_debug(" Failed to map !\n"); 385 return -1; 386 } 387 388 pr_debug(" Mapped to linux irq %d\n", virq); 389 390 pci_dev->irq = virq; 391 392 return 0; 393 } 394 395 /* 396 * Platform support for /proc/bus/pci/X/Y mmap()s, 397 * modelled on the sparc64 implementation by Dave Miller. 398 * -- paulus. 399 */ 400 401 /* 402 * Adjust vm_pgoff of VMA such that it is the physical page offset 403 * corresponding to the 32-bit pci bus offset for DEV requested by the user. 404 * 405 * Basically, the user finds the base address for his device which he wishes 406 * to mmap. They read the 32-bit value from the config space base register, 407 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the 408 * offset parameter of mmap on /proc/bus/pci/XXX for that device. 409 * 410 * Returns negative error code on failure, zero on success. 411 */ 412 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, 413 resource_size_t *offset, 414 enum pci_mmap_state mmap_state) 415 { 416 struct pci_controller *hose = pci_bus_to_host(dev->bus); 417 unsigned long io_offset = 0; 418 int i, res_bit; 419 420 if (hose == NULL) 421 return NULL; /* should never happen */ 422 423 /* If memory, add on the PCI bridge address offset */ 424 if (mmap_state == pci_mmap_mem) { 425 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ 426 *offset += hose->pci_mem_offset; 427 #endif 428 res_bit = IORESOURCE_MEM; 429 } else { 430 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 431 *offset += io_offset; 432 res_bit = IORESOURCE_IO; 433 } 434 435 /* 436 * Check that the offset requested corresponds to one of the 437 * resources of the device. 438 */ 439 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 440 struct resource *rp = &dev->resource[i]; 441 int flags = rp->flags; 442 443 /* treat ROM as memory (should be already) */ 444 if (i == PCI_ROM_RESOURCE) 445 flags |= IORESOURCE_MEM; 446 447 /* Active and same type? */ 448 if ((flags & res_bit) == 0) 449 continue; 450 451 /* In the range of this resource? */ 452 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) 453 continue; 454 455 /* found it! construct the final physical address */ 456 if (mmap_state == pci_mmap_io) 457 *offset += hose->io_base_phys - io_offset; 458 return rp; 459 } 460 461 return NULL; 462 } 463 464 /* 465 * This one is used by /dev/mem and fbdev who have no clue about the 466 * PCI device, it tries to find the PCI device first and calls the 467 * above routine 468 */ 469 pgprot_t pci_phys_mem_access_prot(struct file *file, 470 unsigned long pfn, 471 unsigned long size, 472 pgprot_t prot) 473 { 474 struct pci_dev *pdev = NULL; 475 struct resource *found = NULL; 476 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 477 int i; 478 479 if (page_is_ram(pfn)) 480 return prot; 481 482 prot = pgprot_noncached(prot); 483 for_each_pci_dev(pdev) { 484 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 485 struct resource *rp = &pdev->resource[i]; 486 int flags = rp->flags; 487 488 /* Active and same type? */ 489 if ((flags & IORESOURCE_MEM) == 0) 490 continue; 491 /* In the range of this resource? */ 492 if (offset < (rp->start & PAGE_MASK) || 493 offset > rp->end) 494 continue; 495 found = rp; 496 break; 497 } 498 if (found) 499 break; 500 } 501 if (found) { 502 if (found->flags & IORESOURCE_PREFETCH) 503 prot = pgprot_noncached_wc(prot); 504 pci_dev_put(pdev); 505 } 506 507 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 508 (unsigned long long)offset, pgprot_val(prot)); 509 510 return prot; 511 } 512 513 514 /* 515 * Perform the actual remap of the pages for a PCI device mapping, as 516 * appropriate for this architecture. The region in the process to map 517 * is described by vm_start and vm_end members of VMA, the base physical 518 * address is found in vm_pgoff. 519 * The pci device structure is provided so that architectures may make mapping 520 * decisions on a per-device or per-bus basis. 521 * 522 * Returns a negative error code on failure, zero on success. 523 */ 524 int pci_mmap_page_range(struct pci_dev *dev, int bar, 525 struct vm_area_struct *vma, 526 enum pci_mmap_state mmap_state, int write_combine) 527 { 528 resource_size_t offset = 529 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 530 struct resource *rp; 531 int ret; 532 533 rp = __pci_mmap_make_offset(dev, &offset, mmap_state); 534 if (rp == NULL) 535 return -EINVAL; 536 537 vma->vm_pgoff = offset >> PAGE_SHIFT; 538 if (write_combine) 539 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 540 else 541 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 542 543 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 544 vma->vm_end - vma->vm_start, vma->vm_page_prot); 545 546 return ret; 547 } 548 549 /* This provides legacy IO read access on a bus */ 550 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 551 { 552 unsigned long offset; 553 struct pci_controller *hose = pci_bus_to_host(bus); 554 struct resource *rp = &hose->io_resource; 555 void __iomem *addr; 556 557 /* Check if port can be supported by that bus. We only check 558 * the ranges of the PHB though, not the bus itself as the rules 559 * for forwarding legacy cycles down bridges are not our problem 560 * here. So if the host bridge supports it, we do it. 561 */ 562 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 563 offset += port; 564 565 if (!(rp->flags & IORESOURCE_IO)) 566 return -ENXIO; 567 if (offset < rp->start || (offset + size) > rp->end) 568 return -ENXIO; 569 addr = hose->io_base_virt + port; 570 571 switch(size) { 572 case 1: 573 *((u8 *)val) = in_8(addr); 574 return 1; 575 case 2: 576 if (port & 1) 577 return -EINVAL; 578 *((u16 *)val) = in_le16(addr); 579 return 2; 580 case 4: 581 if (port & 3) 582 return -EINVAL; 583 *((u32 *)val) = in_le32(addr); 584 return 4; 585 } 586 return -EINVAL; 587 } 588 589 /* This provides legacy IO write access on a bus */ 590 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 591 { 592 unsigned long offset; 593 struct pci_controller *hose = pci_bus_to_host(bus); 594 struct resource *rp = &hose->io_resource; 595 void __iomem *addr; 596 597 /* Check if port can be supported by that bus. We only check 598 * the ranges of the PHB though, not the bus itself as the rules 599 * for forwarding legacy cycles down bridges are not our problem 600 * here. So if the host bridge supports it, we do it. 601 */ 602 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 603 offset += port; 604 605 if (!(rp->flags & IORESOURCE_IO)) 606 return -ENXIO; 607 if (offset < rp->start || (offset + size) > rp->end) 608 return -ENXIO; 609 addr = hose->io_base_virt + port; 610 611 /* WARNING: The generic code is idiotic. It gets passed a pointer 612 * to what can be a 1, 2 or 4 byte quantity and always reads that 613 * as a u32, which means that we have to correct the location of 614 * the data read within those 32 bits for size 1 and 2 615 */ 616 switch(size) { 617 case 1: 618 out_8(addr, val >> 24); 619 return 1; 620 case 2: 621 if (port & 1) 622 return -EINVAL; 623 out_le16(addr, val >> 16); 624 return 2; 625 case 4: 626 if (port & 3) 627 return -EINVAL; 628 out_le32(addr, val); 629 return 4; 630 } 631 return -EINVAL; 632 } 633 634 /* This provides legacy IO or memory mmap access on a bus */ 635 int pci_mmap_legacy_page_range(struct pci_bus *bus, 636 struct vm_area_struct *vma, 637 enum pci_mmap_state mmap_state) 638 { 639 struct pci_controller *hose = pci_bus_to_host(bus); 640 resource_size_t offset = 641 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 642 resource_size_t size = vma->vm_end - vma->vm_start; 643 struct resource *rp; 644 645 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 646 pci_domain_nr(bus), bus->number, 647 mmap_state == pci_mmap_mem ? "MEM" : "IO", 648 (unsigned long long)offset, 649 (unsigned long long)(offset + size - 1)); 650 651 if (mmap_state == pci_mmap_mem) { 652 /* Hack alert ! 653 * 654 * Because X is lame and can fail starting if it gets an error trying 655 * to mmap legacy_mem (instead of just moving on without legacy memory 656 * access) we fake it here by giving it anonymous memory, effectively 657 * behaving just like /dev/zero 658 */ 659 if ((offset + size) > hose->isa_mem_size) { 660 printk(KERN_DEBUG 661 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 662 current->comm, current->pid, pci_domain_nr(bus), bus->number); 663 if (vma->vm_flags & VM_SHARED) 664 return shmem_zero_setup(vma); 665 return 0; 666 } 667 offset += hose->isa_mem_phys; 668 } else { 669 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 670 unsigned long roffset = offset + io_offset; 671 rp = &hose->io_resource; 672 if (!(rp->flags & IORESOURCE_IO)) 673 return -ENXIO; 674 if (roffset < rp->start || (roffset + size) > rp->end) 675 return -ENXIO; 676 offset += hose->io_base_phys; 677 } 678 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 679 680 vma->vm_pgoff = offset >> PAGE_SHIFT; 681 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 682 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 683 vma->vm_end - vma->vm_start, 684 vma->vm_page_prot); 685 } 686 687 void pci_resource_to_user(const struct pci_dev *dev, int bar, 688 const struct resource *rsrc, 689 resource_size_t *start, resource_size_t *end) 690 { 691 struct pci_bus_region region; 692 693 if (rsrc->flags & IORESOURCE_IO) { 694 pcibios_resource_to_bus(dev->bus, ®ion, 695 (struct resource *) rsrc); 696 *start = region.start; 697 *end = region.end; 698 return; 699 } 700 701 /* We pass a CPU physical address to userland for MMIO instead of a 702 * BAR value because X is lame and expects to be able to use that 703 * to pass to /dev/mem! 704 * 705 * That means we may have 64-bit values where some apps only expect 706 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 707 */ 708 *start = rsrc->start; 709 *end = rsrc->end; 710 } 711 712 /** 713 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 714 * @hose: newly allocated pci_controller to be setup 715 * @dev: device node of the host bridge 716 * @primary: set if primary bus (32 bits only, soon to be deprecated) 717 * 718 * This function will parse the "ranges" property of a PCI host bridge device 719 * node and setup the resource mapping of a pci controller based on its 720 * content. 721 * 722 * Life would be boring if it wasn't for a few issues that we have to deal 723 * with here: 724 * 725 * - We can only cope with one IO space range and up to 3 Memory space 726 * ranges. However, some machines (thanks Apple !) tend to split their 727 * space into lots of small contiguous ranges. So we have to coalesce. 728 * 729 * - Some busses have IO space not starting at 0, which causes trouble with 730 * the way we do our IO resource renumbering. The code somewhat deals with 731 * it for 64 bits but I would expect problems on 32 bits. 732 * 733 * - Some 32 bits platforms such as 4xx can have physical space larger than 734 * 32 bits so we need to use 64 bits values for the parsing 735 */ 736 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 737 struct device_node *dev, int primary) 738 { 739 int memno = 0; 740 struct resource *res; 741 struct of_pci_range range; 742 struct of_pci_range_parser parser; 743 744 printk(KERN_INFO "PCI host bridge %s %s ranges:\n", 745 dev->full_name, primary ? "(primary)" : ""); 746 747 /* Check for ranges property */ 748 if (of_pci_range_parser_init(&parser, dev)) 749 return; 750 751 /* Parse it */ 752 for_each_of_pci_range(&parser, &range) { 753 /* If we failed translation or got a zero-sized region 754 * (some FW try to feed us with non sensical zero sized regions 755 * such as power3 which look like some kind of attempt at exposing 756 * the VGA memory hole) 757 */ 758 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 759 continue; 760 761 /* Act based on address space type */ 762 res = NULL; 763 switch (range.flags & IORESOURCE_TYPE_BITS) { 764 case IORESOURCE_IO: 765 printk(KERN_INFO 766 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 767 range.cpu_addr, range.cpu_addr + range.size - 1, 768 range.pci_addr); 769 770 /* We support only one IO range */ 771 if (hose->pci_io_size) { 772 printk(KERN_INFO 773 " \\--> Skipped (too many) !\n"); 774 continue; 775 } 776 #ifdef CONFIG_PPC32 777 /* On 32 bits, limit I/O space to 16MB */ 778 if (range.size > 0x01000000) 779 range.size = 0x01000000; 780 781 /* 32 bits needs to map IOs here */ 782 hose->io_base_virt = ioremap(range.cpu_addr, 783 range.size); 784 785 /* Expect trouble if pci_addr is not 0 */ 786 if (primary) 787 isa_io_base = 788 (unsigned long)hose->io_base_virt; 789 #endif /* CONFIG_PPC32 */ 790 /* pci_io_size and io_base_phys always represent IO 791 * space starting at 0 so we factor in pci_addr 792 */ 793 hose->pci_io_size = range.pci_addr + range.size; 794 hose->io_base_phys = range.cpu_addr - range.pci_addr; 795 796 /* Build resource */ 797 res = &hose->io_resource; 798 range.cpu_addr = range.pci_addr; 799 break; 800 case IORESOURCE_MEM: 801 printk(KERN_INFO 802 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 803 range.cpu_addr, range.cpu_addr + range.size - 1, 804 range.pci_addr, 805 (range.pci_space & 0x40000000) ? 806 "Prefetch" : ""); 807 808 /* We support only 3 memory ranges */ 809 if (memno >= 3) { 810 printk(KERN_INFO 811 " \\--> Skipped (too many) !\n"); 812 continue; 813 } 814 /* Handles ISA memory hole space here */ 815 if (range.pci_addr == 0) { 816 if (primary || isa_mem_base == 0) 817 isa_mem_base = range.cpu_addr; 818 hose->isa_mem_phys = range.cpu_addr; 819 hose->isa_mem_size = range.size; 820 } 821 822 /* Build resource */ 823 hose->mem_offset[memno] = range.cpu_addr - 824 range.pci_addr; 825 res = &hose->mem_resources[memno++]; 826 break; 827 } 828 if (res != NULL) { 829 res->name = dev->full_name; 830 res->flags = range.flags; 831 res->start = range.cpu_addr; 832 res->end = range.cpu_addr + range.size - 1; 833 res->parent = res->child = res->sibling = NULL; 834 } 835 } 836 } 837 838 /* Decide whether to display the domain number in /proc */ 839 int pci_proc_domain(struct pci_bus *bus) 840 { 841 struct pci_controller *hose = pci_bus_to_host(bus); 842 843 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 844 return 0; 845 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 846 return hose->global_number != 0; 847 return 1; 848 } 849 850 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 851 { 852 if (ppc_md.pcibios_root_bridge_prepare) 853 return ppc_md.pcibios_root_bridge_prepare(bridge); 854 855 return 0; 856 } 857 858 /* This header fixup will do the resource fixup for all devices as they are 859 * probed, but not for bridge ranges 860 */ 861 static void pcibios_fixup_resources(struct pci_dev *dev) 862 { 863 struct pci_controller *hose = pci_bus_to_host(dev->bus); 864 int i; 865 866 if (!hose) { 867 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 868 pci_name(dev)); 869 return; 870 } 871 872 if (dev->is_virtfn) 873 return; 874 875 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 876 struct resource *res = dev->resource + i; 877 struct pci_bus_region reg; 878 if (!res->flags) 879 continue; 880 881 /* If we're going to re-assign everything, we mark all resources 882 * as unset (and 0-base them). In addition, we mark BARs starting 883 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 884 * since in that case, we don't want to re-assign anything 885 */ 886 pcibios_resource_to_bus(dev->bus, ®, res); 887 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 888 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 889 /* Only print message if not re-assigning */ 890 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 891 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 892 pci_name(dev), i, res); 893 res->end -= res->start; 894 res->start = 0; 895 res->flags |= IORESOURCE_UNSET; 896 continue; 897 } 898 899 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 900 } 901 902 /* Call machine specific resource fixup */ 903 if (ppc_md.pcibios_fixup_resources) 904 ppc_md.pcibios_fixup_resources(dev); 905 } 906 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 907 908 /* This function tries to figure out if a bridge resource has been initialized 909 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 910 * things go more smoothly when it gets it right. It should covers cases such 911 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 912 */ 913 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 914 struct resource *res) 915 { 916 struct pci_controller *hose = pci_bus_to_host(bus); 917 struct pci_dev *dev = bus->self; 918 resource_size_t offset; 919 struct pci_bus_region region; 920 u16 command; 921 int i; 922 923 /* We don't do anything if PCI_PROBE_ONLY is set */ 924 if (pci_has_flag(PCI_PROBE_ONLY)) 925 return 0; 926 927 /* Job is a bit different between memory and IO */ 928 if (res->flags & IORESOURCE_MEM) { 929 pcibios_resource_to_bus(dev->bus, ®ion, res); 930 931 /* If the BAR is non-0 then it's probably been initialized */ 932 if (region.start != 0) 933 return 0; 934 935 /* The BAR is 0, let's check if memory decoding is enabled on 936 * the bridge. If not, we consider it unassigned 937 */ 938 pci_read_config_word(dev, PCI_COMMAND, &command); 939 if ((command & PCI_COMMAND_MEMORY) == 0) 940 return 1; 941 942 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 943 * resources covers that starting address (0 then it's good enough for 944 * us for memory space) 945 */ 946 for (i = 0; i < 3; i++) { 947 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 948 hose->mem_resources[i].start == hose->mem_offset[i]) 949 return 0; 950 } 951 952 /* Well, it starts at 0 and we know it will collide so we may as 953 * well consider it as unassigned. That covers the Apple case. 954 */ 955 return 1; 956 } else { 957 /* If the BAR is non-0, then we consider it assigned */ 958 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 959 if (((res->start - offset) & 0xfffffffful) != 0) 960 return 0; 961 962 /* Here, we are a bit different than memory as typically IO space 963 * starting at low addresses -is- valid. What we do instead if that 964 * we consider as unassigned anything that doesn't have IO enabled 965 * in the PCI command register, and that's it. 966 */ 967 pci_read_config_word(dev, PCI_COMMAND, &command); 968 if (command & PCI_COMMAND_IO) 969 return 0; 970 971 /* It's starting at 0 and IO is disabled in the bridge, consider 972 * it unassigned 973 */ 974 return 1; 975 } 976 } 977 978 /* Fixup resources of a PCI<->PCI bridge */ 979 static void pcibios_fixup_bridge(struct pci_bus *bus) 980 { 981 struct resource *res; 982 int i; 983 984 struct pci_dev *dev = bus->self; 985 986 pci_bus_for_each_resource(bus, res, i) { 987 if (!res || !res->flags) 988 continue; 989 if (i >= 3 && bus->self->transparent) 990 continue; 991 992 /* If we're going to reassign everything, we can 993 * shrink the P2P resource to have size as being 994 * of 0 in order to save space. 995 */ 996 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 997 res->flags |= IORESOURCE_UNSET; 998 res->start = 0; 999 res->end = -1; 1000 continue; 1001 } 1002 1003 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 1004 1005 /* Try to detect uninitialized P2P bridge resources, 1006 * and clear them out so they get re-assigned later 1007 */ 1008 if (pcibios_uninitialized_bridge_resource(bus, res)) { 1009 res->flags = 0; 1010 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 1011 } 1012 } 1013 } 1014 1015 void pcibios_setup_bus_self(struct pci_bus *bus) 1016 { 1017 struct pci_controller *phb; 1018 1019 /* Fix up the bus resources for P2P bridges */ 1020 if (bus->self != NULL) 1021 pcibios_fixup_bridge(bus); 1022 1023 /* Platform specific bus fixups. This is currently only used 1024 * by fsl_pci and I'm hoping to get rid of it at some point 1025 */ 1026 if (ppc_md.pcibios_fixup_bus) 1027 ppc_md.pcibios_fixup_bus(bus); 1028 1029 /* Setup bus DMA mappings */ 1030 phb = pci_bus_to_host(bus); 1031 if (phb->controller_ops.dma_bus_setup) 1032 phb->controller_ops.dma_bus_setup(bus); 1033 } 1034 1035 static void pcibios_setup_device(struct pci_dev *dev) 1036 { 1037 struct pci_controller *phb; 1038 /* Fixup NUMA node as it may not be setup yet by the generic 1039 * code and is needed by the DMA init 1040 */ 1041 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1042 1043 /* Hook up default DMA ops */ 1044 set_dma_ops(&dev->dev, pci_dma_ops); 1045 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); 1046 1047 /* Additional platform DMA/iommu setup */ 1048 phb = pci_bus_to_host(dev->bus); 1049 if (phb->controller_ops.dma_dev_setup) 1050 phb->controller_ops.dma_dev_setup(dev); 1051 1052 /* Read default IRQs and fixup if necessary */ 1053 pci_read_irq_line(dev); 1054 if (ppc_md.pci_irq_fixup) 1055 ppc_md.pci_irq_fixup(dev); 1056 } 1057 1058 int pcibios_add_device(struct pci_dev *dev) 1059 { 1060 /* 1061 * We can only call pcibios_setup_device() after bus setup is complete, 1062 * since some of the platform specific DMA setup code depends on it. 1063 */ 1064 if (dev->bus->is_added) 1065 pcibios_setup_device(dev); 1066 1067 #ifdef CONFIG_PCI_IOV 1068 if (ppc_md.pcibios_fixup_sriov) 1069 ppc_md.pcibios_fixup_sriov(dev); 1070 #endif /* CONFIG_PCI_IOV */ 1071 1072 return 0; 1073 } 1074 1075 void pcibios_setup_bus_devices(struct pci_bus *bus) 1076 { 1077 struct pci_dev *dev; 1078 1079 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1080 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1081 1082 list_for_each_entry(dev, &bus->devices, bus_list) { 1083 /* Cardbus can call us to add new devices to a bus, so ignore 1084 * those who are already fully discovered 1085 */ 1086 if (dev->is_added) 1087 continue; 1088 1089 pcibios_setup_device(dev); 1090 } 1091 } 1092 1093 void pcibios_set_master(struct pci_dev *dev) 1094 { 1095 /* No special bus mastering setup handling */ 1096 } 1097 1098 void pcibios_fixup_bus(struct pci_bus *bus) 1099 { 1100 /* When called from the generic PCI probe, read PCI<->PCI bridge 1101 * bases. This is -not- called when generating the PCI tree from 1102 * the OF device-tree. 1103 */ 1104 pci_read_bridge_bases(bus); 1105 1106 /* Now fixup the bus bus */ 1107 pcibios_setup_bus_self(bus); 1108 1109 /* Now fixup devices on that bus */ 1110 pcibios_setup_bus_devices(bus); 1111 } 1112 EXPORT_SYMBOL(pcibios_fixup_bus); 1113 1114 void pci_fixup_cardbus(struct pci_bus *bus) 1115 { 1116 /* Now fixup devices on that bus */ 1117 pcibios_setup_bus_devices(bus); 1118 } 1119 1120 1121 static int skip_isa_ioresource_align(struct pci_dev *dev) 1122 { 1123 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1124 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1125 return 1; 1126 return 0; 1127 } 1128 1129 /* 1130 * We need to avoid collisions with `mirrored' VGA ports 1131 * and other strange ISA hardware, so we always want the 1132 * addresses to be allocated in the 0x000-0x0ff region 1133 * modulo 0x400. 1134 * 1135 * Why? Because some silly external IO cards only decode 1136 * the low 10 bits of the IO address. The 0x00-0xff region 1137 * is reserved for motherboard devices that decode all 16 1138 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1139 * but we want to try to avoid allocating at 0x2900-0x2bff 1140 * which might have be mirrored at 0x0100-0x03ff.. 1141 */ 1142 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1143 resource_size_t size, resource_size_t align) 1144 { 1145 struct pci_dev *dev = data; 1146 resource_size_t start = res->start; 1147 1148 if (res->flags & IORESOURCE_IO) { 1149 if (skip_isa_ioresource_align(dev)) 1150 return start; 1151 if (start & 0x300) 1152 start = (start + 0x3ff) & ~0x3ff; 1153 } 1154 1155 return start; 1156 } 1157 EXPORT_SYMBOL(pcibios_align_resource); 1158 1159 /* 1160 * Reparent resource children of pr that conflict with res 1161 * under res, and make res replace those children. 1162 */ 1163 static int reparent_resources(struct resource *parent, 1164 struct resource *res) 1165 { 1166 struct resource *p, **pp; 1167 struct resource **firstpp = NULL; 1168 1169 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1170 if (p->end < res->start) 1171 continue; 1172 if (res->end < p->start) 1173 break; 1174 if (p->start < res->start || p->end > res->end) 1175 return -1; /* not completely contained */ 1176 if (firstpp == NULL) 1177 firstpp = pp; 1178 } 1179 if (firstpp == NULL) 1180 return -1; /* didn't find any conflicting entries? */ 1181 res->parent = parent; 1182 res->child = *firstpp; 1183 res->sibling = *pp; 1184 *firstpp = res; 1185 *pp = NULL; 1186 for (p = res->child; p != NULL; p = p->sibling) { 1187 p->parent = res; 1188 pr_debug("PCI: Reparented %s %pR under %s\n", 1189 p->name, p, res->name); 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Handle resources of PCI devices. If the world were perfect, we could 1196 * just allocate all the resource regions and do nothing more. It isn't. 1197 * On the other hand, we cannot just re-allocate all devices, as it would 1198 * require us to know lots of host bridge internals. So we attempt to 1199 * keep as much of the original configuration as possible, but tweak it 1200 * when it's found to be wrong. 1201 * 1202 * Known BIOS problems we have to work around: 1203 * - I/O or memory regions not configured 1204 * - regions configured, but not enabled in the command register 1205 * - bogus I/O addresses above 64K used 1206 * - expansion ROMs left enabled (this may sound harmless, but given 1207 * the fact the PCI specs explicitly allow address decoders to be 1208 * shared between expansion ROMs and other resource regions, it's 1209 * at least dangerous) 1210 * 1211 * Our solution: 1212 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1213 * This gives us fixed barriers on where we can allocate. 1214 * (2) Allocate resources for all enabled devices. If there is 1215 * a collision, just mark the resource as unallocated. Also 1216 * disable expansion ROMs during this step. 1217 * (3) Try to allocate resources for disabled devices. If the 1218 * resources were assigned correctly, everything goes well, 1219 * if they weren't, they won't disturb allocation of other 1220 * resources. 1221 * (4) Assign new addresses to resources which were either 1222 * not configured at all or misconfigured. If explicitly 1223 * requested by the user, configure expansion ROM address 1224 * as well. 1225 */ 1226 1227 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1228 { 1229 struct pci_bus *b; 1230 int i; 1231 struct resource *res, *pr; 1232 1233 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1234 pci_domain_nr(bus), bus->number); 1235 1236 pci_bus_for_each_resource(bus, res, i) { 1237 if (!res || !res->flags || res->start > res->end || res->parent) 1238 continue; 1239 1240 /* If the resource was left unset at this point, we clear it */ 1241 if (res->flags & IORESOURCE_UNSET) 1242 goto clear_resource; 1243 1244 if (bus->parent == NULL) 1245 pr = (res->flags & IORESOURCE_IO) ? 1246 &ioport_resource : &iomem_resource; 1247 else { 1248 pr = pci_find_parent_resource(bus->self, res); 1249 if (pr == res) { 1250 /* this happens when the generic PCI 1251 * code (wrongly) decides that this 1252 * bridge is transparent -- paulus 1253 */ 1254 continue; 1255 } 1256 } 1257 1258 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1259 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1260 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1261 1262 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1263 struct pci_dev *dev = bus->self; 1264 1265 if (request_resource(pr, res) == 0) 1266 continue; 1267 /* 1268 * Must be a conflict with an existing entry. 1269 * Move that entry (or entries) under the 1270 * bridge resource and try again. 1271 */ 1272 if (reparent_resources(pr, res) == 0) 1273 continue; 1274 1275 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1276 pci_claim_bridge_resource(dev, 1277 i + PCI_BRIDGE_RESOURCES) == 0) 1278 continue; 1279 } 1280 pr_warning("PCI: Cannot allocate resource region " 1281 "%d of PCI bridge %d, will remap\n", i, bus->number); 1282 clear_resource: 1283 /* The resource might be figured out when doing 1284 * reassignment based on the resources required 1285 * by the downstream PCI devices. Here we set 1286 * the size of the resource to be 0 in order to 1287 * save more space. 1288 */ 1289 res->start = 0; 1290 res->end = -1; 1291 res->flags = 0; 1292 } 1293 1294 list_for_each_entry(b, &bus->children, node) 1295 pcibios_allocate_bus_resources(b); 1296 } 1297 1298 static inline void alloc_resource(struct pci_dev *dev, int idx) 1299 { 1300 struct resource *pr, *r = &dev->resource[idx]; 1301 1302 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1303 pci_name(dev), idx, r); 1304 1305 pr = pci_find_parent_resource(dev, r); 1306 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1307 request_resource(pr, r) < 0) { 1308 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1309 " of device %s, will remap\n", idx, pci_name(dev)); 1310 if (pr) 1311 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1312 /* We'll assign a new address later */ 1313 r->flags |= IORESOURCE_UNSET; 1314 r->end -= r->start; 1315 r->start = 0; 1316 } 1317 } 1318 1319 static void __init pcibios_allocate_resources(int pass) 1320 { 1321 struct pci_dev *dev = NULL; 1322 int idx, disabled; 1323 u16 command; 1324 struct resource *r; 1325 1326 for_each_pci_dev(dev) { 1327 pci_read_config_word(dev, PCI_COMMAND, &command); 1328 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1329 r = &dev->resource[idx]; 1330 if (r->parent) /* Already allocated */ 1331 continue; 1332 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1333 continue; /* Not assigned at all */ 1334 /* We only allocate ROMs on pass 1 just in case they 1335 * have been screwed up by firmware 1336 */ 1337 if (idx == PCI_ROM_RESOURCE ) 1338 disabled = 1; 1339 if (r->flags & IORESOURCE_IO) 1340 disabled = !(command & PCI_COMMAND_IO); 1341 else 1342 disabled = !(command & PCI_COMMAND_MEMORY); 1343 if (pass == disabled) 1344 alloc_resource(dev, idx); 1345 } 1346 if (pass) 1347 continue; 1348 r = &dev->resource[PCI_ROM_RESOURCE]; 1349 if (r->flags) { 1350 /* Turn the ROM off, leave the resource region, 1351 * but keep it unregistered. 1352 */ 1353 u32 reg; 1354 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1355 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1356 pr_debug("PCI: Switching off ROM of %s\n", 1357 pci_name(dev)); 1358 r->flags &= ~IORESOURCE_ROM_ENABLE; 1359 pci_write_config_dword(dev, dev->rom_base_reg, 1360 reg & ~PCI_ROM_ADDRESS_ENABLE); 1361 } 1362 } 1363 } 1364 } 1365 1366 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1367 { 1368 struct pci_controller *hose = pci_bus_to_host(bus); 1369 resource_size_t offset; 1370 struct resource *res, *pres; 1371 int i; 1372 1373 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1374 1375 /* Check for IO */ 1376 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1377 goto no_io; 1378 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1379 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1380 BUG_ON(res == NULL); 1381 res->name = "Legacy IO"; 1382 res->flags = IORESOURCE_IO; 1383 res->start = offset; 1384 res->end = (offset + 0xfff) & 0xfffffffful; 1385 pr_debug("Candidate legacy IO: %pR\n", res); 1386 if (request_resource(&hose->io_resource, res)) { 1387 printk(KERN_DEBUG 1388 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1389 pci_domain_nr(bus), bus->number, res); 1390 kfree(res); 1391 } 1392 1393 no_io: 1394 /* Check for memory */ 1395 for (i = 0; i < 3; i++) { 1396 pres = &hose->mem_resources[i]; 1397 offset = hose->mem_offset[i]; 1398 if (!(pres->flags & IORESOURCE_MEM)) 1399 continue; 1400 pr_debug("hose mem res: %pR\n", pres); 1401 if ((pres->start - offset) <= 0xa0000 && 1402 (pres->end - offset) >= 0xbffff) 1403 break; 1404 } 1405 if (i >= 3) 1406 return; 1407 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1408 BUG_ON(res == NULL); 1409 res->name = "Legacy VGA memory"; 1410 res->flags = IORESOURCE_MEM; 1411 res->start = 0xa0000 + offset; 1412 res->end = 0xbffff + offset; 1413 pr_debug("Candidate VGA memory: %pR\n", res); 1414 if (request_resource(pres, res)) { 1415 printk(KERN_DEBUG 1416 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1417 pci_domain_nr(bus), bus->number, res); 1418 kfree(res); 1419 } 1420 } 1421 1422 void __init pcibios_resource_survey(void) 1423 { 1424 struct pci_bus *b; 1425 1426 /* Allocate and assign resources */ 1427 list_for_each_entry(b, &pci_root_buses, node) 1428 pcibios_allocate_bus_resources(b); 1429 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1430 pcibios_allocate_resources(0); 1431 pcibios_allocate_resources(1); 1432 } 1433 1434 /* Before we start assigning unassigned resource, we try to reserve 1435 * the low IO area and the VGA memory area if they intersect the 1436 * bus available resources to avoid allocating things on top of them 1437 */ 1438 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1439 list_for_each_entry(b, &pci_root_buses, node) 1440 pcibios_reserve_legacy_regions(b); 1441 } 1442 1443 /* Now, if the platform didn't decide to blindly trust the firmware, 1444 * we proceed to assigning things that were left unassigned 1445 */ 1446 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1447 pr_debug("PCI: Assigning unassigned resources...\n"); 1448 pci_assign_unassigned_resources(); 1449 } 1450 1451 /* Call machine dependent fixup */ 1452 if (ppc_md.pcibios_fixup) 1453 ppc_md.pcibios_fixup(); 1454 } 1455 1456 /* This is used by the PCI hotplug driver to allocate resource 1457 * of newly plugged busses. We can try to consolidate with the 1458 * rest of the code later, for now, keep it as-is as our main 1459 * resource allocation function doesn't deal with sub-trees yet. 1460 */ 1461 void pcibios_claim_one_bus(struct pci_bus *bus) 1462 { 1463 struct pci_dev *dev; 1464 struct pci_bus *child_bus; 1465 1466 list_for_each_entry(dev, &bus->devices, bus_list) { 1467 int i; 1468 1469 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1470 struct resource *r = &dev->resource[i]; 1471 1472 if (r->parent || !r->start || !r->flags) 1473 continue; 1474 1475 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1476 pci_name(dev), i, r); 1477 1478 if (pci_claim_resource(dev, i) == 0) 1479 continue; 1480 1481 pci_claim_bridge_resource(dev, i); 1482 } 1483 } 1484 1485 list_for_each_entry(child_bus, &bus->children, node) 1486 pcibios_claim_one_bus(child_bus); 1487 } 1488 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1489 1490 1491 /* pcibios_finish_adding_to_bus 1492 * 1493 * This is to be called by the hotplug code after devices have been 1494 * added to a bus, this include calling it for a PHB that is just 1495 * being added 1496 */ 1497 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1498 { 1499 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1500 pci_domain_nr(bus), bus->number); 1501 1502 /* Allocate bus and devices resources */ 1503 pcibios_allocate_bus_resources(bus); 1504 pcibios_claim_one_bus(bus); 1505 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1506 if (bus->self) 1507 pci_assign_unassigned_bridge_resources(bus->self); 1508 else 1509 pci_assign_unassigned_bus_resources(bus); 1510 } 1511 1512 /* Fixup EEH */ 1513 eeh_add_device_tree_late(bus); 1514 1515 /* Add new devices to global lists. Register in proc, sysfs. */ 1516 pci_bus_add_devices(bus); 1517 1518 /* sysfs files should only be added after devices are added */ 1519 eeh_add_sysfs_files(bus); 1520 } 1521 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1522 1523 int pcibios_enable_device(struct pci_dev *dev, int mask) 1524 { 1525 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1526 1527 if (phb->controller_ops.enable_device_hook) 1528 if (!phb->controller_ops.enable_device_hook(dev)) 1529 return -EINVAL; 1530 1531 return pci_enable_resources(dev, mask); 1532 } 1533 1534 void pcibios_disable_device(struct pci_dev *dev) 1535 { 1536 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1537 1538 if (phb->controller_ops.disable_device) 1539 phb->controller_ops.disable_device(dev); 1540 } 1541 1542 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1543 { 1544 return (unsigned long) hose->io_base_virt - _IO_BASE; 1545 } 1546 1547 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1548 struct list_head *resources) 1549 { 1550 struct resource *res; 1551 resource_size_t offset; 1552 int i; 1553 1554 /* Hookup PHB IO resource */ 1555 res = &hose->io_resource; 1556 1557 if (!res->flags) { 1558 pr_debug("PCI: I/O resource not set for host" 1559 " bridge %s (domain %d)\n", 1560 hose->dn->full_name, hose->global_number); 1561 } else { 1562 offset = pcibios_io_space_offset(hose); 1563 1564 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1565 res, (unsigned long long)offset); 1566 pci_add_resource_offset(resources, res, offset); 1567 } 1568 1569 /* Hookup PHB Memory resources */ 1570 for (i = 0; i < 3; ++i) { 1571 res = &hose->mem_resources[i]; 1572 if (!res->flags) 1573 continue; 1574 1575 offset = hose->mem_offset[i]; 1576 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1577 res, (unsigned long long)offset); 1578 1579 pci_add_resource_offset(resources, res, offset); 1580 } 1581 } 1582 1583 /* 1584 * Null PCI config access functions, for the case when we can't 1585 * find a hose. 1586 */ 1587 #define NULL_PCI_OP(rw, size, type) \ 1588 static int \ 1589 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1590 { \ 1591 return PCIBIOS_DEVICE_NOT_FOUND; \ 1592 } 1593 1594 static int 1595 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1596 int len, u32 *val) 1597 { 1598 return PCIBIOS_DEVICE_NOT_FOUND; 1599 } 1600 1601 static int 1602 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1603 int len, u32 val) 1604 { 1605 return PCIBIOS_DEVICE_NOT_FOUND; 1606 } 1607 1608 static struct pci_ops null_pci_ops = 1609 { 1610 .read = null_read_config, 1611 .write = null_write_config, 1612 }; 1613 1614 /* 1615 * These functions are used early on before PCI scanning is done 1616 * and all of the pci_dev and pci_bus structures have been created. 1617 */ 1618 static struct pci_bus * 1619 fake_pci_bus(struct pci_controller *hose, int busnr) 1620 { 1621 static struct pci_bus bus; 1622 1623 if (hose == NULL) { 1624 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1625 } 1626 bus.number = busnr; 1627 bus.sysdata = hose; 1628 bus.ops = hose? hose->ops: &null_pci_ops; 1629 return &bus; 1630 } 1631 1632 #define EARLY_PCI_OP(rw, size, type) \ 1633 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1634 int devfn, int offset, type value) \ 1635 { \ 1636 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1637 devfn, offset, value); \ 1638 } 1639 1640 EARLY_PCI_OP(read, byte, u8 *) 1641 EARLY_PCI_OP(read, word, u16 *) 1642 EARLY_PCI_OP(read, dword, u32 *) 1643 EARLY_PCI_OP(write, byte, u8) 1644 EARLY_PCI_OP(write, word, u16) 1645 EARLY_PCI_OP(write, dword, u32) 1646 1647 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1648 int cap) 1649 { 1650 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1651 } 1652 1653 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1654 { 1655 struct pci_controller *hose = bus->sysdata; 1656 1657 return of_node_get(hose->dn); 1658 } 1659 1660 /** 1661 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1662 * @hose: Pointer to the PCI host controller instance structure 1663 */ 1664 void pcibios_scan_phb(struct pci_controller *hose) 1665 { 1666 LIST_HEAD(resources); 1667 struct pci_bus *bus; 1668 struct device_node *node = hose->dn; 1669 int mode; 1670 1671 pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node)); 1672 1673 /* Get some IO space for the new PHB */ 1674 pcibios_setup_phb_io_space(hose); 1675 1676 /* Wire up PHB bus resources */ 1677 pcibios_setup_phb_resources(hose, &resources); 1678 1679 hose->busn.start = hose->first_busno; 1680 hose->busn.end = hose->last_busno; 1681 hose->busn.flags = IORESOURCE_BUS; 1682 pci_add_resource(&resources, &hose->busn); 1683 1684 /* Create an empty bus for the toplevel */ 1685 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1686 hose->ops, hose, &resources); 1687 if (bus == NULL) { 1688 pr_err("Failed to create bus for PCI domain %04x\n", 1689 hose->global_number); 1690 pci_free_resource_list(&resources); 1691 return; 1692 } 1693 hose->bus = bus; 1694 1695 /* Get probe mode and perform scan */ 1696 mode = PCI_PROBE_NORMAL; 1697 if (node && hose->controller_ops.probe_mode) 1698 mode = hose->controller_ops.probe_mode(bus); 1699 pr_debug(" probe mode: %d\n", mode); 1700 if (mode == PCI_PROBE_DEVTREE) 1701 of_scan_bus(node, bus); 1702 1703 if (mode == PCI_PROBE_NORMAL) { 1704 pci_bus_update_busn_res_end(bus, 255); 1705 hose->last_busno = pci_scan_child_bus(bus); 1706 pci_bus_update_busn_res_end(bus, hose->last_busno); 1707 } 1708 1709 /* Platform gets a chance to do some global fixups before 1710 * we proceed to resource allocation 1711 */ 1712 if (ppc_md.pcibios_fixup_phb) 1713 ppc_md.pcibios_fixup_phb(hose); 1714 1715 /* Configure PCI Express settings */ 1716 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1717 struct pci_bus *child; 1718 list_for_each_entry(child, &bus->children, node) 1719 pcie_bus_configure_settings(child); 1720 } 1721 } 1722 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1723 1724 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1725 { 1726 int i, class = dev->class >> 8; 1727 /* When configured as agent, programing interface = 1 */ 1728 int prog_if = dev->class & 0xf; 1729 1730 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1731 class == PCI_CLASS_BRIDGE_OTHER) && 1732 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1733 (prog_if == 0) && 1734 (dev->bus->parent == NULL)) { 1735 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1736 dev->resource[i].start = 0; 1737 dev->resource[i].end = 0; 1738 dev->resource[i].flags = 0; 1739 } 1740 } 1741 } 1742 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1743 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1744 1745 static void fixup_vga(struct pci_dev *pdev) 1746 { 1747 u16 cmd; 1748 1749 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1750 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device()) 1751 vga_set_default_device(pdev); 1752 1753 } 1754 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID, 1755 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga); 1756