xref: /openbmc/linux/arch/powerpc/kernel/pci-common.c (revision 4da722ca)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/list.h>
30 #include <linux/syscalls.h>
31 #include <linux/irq.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 
36 #include <asm/processor.h>
37 #include <asm/io.h>
38 #include <asm/prom.h>
39 #include <asm/pci-bridge.h>
40 #include <asm/byteorder.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/eeh.h>
44 
45 /* hose_spinlock protects accesses to the the phb_bitmap. */
46 static DEFINE_SPINLOCK(hose_spinlock);
47 LIST_HEAD(hose_list);
48 
49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
50 #define MAX_PHBS 0x10000
51 
52 /*
53  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
54  * Accesses to this bitmap should be protected by hose_spinlock.
55  */
56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
57 
58 /* ISA Memory physical address */
59 resource_size_t isa_mem_base;
60 EXPORT_SYMBOL(isa_mem_base);
61 
62 
63 static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
64 
65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
66 {
67 	pci_dma_ops = dma_ops;
68 }
69 
70 const struct dma_map_ops *get_pci_dma_ops(void)
71 {
72 	return pci_dma_ops;
73 }
74 EXPORT_SYMBOL(get_pci_dma_ops);
75 
76 /*
77  * This function should run under locking protection, specifically
78  * hose_spinlock.
79  */
80 static int get_phb_number(struct device_node *dn)
81 {
82 	int ret, phb_id = -1;
83 	u32 prop_32;
84 	u64 prop;
85 
86 	/*
87 	 * Try fixed PHB numbering first, by checking archs and reading
88 	 * the respective device-tree properties. Firstly, try powernv by
89 	 * reading "ibm,opal-phbid", only present in OPAL environment.
90 	 */
91 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
92 	if (ret) {
93 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
94 		prop = prop_32;
95 	}
96 
97 	if (!ret)
98 		phb_id = (int)(prop & (MAX_PHBS - 1));
99 
100 	/* We need to be sure to not use the same PHB number twice. */
101 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
102 		return phb_id;
103 
104 	/*
105 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
106 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
107 	 */
108 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
109 	BUG_ON(phb_id >= MAX_PHBS);
110 	set_bit(phb_id, phb_bitmap);
111 
112 	return phb_id;
113 }
114 
115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
116 {
117 	struct pci_controller *phb;
118 
119 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
120 	if (phb == NULL)
121 		return NULL;
122 	spin_lock(&hose_spinlock);
123 	phb->global_number = get_phb_number(dev);
124 	list_add_tail(&phb->list_node, &hose_list);
125 	spin_unlock(&hose_spinlock);
126 	phb->dn = dev;
127 	phb->is_dynamic = slab_is_available();
128 #ifdef CONFIG_PPC64
129 	if (dev) {
130 		int nid = of_node_to_nid(dev);
131 
132 		if (nid < 0 || !node_online(nid))
133 			nid = -1;
134 
135 		PHB_SET_NODE(phb, nid);
136 	}
137 #endif
138 	return phb;
139 }
140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
141 
142 void pcibios_free_controller(struct pci_controller *phb)
143 {
144 	spin_lock(&hose_spinlock);
145 
146 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
147 	if (phb->global_number < MAX_PHBS)
148 		clear_bit(phb->global_number, phb_bitmap);
149 
150 	list_del(&phb->list_node);
151 	spin_unlock(&hose_spinlock);
152 
153 	if (phb->is_dynamic)
154 		kfree(phb);
155 }
156 EXPORT_SYMBOL_GPL(pcibios_free_controller);
157 
158 /*
159  * This function is used to call pcibios_free_controller()
160  * in a deferred manner: a callback from the PCI subsystem.
161  *
162  * _*DO NOT*_ call pcibios_free_controller() explicitly if
163  * this is used (or it may access an invalid *phb pointer).
164  *
165  * The callback occurs when all references to the root bus
166  * are dropped (e.g., child buses/devices and their users).
167  *
168  * It's called as .release_fn() of 'struct pci_host_bridge'
169  * which is associated with the 'struct pci_controller.bus'
170  * (root bus) - it expects .release_data to hold a pointer
171  * to 'struct pci_controller'.
172  *
173  * In order to use it, register .release_fn()/release_data
174  * like this:
175  *
176  * pci_set_host_bridge_release(bridge,
177  *                             pcibios_free_controller_deferred
178  *                             (void *) phb);
179  *
180  * e.g. in the pcibios_root_bridge_prepare() callback from
181  * pci_create_root_bus().
182  */
183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
184 {
185 	struct pci_controller *phb = (struct pci_controller *)
186 					 bridge->release_data;
187 
188 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
189 
190 	pcibios_free_controller(phb);
191 }
192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
193 
194 /*
195  * The function is used to return the minimal alignment
196  * for memory or I/O windows of the associated P2P bridge.
197  * By default, 4KiB alignment for I/O windows and 1MiB for
198  * memory windows.
199  */
200 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
201 					 unsigned long type)
202 {
203 	struct pci_controller *phb = pci_bus_to_host(bus);
204 
205 	if (phb->controller_ops.window_alignment)
206 		return phb->controller_ops.window_alignment(bus, type);
207 
208 	/*
209 	 * PCI core will figure out the default
210 	 * alignment: 4KiB for I/O and 1MiB for
211 	 * memory window.
212 	 */
213 	return 1;
214 }
215 
216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
217 {
218 	struct pci_controller *hose = pci_bus_to_host(bus);
219 
220 	if (hose->controller_ops.setup_bridge)
221 		hose->controller_ops.setup_bridge(bus, type);
222 }
223 
224 void pcibios_reset_secondary_bus(struct pci_dev *dev)
225 {
226 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
227 
228 	if (phb->controller_ops.reset_secondary_bus) {
229 		phb->controller_ops.reset_secondary_bus(dev);
230 		return;
231 	}
232 
233 	pci_reset_secondary_bus(dev);
234 }
235 
236 resource_size_t pcibios_default_alignment(void)
237 {
238 	if (ppc_md.pcibios_default_alignment)
239 		return ppc_md.pcibios_default_alignment();
240 
241 	return 0;
242 }
243 
244 #ifdef CONFIG_PCI_IOV
245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
246 {
247 	if (ppc_md.pcibios_iov_resource_alignment)
248 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
249 
250 	return pci_iov_resource_size(pdev, resno);
251 }
252 #endif /* CONFIG_PCI_IOV */
253 
254 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
255 {
256 #ifdef CONFIG_PPC64
257 	return hose->pci_io_size;
258 #else
259 	return resource_size(&hose->io_resource);
260 #endif
261 }
262 
263 int pcibios_vaddr_is_ioport(void __iomem *address)
264 {
265 	int ret = 0;
266 	struct pci_controller *hose;
267 	resource_size_t size;
268 
269 	spin_lock(&hose_spinlock);
270 	list_for_each_entry(hose, &hose_list, list_node) {
271 		size = pcibios_io_size(hose);
272 		if (address >= hose->io_base_virt &&
273 		    address < (hose->io_base_virt + size)) {
274 			ret = 1;
275 			break;
276 		}
277 	}
278 	spin_unlock(&hose_spinlock);
279 	return ret;
280 }
281 
282 unsigned long pci_address_to_pio(phys_addr_t address)
283 {
284 	struct pci_controller *hose;
285 	resource_size_t size;
286 	unsigned long ret = ~0;
287 
288 	spin_lock(&hose_spinlock);
289 	list_for_each_entry(hose, &hose_list, list_node) {
290 		size = pcibios_io_size(hose);
291 		if (address >= hose->io_base_phys &&
292 		    address < (hose->io_base_phys + size)) {
293 			unsigned long base =
294 				(unsigned long)hose->io_base_virt - _IO_BASE;
295 			ret = base + (address - hose->io_base_phys);
296 			break;
297 		}
298 	}
299 	spin_unlock(&hose_spinlock);
300 
301 	return ret;
302 }
303 EXPORT_SYMBOL_GPL(pci_address_to_pio);
304 
305 /*
306  * Return the domain number for this bus.
307  */
308 int pci_domain_nr(struct pci_bus *bus)
309 {
310 	struct pci_controller *hose = pci_bus_to_host(bus);
311 
312 	return hose->global_number;
313 }
314 EXPORT_SYMBOL(pci_domain_nr);
315 
316 /* This routine is meant to be used early during boot, when the
317  * PCI bus numbers have not yet been assigned, and you need to
318  * issue PCI config cycles to an OF device.
319  * It could also be used to "fix" RTAS config cycles if you want
320  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
321  * config cycles.
322  */
323 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
324 {
325 	while(node) {
326 		struct pci_controller *hose, *tmp;
327 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
328 			if (hose->dn == node)
329 				return hose;
330 		node = node->parent;
331 	}
332 	return NULL;
333 }
334 
335 /*
336  * Reads the interrupt pin to determine if interrupt is use by card.
337  * If the interrupt is used, then gets the interrupt line from the
338  * openfirmware and sets it in the pci_dev and pci_config line.
339  */
340 static int pci_read_irq_line(struct pci_dev *pci_dev)
341 {
342 	struct of_phandle_args oirq;
343 	unsigned int virq;
344 
345 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
346 
347 #ifdef DEBUG
348 	memset(&oirq, 0xff, sizeof(oirq));
349 #endif
350 	/* Try to get a mapping from the device-tree */
351 	if (of_irq_parse_pci(pci_dev, &oirq)) {
352 		u8 line, pin;
353 
354 		/* If that fails, lets fallback to what is in the config
355 		 * space and map that through the default controller. We
356 		 * also set the type to level low since that's what PCI
357 		 * interrupts are. If your platform does differently, then
358 		 * either provide a proper interrupt tree or don't use this
359 		 * function.
360 		 */
361 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
362 			return -1;
363 		if (pin == 0)
364 			return -1;
365 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
366 		    line == 0xff || line == 0) {
367 			return -1;
368 		}
369 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
370 			 line, pin);
371 
372 		virq = irq_create_mapping(NULL, line);
373 		if (virq)
374 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
375 	} else {
376 		pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
377 			 oirq.args_count, oirq.args[0], oirq.args[1],
378 			 of_node_full_name(oirq.np));
379 
380 		virq = irq_create_of_mapping(&oirq);
381 	}
382 
383 	if (!virq) {
384 		pr_debug(" Failed to map !\n");
385 		return -1;
386 	}
387 
388 	pr_debug(" Mapped to linux irq %d\n", virq);
389 
390 	pci_dev->irq = virq;
391 
392 	return 0;
393 }
394 
395 /*
396  * Platform support for /proc/bus/pci/X/Y mmap()s,
397  * modelled on the sparc64 implementation by Dave Miller.
398  *  -- paulus.
399  */
400 
401 /*
402  * Adjust vm_pgoff of VMA such that it is the physical page offset
403  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
404  *
405  * Basically, the user finds the base address for his device which he wishes
406  * to mmap.  They read the 32-bit value from the config space base register,
407  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
408  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
409  *
410  * Returns negative error code on failure, zero on success.
411  */
412 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
413 					       resource_size_t *offset,
414 					       enum pci_mmap_state mmap_state)
415 {
416 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
417 	unsigned long io_offset = 0;
418 	int i, res_bit;
419 
420 	if (hose == NULL)
421 		return NULL;		/* should never happen */
422 
423 	/* If memory, add on the PCI bridge address offset */
424 	if (mmap_state == pci_mmap_mem) {
425 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
426 		*offset += hose->pci_mem_offset;
427 #endif
428 		res_bit = IORESOURCE_MEM;
429 	} else {
430 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
431 		*offset += io_offset;
432 		res_bit = IORESOURCE_IO;
433 	}
434 
435 	/*
436 	 * Check that the offset requested corresponds to one of the
437 	 * resources of the device.
438 	 */
439 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
440 		struct resource *rp = &dev->resource[i];
441 		int flags = rp->flags;
442 
443 		/* treat ROM as memory (should be already) */
444 		if (i == PCI_ROM_RESOURCE)
445 			flags |= IORESOURCE_MEM;
446 
447 		/* Active and same type? */
448 		if ((flags & res_bit) == 0)
449 			continue;
450 
451 		/* In the range of this resource? */
452 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
453 			continue;
454 
455 		/* found it! construct the final physical address */
456 		if (mmap_state == pci_mmap_io)
457 			*offset += hose->io_base_phys - io_offset;
458 		return rp;
459 	}
460 
461 	return NULL;
462 }
463 
464 /*
465  * This one is used by /dev/mem and fbdev who have no clue about the
466  * PCI device, it tries to find the PCI device first and calls the
467  * above routine
468  */
469 pgprot_t pci_phys_mem_access_prot(struct file *file,
470 				  unsigned long pfn,
471 				  unsigned long size,
472 				  pgprot_t prot)
473 {
474 	struct pci_dev *pdev = NULL;
475 	struct resource *found = NULL;
476 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
477 	int i;
478 
479 	if (page_is_ram(pfn))
480 		return prot;
481 
482 	prot = pgprot_noncached(prot);
483 	for_each_pci_dev(pdev) {
484 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
485 			struct resource *rp = &pdev->resource[i];
486 			int flags = rp->flags;
487 
488 			/* Active and same type? */
489 			if ((flags & IORESOURCE_MEM) == 0)
490 				continue;
491 			/* In the range of this resource? */
492 			if (offset < (rp->start & PAGE_MASK) ||
493 			    offset > rp->end)
494 				continue;
495 			found = rp;
496 			break;
497 		}
498 		if (found)
499 			break;
500 	}
501 	if (found) {
502 		if (found->flags & IORESOURCE_PREFETCH)
503 			prot = pgprot_noncached_wc(prot);
504 		pci_dev_put(pdev);
505 	}
506 
507 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
508 		 (unsigned long long)offset, pgprot_val(prot));
509 
510 	return prot;
511 }
512 
513 
514 /*
515  * Perform the actual remap of the pages for a PCI device mapping, as
516  * appropriate for this architecture.  The region in the process to map
517  * is described by vm_start and vm_end members of VMA, the base physical
518  * address is found in vm_pgoff.
519  * The pci device structure is provided so that architectures may make mapping
520  * decisions on a per-device or per-bus basis.
521  *
522  * Returns a negative error code on failure, zero on success.
523  */
524 int pci_mmap_page_range(struct pci_dev *dev, int bar,
525 			struct vm_area_struct *vma,
526 			enum pci_mmap_state mmap_state, int write_combine)
527 {
528 	resource_size_t offset =
529 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
530 	struct resource *rp;
531 	int ret;
532 
533 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
534 	if (rp == NULL)
535 		return -EINVAL;
536 
537 	vma->vm_pgoff = offset >> PAGE_SHIFT;
538 	if (write_combine)
539 		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
540 	else
541 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
542 
543 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
544 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
545 
546 	return ret;
547 }
548 
549 /* This provides legacy IO read access on a bus */
550 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
551 {
552 	unsigned long offset;
553 	struct pci_controller *hose = pci_bus_to_host(bus);
554 	struct resource *rp = &hose->io_resource;
555 	void __iomem *addr;
556 
557 	/* Check if port can be supported by that bus. We only check
558 	 * the ranges of the PHB though, not the bus itself as the rules
559 	 * for forwarding legacy cycles down bridges are not our problem
560 	 * here. So if the host bridge supports it, we do it.
561 	 */
562 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
563 	offset += port;
564 
565 	if (!(rp->flags & IORESOURCE_IO))
566 		return -ENXIO;
567 	if (offset < rp->start || (offset + size) > rp->end)
568 		return -ENXIO;
569 	addr = hose->io_base_virt + port;
570 
571 	switch(size) {
572 	case 1:
573 		*((u8 *)val) = in_8(addr);
574 		return 1;
575 	case 2:
576 		if (port & 1)
577 			return -EINVAL;
578 		*((u16 *)val) = in_le16(addr);
579 		return 2;
580 	case 4:
581 		if (port & 3)
582 			return -EINVAL;
583 		*((u32 *)val) = in_le32(addr);
584 		return 4;
585 	}
586 	return -EINVAL;
587 }
588 
589 /* This provides legacy IO write access on a bus */
590 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
591 {
592 	unsigned long offset;
593 	struct pci_controller *hose = pci_bus_to_host(bus);
594 	struct resource *rp = &hose->io_resource;
595 	void __iomem *addr;
596 
597 	/* Check if port can be supported by that bus. We only check
598 	 * the ranges of the PHB though, not the bus itself as the rules
599 	 * for forwarding legacy cycles down bridges are not our problem
600 	 * here. So if the host bridge supports it, we do it.
601 	 */
602 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
603 	offset += port;
604 
605 	if (!(rp->flags & IORESOURCE_IO))
606 		return -ENXIO;
607 	if (offset < rp->start || (offset + size) > rp->end)
608 		return -ENXIO;
609 	addr = hose->io_base_virt + port;
610 
611 	/* WARNING: The generic code is idiotic. It gets passed a pointer
612 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
613 	 * as a u32, which means that we have to correct the location of
614 	 * the data read within those 32 bits for size 1 and 2
615 	 */
616 	switch(size) {
617 	case 1:
618 		out_8(addr, val >> 24);
619 		return 1;
620 	case 2:
621 		if (port & 1)
622 			return -EINVAL;
623 		out_le16(addr, val >> 16);
624 		return 2;
625 	case 4:
626 		if (port & 3)
627 			return -EINVAL;
628 		out_le32(addr, val);
629 		return 4;
630 	}
631 	return -EINVAL;
632 }
633 
634 /* This provides legacy IO or memory mmap access on a bus */
635 int pci_mmap_legacy_page_range(struct pci_bus *bus,
636 			       struct vm_area_struct *vma,
637 			       enum pci_mmap_state mmap_state)
638 {
639 	struct pci_controller *hose = pci_bus_to_host(bus);
640 	resource_size_t offset =
641 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
642 	resource_size_t size = vma->vm_end - vma->vm_start;
643 	struct resource *rp;
644 
645 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
646 		 pci_domain_nr(bus), bus->number,
647 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
648 		 (unsigned long long)offset,
649 		 (unsigned long long)(offset + size - 1));
650 
651 	if (mmap_state == pci_mmap_mem) {
652 		/* Hack alert !
653 		 *
654 		 * Because X is lame and can fail starting if it gets an error trying
655 		 * to mmap legacy_mem (instead of just moving on without legacy memory
656 		 * access) we fake it here by giving it anonymous memory, effectively
657 		 * behaving just like /dev/zero
658 		 */
659 		if ((offset + size) > hose->isa_mem_size) {
660 			printk(KERN_DEBUG
661 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
662 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
663 			if (vma->vm_flags & VM_SHARED)
664 				return shmem_zero_setup(vma);
665 			return 0;
666 		}
667 		offset += hose->isa_mem_phys;
668 	} else {
669 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
670 		unsigned long roffset = offset + io_offset;
671 		rp = &hose->io_resource;
672 		if (!(rp->flags & IORESOURCE_IO))
673 			return -ENXIO;
674 		if (roffset < rp->start || (roffset + size) > rp->end)
675 			return -ENXIO;
676 		offset += hose->io_base_phys;
677 	}
678 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
679 
680 	vma->vm_pgoff = offset >> PAGE_SHIFT;
681 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
682 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
683 			       vma->vm_end - vma->vm_start,
684 			       vma->vm_page_prot);
685 }
686 
687 void pci_resource_to_user(const struct pci_dev *dev, int bar,
688 			  const struct resource *rsrc,
689 			  resource_size_t *start, resource_size_t *end)
690 {
691 	struct pci_bus_region region;
692 
693 	if (rsrc->flags & IORESOURCE_IO) {
694 		pcibios_resource_to_bus(dev->bus, &region,
695 					(struct resource *) rsrc);
696 		*start = region.start;
697 		*end = region.end;
698 		return;
699 	}
700 
701 	/* We pass a CPU physical address to userland for MMIO instead of a
702 	 * BAR value because X is lame and expects to be able to use that
703 	 * to pass to /dev/mem!
704 	 *
705 	 * That means we may have 64-bit values where some apps only expect
706 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
707 	 */
708 	*start = rsrc->start;
709 	*end = rsrc->end;
710 }
711 
712 /**
713  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
714  * @hose: newly allocated pci_controller to be setup
715  * @dev: device node of the host bridge
716  * @primary: set if primary bus (32 bits only, soon to be deprecated)
717  *
718  * This function will parse the "ranges" property of a PCI host bridge device
719  * node and setup the resource mapping of a pci controller based on its
720  * content.
721  *
722  * Life would be boring if it wasn't for a few issues that we have to deal
723  * with here:
724  *
725  *   - We can only cope with one IO space range and up to 3 Memory space
726  *     ranges. However, some machines (thanks Apple !) tend to split their
727  *     space into lots of small contiguous ranges. So we have to coalesce.
728  *
729  *   - Some busses have IO space not starting at 0, which causes trouble with
730  *     the way we do our IO resource renumbering. The code somewhat deals with
731  *     it for 64 bits but I would expect problems on 32 bits.
732  *
733  *   - Some 32 bits platforms such as 4xx can have physical space larger than
734  *     32 bits so we need to use 64 bits values for the parsing
735  */
736 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
737 				  struct device_node *dev, int primary)
738 {
739 	int memno = 0;
740 	struct resource *res;
741 	struct of_pci_range range;
742 	struct of_pci_range_parser parser;
743 
744 	printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
745 	       dev->full_name, primary ? "(primary)" : "");
746 
747 	/* Check for ranges property */
748 	if (of_pci_range_parser_init(&parser, dev))
749 		return;
750 
751 	/* Parse it */
752 	for_each_of_pci_range(&parser, &range) {
753 		/* If we failed translation or got a zero-sized region
754 		 * (some FW try to feed us with non sensical zero sized regions
755 		 * such as power3 which look like some kind of attempt at exposing
756 		 * the VGA memory hole)
757 		 */
758 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
759 			continue;
760 
761 		/* Act based on address space type */
762 		res = NULL;
763 		switch (range.flags & IORESOURCE_TYPE_BITS) {
764 		case IORESOURCE_IO:
765 			printk(KERN_INFO
766 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
767 			       range.cpu_addr, range.cpu_addr + range.size - 1,
768 			       range.pci_addr);
769 
770 			/* We support only one IO range */
771 			if (hose->pci_io_size) {
772 				printk(KERN_INFO
773 				       " \\--> Skipped (too many) !\n");
774 				continue;
775 			}
776 #ifdef CONFIG_PPC32
777 			/* On 32 bits, limit I/O space to 16MB */
778 			if (range.size > 0x01000000)
779 				range.size = 0x01000000;
780 
781 			/* 32 bits needs to map IOs here */
782 			hose->io_base_virt = ioremap(range.cpu_addr,
783 						range.size);
784 
785 			/* Expect trouble if pci_addr is not 0 */
786 			if (primary)
787 				isa_io_base =
788 					(unsigned long)hose->io_base_virt;
789 #endif /* CONFIG_PPC32 */
790 			/* pci_io_size and io_base_phys always represent IO
791 			 * space starting at 0 so we factor in pci_addr
792 			 */
793 			hose->pci_io_size = range.pci_addr + range.size;
794 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
795 
796 			/* Build resource */
797 			res = &hose->io_resource;
798 			range.cpu_addr = range.pci_addr;
799 			break;
800 		case IORESOURCE_MEM:
801 			printk(KERN_INFO
802 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
803 			       range.cpu_addr, range.cpu_addr + range.size - 1,
804 			       range.pci_addr,
805 			       (range.pci_space & 0x40000000) ?
806 			       "Prefetch" : "");
807 
808 			/* We support only 3 memory ranges */
809 			if (memno >= 3) {
810 				printk(KERN_INFO
811 				       " \\--> Skipped (too many) !\n");
812 				continue;
813 			}
814 			/* Handles ISA memory hole space here */
815 			if (range.pci_addr == 0) {
816 				if (primary || isa_mem_base == 0)
817 					isa_mem_base = range.cpu_addr;
818 				hose->isa_mem_phys = range.cpu_addr;
819 				hose->isa_mem_size = range.size;
820 			}
821 
822 			/* Build resource */
823 			hose->mem_offset[memno] = range.cpu_addr -
824 							range.pci_addr;
825 			res = &hose->mem_resources[memno++];
826 			break;
827 		}
828 		if (res != NULL) {
829 			res->name = dev->full_name;
830 			res->flags = range.flags;
831 			res->start = range.cpu_addr;
832 			res->end = range.cpu_addr + range.size - 1;
833 			res->parent = res->child = res->sibling = NULL;
834 		}
835 	}
836 }
837 
838 /* Decide whether to display the domain number in /proc */
839 int pci_proc_domain(struct pci_bus *bus)
840 {
841 	struct pci_controller *hose = pci_bus_to_host(bus);
842 
843 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
844 		return 0;
845 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
846 		return hose->global_number != 0;
847 	return 1;
848 }
849 
850 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
851 {
852 	if (ppc_md.pcibios_root_bridge_prepare)
853 		return ppc_md.pcibios_root_bridge_prepare(bridge);
854 
855 	return 0;
856 }
857 
858 /* This header fixup will do the resource fixup for all devices as they are
859  * probed, but not for bridge ranges
860  */
861 static void pcibios_fixup_resources(struct pci_dev *dev)
862 {
863 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
864 	int i;
865 
866 	if (!hose) {
867 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
868 		       pci_name(dev));
869 		return;
870 	}
871 
872 	if (dev->is_virtfn)
873 		return;
874 
875 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
876 		struct resource *res = dev->resource + i;
877 		struct pci_bus_region reg;
878 		if (!res->flags)
879 			continue;
880 
881 		/* If we're going to re-assign everything, we mark all resources
882 		 * as unset (and 0-base them). In addition, we mark BARs starting
883 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
884 		 * since in that case, we don't want to re-assign anything
885 		 */
886 		pcibios_resource_to_bus(dev->bus, &reg, res);
887 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
888 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
889 			/* Only print message if not re-assigning */
890 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
891 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
892 					 pci_name(dev), i, res);
893 			res->end -= res->start;
894 			res->start = 0;
895 			res->flags |= IORESOURCE_UNSET;
896 			continue;
897 		}
898 
899 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
900 	}
901 
902 	/* Call machine specific resource fixup */
903 	if (ppc_md.pcibios_fixup_resources)
904 		ppc_md.pcibios_fixup_resources(dev);
905 }
906 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
907 
908 /* This function tries to figure out if a bridge resource has been initialized
909  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
910  * things go more smoothly when it gets it right. It should covers cases such
911  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
912  */
913 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
914 						 struct resource *res)
915 {
916 	struct pci_controller *hose = pci_bus_to_host(bus);
917 	struct pci_dev *dev = bus->self;
918 	resource_size_t offset;
919 	struct pci_bus_region region;
920 	u16 command;
921 	int i;
922 
923 	/* We don't do anything if PCI_PROBE_ONLY is set */
924 	if (pci_has_flag(PCI_PROBE_ONLY))
925 		return 0;
926 
927 	/* Job is a bit different between memory and IO */
928 	if (res->flags & IORESOURCE_MEM) {
929 		pcibios_resource_to_bus(dev->bus, &region, res);
930 
931 		/* If the BAR is non-0 then it's probably been initialized */
932 		if (region.start != 0)
933 			return 0;
934 
935 		/* The BAR is 0, let's check if memory decoding is enabled on
936 		 * the bridge. If not, we consider it unassigned
937 		 */
938 		pci_read_config_word(dev, PCI_COMMAND, &command);
939 		if ((command & PCI_COMMAND_MEMORY) == 0)
940 			return 1;
941 
942 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
943 		 * resources covers that starting address (0 then it's good enough for
944 		 * us for memory space)
945 		 */
946 		for (i = 0; i < 3; i++) {
947 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
948 			    hose->mem_resources[i].start == hose->mem_offset[i])
949 				return 0;
950 		}
951 
952 		/* Well, it starts at 0 and we know it will collide so we may as
953 		 * well consider it as unassigned. That covers the Apple case.
954 		 */
955 		return 1;
956 	} else {
957 		/* If the BAR is non-0, then we consider it assigned */
958 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
959 		if (((res->start - offset) & 0xfffffffful) != 0)
960 			return 0;
961 
962 		/* Here, we are a bit different than memory as typically IO space
963 		 * starting at low addresses -is- valid. What we do instead if that
964 		 * we consider as unassigned anything that doesn't have IO enabled
965 		 * in the PCI command register, and that's it.
966 		 */
967 		pci_read_config_word(dev, PCI_COMMAND, &command);
968 		if (command & PCI_COMMAND_IO)
969 			return 0;
970 
971 		/* It's starting at 0 and IO is disabled in the bridge, consider
972 		 * it unassigned
973 		 */
974 		return 1;
975 	}
976 }
977 
978 /* Fixup resources of a PCI<->PCI bridge */
979 static void pcibios_fixup_bridge(struct pci_bus *bus)
980 {
981 	struct resource *res;
982 	int i;
983 
984 	struct pci_dev *dev = bus->self;
985 
986 	pci_bus_for_each_resource(bus, res, i) {
987 		if (!res || !res->flags)
988 			continue;
989 		if (i >= 3 && bus->self->transparent)
990 			continue;
991 
992 		/* If we're going to reassign everything, we can
993 		 * shrink the P2P resource to have size as being
994 		 * of 0 in order to save space.
995 		 */
996 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
997 			res->flags |= IORESOURCE_UNSET;
998 			res->start = 0;
999 			res->end = -1;
1000 			continue;
1001 		}
1002 
1003 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1004 
1005 		/* Try to detect uninitialized P2P bridge resources,
1006 		 * and clear them out so they get re-assigned later
1007 		 */
1008 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1009 			res->flags = 0;
1010 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1011 		}
1012 	}
1013 }
1014 
1015 void pcibios_setup_bus_self(struct pci_bus *bus)
1016 {
1017 	struct pci_controller *phb;
1018 
1019 	/* Fix up the bus resources for P2P bridges */
1020 	if (bus->self != NULL)
1021 		pcibios_fixup_bridge(bus);
1022 
1023 	/* Platform specific bus fixups. This is currently only used
1024 	 * by fsl_pci and I'm hoping to get rid of it at some point
1025 	 */
1026 	if (ppc_md.pcibios_fixup_bus)
1027 		ppc_md.pcibios_fixup_bus(bus);
1028 
1029 	/* Setup bus DMA mappings */
1030 	phb = pci_bus_to_host(bus);
1031 	if (phb->controller_ops.dma_bus_setup)
1032 		phb->controller_ops.dma_bus_setup(bus);
1033 }
1034 
1035 static void pcibios_setup_device(struct pci_dev *dev)
1036 {
1037 	struct pci_controller *phb;
1038 	/* Fixup NUMA node as it may not be setup yet by the generic
1039 	 * code and is needed by the DMA init
1040 	 */
1041 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1042 
1043 	/* Hook up default DMA ops */
1044 	set_dma_ops(&dev->dev, pci_dma_ops);
1045 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1046 
1047 	/* Additional platform DMA/iommu setup */
1048 	phb = pci_bus_to_host(dev->bus);
1049 	if (phb->controller_ops.dma_dev_setup)
1050 		phb->controller_ops.dma_dev_setup(dev);
1051 
1052 	/* Read default IRQs and fixup if necessary */
1053 	pci_read_irq_line(dev);
1054 	if (ppc_md.pci_irq_fixup)
1055 		ppc_md.pci_irq_fixup(dev);
1056 }
1057 
1058 int pcibios_add_device(struct pci_dev *dev)
1059 {
1060 	/*
1061 	 * We can only call pcibios_setup_device() after bus setup is complete,
1062 	 * since some of the platform specific DMA setup code depends on it.
1063 	 */
1064 	if (dev->bus->is_added)
1065 		pcibios_setup_device(dev);
1066 
1067 #ifdef CONFIG_PCI_IOV
1068 	if (ppc_md.pcibios_fixup_sriov)
1069 		ppc_md.pcibios_fixup_sriov(dev);
1070 #endif /* CONFIG_PCI_IOV */
1071 
1072 	return 0;
1073 }
1074 
1075 void pcibios_setup_bus_devices(struct pci_bus *bus)
1076 {
1077 	struct pci_dev *dev;
1078 
1079 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1080 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1081 
1082 	list_for_each_entry(dev, &bus->devices, bus_list) {
1083 		/* Cardbus can call us to add new devices to a bus, so ignore
1084 		 * those who are already fully discovered
1085 		 */
1086 		if (dev->is_added)
1087 			continue;
1088 
1089 		pcibios_setup_device(dev);
1090 	}
1091 }
1092 
1093 void pcibios_set_master(struct pci_dev *dev)
1094 {
1095 	/* No special bus mastering setup handling */
1096 }
1097 
1098 void pcibios_fixup_bus(struct pci_bus *bus)
1099 {
1100 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1101 	 * bases. This is -not- called when generating the PCI tree from
1102 	 * the OF device-tree.
1103 	 */
1104 	pci_read_bridge_bases(bus);
1105 
1106 	/* Now fixup the bus bus */
1107 	pcibios_setup_bus_self(bus);
1108 
1109 	/* Now fixup devices on that bus */
1110 	pcibios_setup_bus_devices(bus);
1111 }
1112 EXPORT_SYMBOL(pcibios_fixup_bus);
1113 
1114 void pci_fixup_cardbus(struct pci_bus *bus)
1115 {
1116 	/* Now fixup devices on that bus */
1117 	pcibios_setup_bus_devices(bus);
1118 }
1119 
1120 
1121 static int skip_isa_ioresource_align(struct pci_dev *dev)
1122 {
1123 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1124 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1125 		return 1;
1126 	return 0;
1127 }
1128 
1129 /*
1130  * We need to avoid collisions with `mirrored' VGA ports
1131  * and other strange ISA hardware, so we always want the
1132  * addresses to be allocated in the 0x000-0x0ff region
1133  * modulo 0x400.
1134  *
1135  * Why? Because some silly external IO cards only decode
1136  * the low 10 bits of the IO address. The 0x00-0xff region
1137  * is reserved for motherboard devices that decode all 16
1138  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1139  * but we want to try to avoid allocating at 0x2900-0x2bff
1140  * which might have be mirrored at 0x0100-0x03ff..
1141  */
1142 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1143 				resource_size_t size, resource_size_t align)
1144 {
1145 	struct pci_dev *dev = data;
1146 	resource_size_t start = res->start;
1147 
1148 	if (res->flags & IORESOURCE_IO) {
1149 		if (skip_isa_ioresource_align(dev))
1150 			return start;
1151 		if (start & 0x300)
1152 			start = (start + 0x3ff) & ~0x3ff;
1153 	}
1154 
1155 	return start;
1156 }
1157 EXPORT_SYMBOL(pcibios_align_resource);
1158 
1159 /*
1160  * Reparent resource children of pr that conflict with res
1161  * under res, and make res replace those children.
1162  */
1163 static int reparent_resources(struct resource *parent,
1164 				     struct resource *res)
1165 {
1166 	struct resource *p, **pp;
1167 	struct resource **firstpp = NULL;
1168 
1169 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1170 		if (p->end < res->start)
1171 			continue;
1172 		if (res->end < p->start)
1173 			break;
1174 		if (p->start < res->start || p->end > res->end)
1175 			return -1;	/* not completely contained */
1176 		if (firstpp == NULL)
1177 			firstpp = pp;
1178 	}
1179 	if (firstpp == NULL)
1180 		return -1;	/* didn't find any conflicting entries? */
1181 	res->parent = parent;
1182 	res->child = *firstpp;
1183 	res->sibling = *pp;
1184 	*firstpp = res;
1185 	*pp = NULL;
1186 	for (p = res->child; p != NULL; p = p->sibling) {
1187 		p->parent = res;
1188 		pr_debug("PCI: Reparented %s %pR under %s\n",
1189 			 p->name, p, res->name);
1190 	}
1191 	return 0;
1192 }
1193 
1194 /*
1195  *  Handle resources of PCI devices.  If the world were perfect, we could
1196  *  just allocate all the resource regions and do nothing more.  It isn't.
1197  *  On the other hand, we cannot just re-allocate all devices, as it would
1198  *  require us to know lots of host bridge internals.  So we attempt to
1199  *  keep as much of the original configuration as possible, but tweak it
1200  *  when it's found to be wrong.
1201  *
1202  *  Known BIOS problems we have to work around:
1203  *	- I/O or memory regions not configured
1204  *	- regions configured, but not enabled in the command register
1205  *	- bogus I/O addresses above 64K used
1206  *	- expansion ROMs left enabled (this may sound harmless, but given
1207  *	  the fact the PCI specs explicitly allow address decoders to be
1208  *	  shared between expansion ROMs and other resource regions, it's
1209  *	  at least dangerous)
1210  *
1211  *  Our solution:
1212  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1213  *	    This gives us fixed barriers on where we can allocate.
1214  *	(2) Allocate resources for all enabled devices.  If there is
1215  *	    a collision, just mark the resource as unallocated. Also
1216  *	    disable expansion ROMs during this step.
1217  *	(3) Try to allocate resources for disabled devices.  If the
1218  *	    resources were assigned correctly, everything goes well,
1219  *	    if they weren't, they won't disturb allocation of other
1220  *	    resources.
1221  *	(4) Assign new addresses to resources which were either
1222  *	    not configured at all or misconfigured.  If explicitly
1223  *	    requested by the user, configure expansion ROM address
1224  *	    as well.
1225  */
1226 
1227 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1228 {
1229 	struct pci_bus *b;
1230 	int i;
1231 	struct resource *res, *pr;
1232 
1233 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1234 		 pci_domain_nr(bus), bus->number);
1235 
1236 	pci_bus_for_each_resource(bus, res, i) {
1237 		if (!res || !res->flags || res->start > res->end || res->parent)
1238 			continue;
1239 
1240 		/* If the resource was left unset at this point, we clear it */
1241 		if (res->flags & IORESOURCE_UNSET)
1242 			goto clear_resource;
1243 
1244 		if (bus->parent == NULL)
1245 			pr = (res->flags & IORESOURCE_IO) ?
1246 				&ioport_resource : &iomem_resource;
1247 		else {
1248 			pr = pci_find_parent_resource(bus->self, res);
1249 			if (pr == res) {
1250 				/* this happens when the generic PCI
1251 				 * code (wrongly) decides that this
1252 				 * bridge is transparent  -- paulus
1253 				 */
1254 				continue;
1255 			}
1256 		}
1257 
1258 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1259 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1260 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1261 
1262 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1263 			struct pci_dev *dev = bus->self;
1264 
1265 			if (request_resource(pr, res) == 0)
1266 				continue;
1267 			/*
1268 			 * Must be a conflict with an existing entry.
1269 			 * Move that entry (or entries) under the
1270 			 * bridge resource and try again.
1271 			 */
1272 			if (reparent_resources(pr, res) == 0)
1273 				continue;
1274 
1275 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1276 			    pci_claim_bridge_resource(dev,
1277 						i + PCI_BRIDGE_RESOURCES) == 0)
1278 				continue;
1279 		}
1280 		pr_warning("PCI: Cannot allocate resource region "
1281 			   "%d of PCI bridge %d, will remap\n", i, bus->number);
1282 	clear_resource:
1283 		/* The resource might be figured out when doing
1284 		 * reassignment based on the resources required
1285 		 * by the downstream PCI devices. Here we set
1286 		 * the size of the resource to be 0 in order to
1287 		 * save more space.
1288 		 */
1289 		res->start = 0;
1290 		res->end = -1;
1291 		res->flags = 0;
1292 	}
1293 
1294 	list_for_each_entry(b, &bus->children, node)
1295 		pcibios_allocate_bus_resources(b);
1296 }
1297 
1298 static inline void alloc_resource(struct pci_dev *dev, int idx)
1299 {
1300 	struct resource *pr, *r = &dev->resource[idx];
1301 
1302 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1303 		 pci_name(dev), idx, r);
1304 
1305 	pr = pci_find_parent_resource(dev, r);
1306 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1307 	    request_resource(pr, r) < 0) {
1308 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1309 		       " of device %s, will remap\n", idx, pci_name(dev));
1310 		if (pr)
1311 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1312 		/* We'll assign a new address later */
1313 		r->flags |= IORESOURCE_UNSET;
1314 		r->end -= r->start;
1315 		r->start = 0;
1316 	}
1317 }
1318 
1319 static void __init pcibios_allocate_resources(int pass)
1320 {
1321 	struct pci_dev *dev = NULL;
1322 	int idx, disabled;
1323 	u16 command;
1324 	struct resource *r;
1325 
1326 	for_each_pci_dev(dev) {
1327 		pci_read_config_word(dev, PCI_COMMAND, &command);
1328 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1329 			r = &dev->resource[idx];
1330 			if (r->parent)		/* Already allocated */
1331 				continue;
1332 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1333 				continue;	/* Not assigned at all */
1334 			/* We only allocate ROMs on pass 1 just in case they
1335 			 * have been screwed up by firmware
1336 			 */
1337 			if (idx == PCI_ROM_RESOURCE )
1338 				disabled = 1;
1339 			if (r->flags & IORESOURCE_IO)
1340 				disabled = !(command & PCI_COMMAND_IO);
1341 			else
1342 				disabled = !(command & PCI_COMMAND_MEMORY);
1343 			if (pass == disabled)
1344 				alloc_resource(dev, idx);
1345 		}
1346 		if (pass)
1347 			continue;
1348 		r = &dev->resource[PCI_ROM_RESOURCE];
1349 		if (r->flags) {
1350 			/* Turn the ROM off, leave the resource region,
1351 			 * but keep it unregistered.
1352 			 */
1353 			u32 reg;
1354 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1355 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1356 				pr_debug("PCI: Switching off ROM of %s\n",
1357 					 pci_name(dev));
1358 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1359 				pci_write_config_dword(dev, dev->rom_base_reg,
1360 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1361 			}
1362 		}
1363 	}
1364 }
1365 
1366 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1367 {
1368 	struct pci_controller *hose = pci_bus_to_host(bus);
1369 	resource_size_t	offset;
1370 	struct resource *res, *pres;
1371 	int i;
1372 
1373 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1374 
1375 	/* Check for IO */
1376 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1377 		goto no_io;
1378 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1379 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1380 	BUG_ON(res == NULL);
1381 	res->name = "Legacy IO";
1382 	res->flags = IORESOURCE_IO;
1383 	res->start = offset;
1384 	res->end = (offset + 0xfff) & 0xfffffffful;
1385 	pr_debug("Candidate legacy IO: %pR\n", res);
1386 	if (request_resource(&hose->io_resource, res)) {
1387 		printk(KERN_DEBUG
1388 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1389 		       pci_domain_nr(bus), bus->number, res);
1390 		kfree(res);
1391 	}
1392 
1393  no_io:
1394 	/* Check for memory */
1395 	for (i = 0; i < 3; i++) {
1396 		pres = &hose->mem_resources[i];
1397 		offset = hose->mem_offset[i];
1398 		if (!(pres->flags & IORESOURCE_MEM))
1399 			continue;
1400 		pr_debug("hose mem res: %pR\n", pres);
1401 		if ((pres->start - offset) <= 0xa0000 &&
1402 		    (pres->end - offset) >= 0xbffff)
1403 			break;
1404 	}
1405 	if (i >= 3)
1406 		return;
1407 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1408 	BUG_ON(res == NULL);
1409 	res->name = "Legacy VGA memory";
1410 	res->flags = IORESOURCE_MEM;
1411 	res->start = 0xa0000 + offset;
1412 	res->end = 0xbffff + offset;
1413 	pr_debug("Candidate VGA memory: %pR\n", res);
1414 	if (request_resource(pres, res)) {
1415 		printk(KERN_DEBUG
1416 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1417 		       pci_domain_nr(bus), bus->number, res);
1418 		kfree(res);
1419 	}
1420 }
1421 
1422 void __init pcibios_resource_survey(void)
1423 {
1424 	struct pci_bus *b;
1425 
1426 	/* Allocate and assign resources */
1427 	list_for_each_entry(b, &pci_root_buses, node)
1428 		pcibios_allocate_bus_resources(b);
1429 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1430 		pcibios_allocate_resources(0);
1431 		pcibios_allocate_resources(1);
1432 	}
1433 
1434 	/* Before we start assigning unassigned resource, we try to reserve
1435 	 * the low IO area and the VGA memory area if they intersect the
1436 	 * bus available resources to avoid allocating things on top of them
1437 	 */
1438 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1439 		list_for_each_entry(b, &pci_root_buses, node)
1440 			pcibios_reserve_legacy_regions(b);
1441 	}
1442 
1443 	/* Now, if the platform didn't decide to blindly trust the firmware,
1444 	 * we proceed to assigning things that were left unassigned
1445 	 */
1446 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1447 		pr_debug("PCI: Assigning unassigned resources...\n");
1448 		pci_assign_unassigned_resources();
1449 	}
1450 
1451 	/* Call machine dependent fixup */
1452 	if (ppc_md.pcibios_fixup)
1453 		ppc_md.pcibios_fixup();
1454 }
1455 
1456 /* This is used by the PCI hotplug driver to allocate resource
1457  * of newly plugged busses. We can try to consolidate with the
1458  * rest of the code later, for now, keep it as-is as our main
1459  * resource allocation function doesn't deal with sub-trees yet.
1460  */
1461 void pcibios_claim_one_bus(struct pci_bus *bus)
1462 {
1463 	struct pci_dev *dev;
1464 	struct pci_bus *child_bus;
1465 
1466 	list_for_each_entry(dev, &bus->devices, bus_list) {
1467 		int i;
1468 
1469 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1470 			struct resource *r = &dev->resource[i];
1471 
1472 			if (r->parent || !r->start || !r->flags)
1473 				continue;
1474 
1475 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1476 				 pci_name(dev), i, r);
1477 
1478 			if (pci_claim_resource(dev, i) == 0)
1479 				continue;
1480 
1481 			pci_claim_bridge_resource(dev, i);
1482 		}
1483 	}
1484 
1485 	list_for_each_entry(child_bus, &bus->children, node)
1486 		pcibios_claim_one_bus(child_bus);
1487 }
1488 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1489 
1490 
1491 /* pcibios_finish_adding_to_bus
1492  *
1493  * This is to be called by the hotplug code after devices have been
1494  * added to a bus, this include calling it for a PHB that is just
1495  * being added
1496  */
1497 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1498 {
1499 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1500 		 pci_domain_nr(bus), bus->number);
1501 
1502 	/* Allocate bus and devices resources */
1503 	pcibios_allocate_bus_resources(bus);
1504 	pcibios_claim_one_bus(bus);
1505 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1506 		if (bus->self)
1507 			pci_assign_unassigned_bridge_resources(bus->self);
1508 		else
1509 			pci_assign_unassigned_bus_resources(bus);
1510 	}
1511 
1512 	/* Fixup EEH */
1513 	eeh_add_device_tree_late(bus);
1514 
1515 	/* Add new devices to global lists.  Register in proc, sysfs. */
1516 	pci_bus_add_devices(bus);
1517 
1518 	/* sysfs files should only be added after devices are added */
1519 	eeh_add_sysfs_files(bus);
1520 }
1521 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1522 
1523 int pcibios_enable_device(struct pci_dev *dev, int mask)
1524 {
1525 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1526 
1527 	if (phb->controller_ops.enable_device_hook)
1528 		if (!phb->controller_ops.enable_device_hook(dev))
1529 			return -EINVAL;
1530 
1531 	return pci_enable_resources(dev, mask);
1532 }
1533 
1534 void pcibios_disable_device(struct pci_dev *dev)
1535 {
1536 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1537 
1538 	if (phb->controller_ops.disable_device)
1539 		phb->controller_ops.disable_device(dev);
1540 }
1541 
1542 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1543 {
1544 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1545 }
1546 
1547 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1548 					struct list_head *resources)
1549 {
1550 	struct resource *res;
1551 	resource_size_t offset;
1552 	int i;
1553 
1554 	/* Hookup PHB IO resource */
1555 	res = &hose->io_resource;
1556 
1557 	if (!res->flags) {
1558 		pr_debug("PCI: I/O resource not set for host"
1559 			 " bridge %s (domain %d)\n",
1560 			 hose->dn->full_name, hose->global_number);
1561 	} else {
1562 		offset = pcibios_io_space_offset(hose);
1563 
1564 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1565 			 res, (unsigned long long)offset);
1566 		pci_add_resource_offset(resources, res, offset);
1567 	}
1568 
1569 	/* Hookup PHB Memory resources */
1570 	for (i = 0; i < 3; ++i) {
1571 		res = &hose->mem_resources[i];
1572 		if (!res->flags)
1573 			continue;
1574 
1575 		offset = hose->mem_offset[i];
1576 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1577 			 res, (unsigned long long)offset);
1578 
1579 		pci_add_resource_offset(resources, res, offset);
1580 	}
1581 }
1582 
1583 /*
1584  * Null PCI config access functions, for the case when we can't
1585  * find a hose.
1586  */
1587 #define NULL_PCI_OP(rw, size, type)					\
1588 static int								\
1589 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1590 {									\
1591 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1592 }
1593 
1594 static int
1595 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1596 		 int len, u32 *val)
1597 {
1598 	return PCIBIOS_DEVICE_NOT_FOUND;
1599 }
1600 
1601 static int
1602 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1603 		  int len, u32 val)
1604 {
1605 	return PCIBIOS_DEVICE_NOT_FOUND;
1606 }
1607 
1608 static struct pci_ops null_pci_ops =
1609 {
1610 	.read = null_read_config,
1611 	.write = null_write_config,
1612 };
1613 
1614 /*
1615  * These functions are used early on before PCI scanning is done
1616  * and all of the pci_dev and pci_bus structures have been created.
1617  */
1618 static struct pci_bus *
1619 fake_pci_bus(struct pci_controller *hose, int busnr)
1620 {
1621 	static struct pci_bus bus;
1622 
1623 	if (hose == NULL) {
1624 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1625 	}
1626 	bus.number = busnr;
1627 	bus.sysdata = hose;
1628 	bus.ops = hose? hose->ops: &null_pci_ops;
1629 	return &bus;
1630 }
1631 
1632 #define EARLY_PCI_OP(rw, size, type)					\
1633 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1634 			       int devfn, int offset, type value)	\
1635 {									\
1636 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1637 					    devfn, offset, value);	\
1638 }
1639 
1640 EARLY_PCI_OP(read, byte, u8 *)
1641 EARLY_PCI_OP(read, word, u16 *)
1642 EARLY_PCI_OP(read, dword, u32 *)
1643 EARLY_PCI_OP(write, byte, u8)
1644 EARLY_PCI_OP(write, word, u16)
1645 EARLY_PCI_OP(write, dword, u32)
1646 
1647 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1648 			  int cap)
1649 {
1650 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1651 }
1652 
1653 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1654 {
1655 	struct pci_controller *hose = bus->sysdata;
1656 
1657 	return of_node_get(hose->dn);
1658 }
1659 
1660 /**
1661  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1662  * @hose: Pointer to the PCI host controller instance structure
1663  */
1664 void pcibios_scan_phb(struct pci_controller *hose)
1665 {
1666 	LIST_HEAD(resources);
1667 	struct pci_bus *bus;
1668 	struct device_node *node = hose->dn;
1669 	int mode;
1670 
1671 	pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1672 
1673 	/* Get some IO space for the new PHB */
1674 	pcibios_setup_phb_io_space(hose);
1675 
1676 	/* Wire up PHB bus resources */
1677 	pcibios_setup_phb_resources(hose, &resources);
1678 
1679 	hose->busn.start = hose->first_busno;
1680 	hose->busn.end	 = hose->last_busno;
1681 	hose->busn.flags = IORESOURCE_BUS;
1682 	pci_add_resource(&resources, &hose->busn);
1683 
1684 	/* Create an empty bus for the toplevel */
1685 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1686 				  hose->ops, hose, &resources);
1687 	if (bus == NULL) {
1688 		pr_err("Failed to create bus for PCI domain %04x\n",
1689 			hose->global_number);
1690 		pci_free_resource_list(&resources);
1691 		return;
1692 	}
1693 	hose->bus = bus;
1694 
1695 	/* Get probe mode and perform scan */
1696 	mode = PCI_PROBE_NORMAL;
1697 	if (node && hose->controller_ops.probe_mode)
1698 		mode = hose->controller_ops.probe_mode(bus);
1699 	pr_debug("    probe mode: %d\n", mode);
1700 	if (mode == PCI_PROBE_DEVTREE)
1701 		of_scan_bus(node, bus);
1702 
1703 	if (mode == PCI_PROBE_NORMAL) {
1704 		pci_bus_update_busn_res_end(bus, 255);
1705 		hose->last_busno = pci_scan_child_bus(bus);
1706 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1707 	}
1708 
1709 	/* Platform gets a chance to do some global fixups before
1710 	 * we proceed to resource allocation
1711 	 */
1712 	if (ppc_md.pcibios_fixup_phb)
1713 		ppc_md.pcibios_fixup_phb(hose);
1714 
1715 	/* Configure PCI Express settings */
1716 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1717 		struct pci_bus *child;
1718 		list_for_each_entry(child, &bus->children, node)
1719 			pcie_bus_configure_settings(child);
1720 	}
1721 }
1722 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1723 
1724 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1725 {
1726 	int i, class = dev->class >> 8;
1727 	/* When configured as agent, programing interface = 1 */
1728 	int prog_if = dev->class & 0xf;
1729 
1730 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1731 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1732 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1733 		(prog_if == 0) &&
1734 		(dev->bus->parent == NULL)) {
1735 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1736 			dev->resource[i].start = 0;
1737 			dev->resource[i].end = 0;
1738 			dev->resource[i].flags = 0;
1739 		}
1740 	}
1741 }
1742 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1743 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1744 
1745 static void fixup_vga(struct pci_dev *pdev)
1746 {
1747 	u16 cmd;
1748 
1749 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1750 	if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1751 		vga_set_default_device(pdev);
1752 
1753 }
1754 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1755 			      PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
1756