1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contains common pci routines for ALL ppc platform 4 * (based on pci_32.c and pci_64.c) 5 * 6 * Port for PPC64 David Engebretsen, IBM Corp. 7 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 8 * 9 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 10 * Rework, based on alpha PCI code. 11 * 12 * Common pmac/prep/chrp pci routines. -- Cort 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/string.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/export.h> 21 #include <linux/of_address.h> 22 #include <linux/of_pci.h> 23 #include <linux/mm.h> 24 #include <linux/shmem_fs.h> 25 #include <linux/list.h> 26 #include <linux/syscalls.h> 27 #include <linux/irq.h> 28 #include <linux/vmalloc.h> 29 #include <linux/slab.h> 30 #include <linux/vgaarb.h> 31 #include <linux/numa.h> 32 33 #include <asm/processor.h> 34 #include <asm/io.h> 35 #include <asm/prom.h> 36 #include <asm/pci-bridge.h> 37 #include <asm/byteorder.h> 38 #include <asm/machdep.h> 39 #include <asm/ppc-pci.h> 40 #include <asm/eeh.h> 41 42 #include "../../../drivers/pci/pci.h" 43 44 /* hose_spinlock protects accesses to the the phb_bitmap. */ 45 static DEFINE_SPINLOCK(hose_spinlock); 46 LIST_HEAD(hose_list); 47 48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 49 #define MAX_PHBS 0x10000 50 51 /* 52 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 53 * Accesses to this bitmap should be protected by hose_spinlock. 54 */ 55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 56 57 /* ISA Memory physical address */ 58 resource_size_t isa_mem_base; 59 EXPORT_SYMBOL(isa_mem_base); 60 61 62 static const struct dma_map_ops *pci_dma_ops; 63 64 void set_pci_dma_ops(const struct dma_map_ops *dma_ops) 65 { 66 pci_dma_ops = dma_ops; 67 } 68 69 /* 70 * This function should run under locking protection, specifically 71 * hose_spinlock. 72 */ 73 static int get_phb_number(struct device_node *dn) 74 { 75 int ret, phb_id = -1; 76 u32 prop_32; 77 u64 prop; 78 79 /* 80 * Try fixed PHB numbering first, by checking archs and reading 81 * the respective device-tree properties. Firstly, try powernv by 82 * reading "ibm,opal-phbid", only present in OPAL environment. 83 */ 84 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 85 if (ret) { 86 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 87 prop = prop_32; 88 } 89 90 if (!ret) 91 phb_id = (int)(prop & (MAX_PHBS - 1)); 92 93 /* We need to be sure to not use the same PHB number twice. */ 94 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 95 return phb_id; 96 97 /* 98 * If not pseries nor powernv, or if fixed PHB numbering tried to add 99 * the same PHB number twice, then fallback to dynamic PHB numbering. 100 */ 101 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 102 BUG_ON(phb_id >= MAX_PHBS); 103 set_bit(phb_id, phb_bitmap); 104 105 return phb_id; 106 } 107 108 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 109 { 110 struct pci_controller *phb; 111 112 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 113 if (phb == NULL) 114 return NULL; 115 spin_lock(&hose_spinlock); 116 phb->global_number = get_phb_number(dev); 117 list_add_tail(&phb->list_node, &hose_list); 118 spin_unlock(&hose_spinlock); 119 phb->dn = dev; 120 phb->is_dynamic = slab_is_available(); 121 #ifdef CONFIG_PPC64 122 if (dev) { 123 int nid = of_node_to_nid(dev); 124 125 if (nid < 0 || !node_online(nid)) 126 nid = NUMA_NO_NODE; 127 128 PHB_SET_NODE(phb, nid); 129 } 130 #endif 131 return phb; 132 } 133 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 134 135 void pcibios_free_controller(struct pci_controller *phb) 136 { 137 spin_lock(&hose_spinlock); 138 139 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 140 if (phb->global_number < MAX_PHBS) 141 clear_bit(phb->global_number, phb_bitmap); 142 143 list_del(&phb->list_node); 144 spin_unlock(&hose_spinlock); 145 146 if (phb->is_dynamic) 147 kfree(phb); 148 } 149 EXPORT_SYMBOL_GPL(pcibios_free_controller); 150 151 /* 152 * This function is used to call pcibios_free_controller() 153 * in a deferred manner: a callback from the PCI subsystem. 154 * 155 * _*DO NOT*_ call pcibios_free_controller() explicitly if 156 * this is used (or it may access an invalid *phb pointer). 157 * 158 * The callback occurs when all references to the root bus 159 * are dropped (e.g., child buses/devices and their users). 160 * 161 * It's called as .release_fn() of 'struct pci_host_bridge' 162 * which is associated with the 'struct pci_controller.bus' 163 * (root bus) - it expects .release_data to hold a pointer 164 * to 'struct pci_controller'. 165 * 166 * In order to use it, register .release_fn()/release_data 167 * like this: 168 * 169 * pci_set_host_bridge_release(bridge, 170 * pcibios_free_controller_deferred 171 * (void *) phb); 172 * 173 * e.g. in the pcibios_root_bridge_prepare() callback from 174 * pci_create_root_bus(). 175 */ 176 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 177 { 178 struct pci_controller *phb = (struct pci_controller *) 179 bridge->release_data; 180 181 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 182 183 pcibios_free_controller(phb); 184 } 185 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 186 187 /* 188 * The function is used to return the minimal alignment 189 * for memory or I/O windows of the associated P2P bridge. 190 * By default, 4KiB alignment for I/O windows and 1MiB for 191 * memory windows. 192 */ 193 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 194 unsigned long type) 195 { 196 struct pci_controller *phb = pci_bus_to_host(bus); 197 198 if (phb->controller_ops.window_alignment) 199 return phb->controller_ops.window_alignment(bus, type); 200 201 /* 202 * PCI core will figure out the default 203 * alignment: 4KiB for I/O and 1MiB for 204 * memory window. 205 */ 206 return 1; 207 } 208 209 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 210 { 211 struct pci_controller *hose = pci_bus_to_host(bus); 212 213 if (hose->controller_ops.setup_bridge) 214 hose->controller_ops.setup_bridge(bus, type); 215 } 216 217 void pcibios_reset_secondary_bus(struct pci_dev *dev) 218 { 219 struct pci_controller *phb = pci_bus_to_host(dev->bus); 220 221 if (phb->controller_ops.reset_secondary_bus) { 222 phb->controller_ops.reset_secondary_bus(dev); 223 return; 224 } 225 226 pci_reset_secondary_bus(dev); 227 } 228 229 resource_size_t pcibios_default_alignment(void) 230 { 231 if (ppc_md.pcibios_default_alignment) 232 return ppc_md.pcibios_default_alignment(); 233 234 return 0; 235 } 236 237 #ifdef CONFIG_PCI_IOV 238 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 239 { 240 if (ppc_md.pcibios_iov_resource_alignment) 241 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 242 243 return pci_iov_resource_size(pdev, resno); 244 } 245 246 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 247 { 248 if (ppc_md.pcibios_sriov_enable) 249 return ppc_md.pcibios_sriov_enable(pdev, num_vfs); 250 251 return 0; 252 } 253 254 int pcibios_sriov_disable(struct pci_dev *pdev) 255 { 256 if (ppc_md.pcibios_sriov_disable) 257 return ppc_md.pcibios_sriov_disable(pdev); 258 259 return 0; 260 } 261 262 #endif /* CONFIG_PCI_IOV */ 263 264 void pcibios_bus_add_device(struct pci_dev *pdev) 265 { 266 if (ppc_md.pcibios_bus_add_device) 267 ppc_md.pcibios_bus_add_device(pdev); 268 } 269 270 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 271 { 272 #ifdef CONFIG_PPC64 273 return hose->pci_io_size; 274 #else 275 return resource_size(&hose->io_resource); 276 #endif 277 } 278 279 int pcibios_vaddr_is_ioport(void __iomem *address) 280 { 281 int ret = 0; 282 struct pci_controller *hose; 283 resource_size_t size; 284 285 spin_lock(&hose_spinlock); 286 list_for_each_entry(hose, &hose_list, list_node) { 287 size = pcibios_io_size(hose); 288 if (address >= hose->io_base_virt && 289 address < (hose->io_base_virt + size)) { 290 ret = 1; 291 break; 292 } 293 } 294 spin_unlock(&hose_spinlock); 295 return ret; 296 } 297 298 unsigned long pci_address_to_pio(phys_addr_t address) 299 { 300 struct pci_controller *hose; 301 resource_size_t size; 302 unsigned long ret = ~0; 303 304 spin_lock(&hose_spinlock); 305 list_for_each_entry(hose, &hose_list, list_node) { 306 size = pcibios_io_size(hose); 307 if (address >= hose->io_base_phys && 308 address < (hose->io_base_phys + size)) { 309 unsigned long base = 310 (unsigned long)hose->io_base_virt - _IO_BASE; 311 ret = base + (address - hose->io_base_phys); 312 break; 313 } 314 } 315 spin_unlock(&hose_spinlock); 316 317 return ret; 318 } 319 EXPORT_SYMBOL_GPL(pci_address_to_pio); 320 321 /* 322 * Return the domain number for this bus. 323 */ 324 int pci_domain_nr(struct pci_bus *bus) 325 { 326 struct pci_controller *hose = pci_bus_to_host(bus); 327 328 return hose->global_number; 329 } 330 EXPORT_SYMBOL(pci_domain_nr); 331 332 /* This routine is meant to be used early during boot, when the 333 * PCI bus numbers have not yet been assigned, and you need to 334 * issue PCI config cycles to an OF device. 335 * It could also be used to "fix" RTAS config cycles if you want 336 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 337 * config cycles. 338 */ 339 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 340 { 341 while(node) { 342 struct pci_controller *hose, *tmp; 343 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 344 if (hose->dn == node) 345 return hose; 346 node = node->parent; 347 } 348 return NULL; 349 } 350 351 struct pci_controller *pci_find_controller_for_domain(int domain_nr) 352 { 353 struct pci_controller *hose; 354 355 list_for_each_entry(hose, &hose_list, list_node) 356 if (hose->global_number == domain_nr) 357 return hose; 358 359 return NULL; 360 } 361 362 /* 363 * Reads the interrupt pin to determine if interrupt is use by card. 364 * If the interrupt is used, then gets the interrupt line from the 365 * openfirmware and sets it in the pci_dev and pci_config line. 366 */ 367 static int pci_read_irq_line(struct pci_dev *pci_dev) 368 { 369 int virq; 370 371 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 372 373 /* Try to get a mapping from the device-tree */ 374 virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); 375 if (virq <= 0) { 376 u8 line, pin; 377 378 /* If that fails, lets fallback to what is in the config 379 * space and map that through the default controller. We 380 * also set the type to level low since that's what PCI 381 * interrupts are. If your platform does differently, then 382 * either provide a proper interrupt tree or don't use this 383 * function. 384 */ 385 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 386 return -1; 387 if (pin == 0) 388 return -1; 389 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 390 line == 0xff || line == 0) { 391 return -1; 392 } 393 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 394 line, pin); 395 396 virq = irq_create_mapping(NULL, line); 397 if (virq) 398 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 399 } 400 401 if (!virq) { 402 pr_debug(" Failed to map !\n"); 403 return -1; 404 } 405 406 pr_debug(" Mapped to linux irq %d\n", virq); 407 408 pci_dev->irq = virq; 409 410 return 0; 411 } 412 413 /* 414 * Platform support for /proc/bus/pci/X/Y mmap()s. 415 * -- paulus. 416 */ 417 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) 418 { 419 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 420 resource_size_t ioaddr = pci_resource_start(pdev, bar); 421 422 if (!hose) 423 return -EINVAL; 424 425 /* Convert to an offset within this PCI controller */ 426 ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; 427 428 vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; 429 return 0; 430 } 431 432 /* 433 * This one is used by /dev/mem and fbdev who have no clue about the 434 * PCI device, it tries to find the PCI device first and calls the 435 * above routine 436 */ 437 pgprot_t pci_phys_mem_access_prot(struct file *file, 438 unsigned long pfn, 439 unsigned long size, 440 pgprot_t prot) 441 { 442 struct pci_dev *pdev = NULL; 443 struct resource *found = NULL; 444 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 445 int i; 446 447 if (page_is_ram(pfn)) 448 return prot; 449 450 prot = pgprot_noncached(prot); 451 for_each_pci_dev(pdev) { 452 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 453 struct resource *rp = &pdev->resource[i]; 454 int flags = rp->flags; 455 456 /* Active and same type? */ 457 if ((flags & IORESOURCE_MEM) == 0) 458 continue; 459 /* In the range of this resource? */ 460 if (offset < (rp->start & PAGE_MASK) || 461 offset > rp->end) 462 continue; 463 found = rp; 464 break; 465 } 466 if (found) 467 break; 468 } 469 if (found) { 470 if (found->flags & IORESOURCE_PREFETCH) 471 prot = pgprot_noncached_wc(prot); 472 pci_dev_put(pdev); 473 } 474 475 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 476 (unsigned long long)offset, pgprot_val(prot)); 477 478 return prot; 479 } 480 481 /* This provides legacy IO read access on a bus */ 482 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 483 { 484 unsigned long offset; 485 struct pci_controller *hose = pci_bus_to_host(bus); 486 struct resource *rp = &hose->io_resource; 487 void __iomem *addr; 488 489 /* Check if port can be supported by that bus. We only check 490 * the ranges of the PHB though, not the bus itself as the rules 491 * for forwarding legacy cycles down bridges are not our problem 492 * here. So if the host bridge supports it, we do it. 493 */ 494 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 495 offset += port; 496 497 if (!(rp->flags & IORESOURCE_IO)) 498 return -ENXIO; 499 if (offset < rp->start || (offset + size) > rp->end) 500 return -ENXIO; 501 addr = hose->io_base_virt + port; 502 503 switch(size) { 504 case 1: 505 *((u8 *)val) = in_8(addr); 506 return 1; 507 case 2: 508 if (port & 1) 509 return -EINVAL; 510 *((u16 *)val) = in_le16(addr); 511 return 2; 512 case 4: 513 if (port & 3) 514 return -EINVAL; 515 *((u32 *)val) = in_le32(addr); 516 return 4; 517 } 518 return -EINVAL; 519 } 520 521 /* This provides legacy IO write access on a bus */ 522 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 523 { 524 unsigned long offset; 525 struct pci_controller *hose = pci_bus_to_host(bus); 526 struct resource *rp = &hose->io_resource; 527 void __iomem *addr; 528 529 /* Check if port can be supported by that bus. We only check 530 * the ranges of the PHB though, not the bus itself as the rules 531 * for forwarding legacy cycles down bridges are not our problem 532 * here. So if the host bridge supports it, we do it. 533 */ 534 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 535 offset += port; 536 537 if (!(rp->flags & IORESOURCE_IO)) 538 return -ENXIO; 539 if (offset < rp->start || (offset + size) > rp->end) 540 return -ENXIO; 541 addr = hose->io_base_virt + port; 542 543 /* WARNING: The generic code is idiotic. It gets passed a pointer 544 * to what can be a 1, 2 or 4 byte quantity and always reads that 545 * as a u32, which means that we have to correct the location of 546 * the data read within those 32 bits for size 1 and 2 547 */ 548 switch(size) { 549 case 1: 550 out_8(addr, val >> 24); 551 return 1; 552 case 2: 553 if (port & 1) 554 return -EINVAL; 555 out_le16(addr, val >> 16); 556 return 2; 557 case 4: 558 if (port & 3) 559 return -EINVAL; 560 out_le32(addr, val); 561 return 4; 562 } 563 return -EINVAL; 564 } 565 566 /* This provides legacy IO or memory mmap access on a bus */ 567 int pci_mmap_legacy_page_range(struct pci_bus *bus, 568 struct vm_area_struct *vma, 569 enum pci_mmap_state mmap_state) 570 { 571 struct pci_controller *hose = pci_bus_to_host(bus); 572 resource_size_t offset = 573 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 574 resource_size_t size = vma->vm_end - vma->vm_start; 575 struct resource *rp; 576 577 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 578 pci_domain_nr(bus), bus->number, 579 mmap_state == pci_mmap_mem ? "MEM" : "IO", 580 (unsigned long long)offset, 581 (unsigned long long)(offset + size - 1)); 582 583 if (mmap_state == pci_mmap_mem) { 584 /* Hack alert ! 585 * 586 * Because X is lame and can fail starting if it gets an error trying 587 * to mmap legacy_mem (instead of just moving on without legacy memory 588 * access) we fake it here by giving it anonymous memory, effectively 589 * behaving just like /dev/zero 590 */ 591 if ((offset + size) > hose->isa_mem_size) { 592 printk(KERN_DEBUG 593 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 594 current->comm, current->pid, pci_domain_nr(bus), bus->number); 595 if (vma->vm_flags & VM_SHARED) 596 return shmem_zero_setup(vma); 597 return 0; 598 } 599 offset += hose->isa_mem_phys; 600 } else { 601 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 602 unsigned long roffset = offset + io_offset; 603 rp = &hose->io_resource; 604 if (!(rp->flags & IORESOURCE_IO)) 605 return -ENXIO; 606 if (roffset < rp->start || (roffset + size) > rp->end) 607 return -ENXIO; 608 offset += hose->io_base_phys; 609 } 610 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 611 612 vma->vm_pgoff = offset >> PAGE_SHIFT; 613 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 614 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 615 vma->vm_end - vma->vm_start, 616 vma->vm_page_prot); 617 } 618 619 void pci_resource_to_user(const struct pci_dev *dev, int bar, 620 const struct resource *rsrc, 621 resource_size_t *start, resource_size_t *end) 622 { 623 struct pci_bus_region region; 624 625 if (rsrc->flags & IORESOURCE_IO) { 626 pcibios_resource_to_bus(dev->bus, ®ion, 627 (struct resource *) rsrc); 628 *start = region.start; 629 *end = region.end; 630 return; 631 } 632 633 /* We pass a CPU physical address to userland for MMIO instead of a 634 * BAR value because X is lame and expects to be able to use that 635 * to pass to /dev/mem! 636 * 637 * That means we may have 64-bit values where some apps only expect 638 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 639 */ 640 *start = rsrc->start; 641 *end = rsrc->end; 642 } 643 644 /** 645 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 646 * @hose: newly allocated pci_controller to be setup 647 * @dev: device node of the host bridge 648 * @primary: set if primary bus (32 bits only, soon to be deprecated) 649 * 650 * This function will parse the "ranges" property of a PCI host bridge device 651 * node and setup the resource mapping of a pci controller based on its 652 * content. 653 * 654 * Life would be boring if it wasn't for a few issues that we have to deal 655 * with here: 656 * 657 * - We can only cope with one IO space range and up to 3 Memory space 658 * ranges. However, some machines (thanks Apple !) tend to split their 659 * space into lots of small contiguous ranges. So we have to coalesce. 660 * 661 * - Some busses have IO space not starting at 0, which causes trouble with 662 * the way we do our IO resource renumbering. The code somewhat deals with 663 * it for 64 bits but I would expect problems on 32 bits. 664 * 665 * - Some 32 bits platforms such as 4xx can have physical space larger than 666 * 32 bits so we need to use 64 bits values for the parsing 667 */ 668 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 669 struct device_node *dev, int primary) 670 { 671 int memno = 0; 672 struct resource *res; 673 struct of_pci_range range; 674 struct of_pci_range_parser parser; 675 676 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", 677 dev, primary ? "(primary)" : ""); 678 679 /* Check for ranges property */ 680 if (of_pci_range_parser_init(&parser, dev)) 681 return; 682 683 /* Parse it */ 684 for_each_of_pci_range(&parser, &range) { 685 /* If we failed translation or got a zero-sized region 686 * (some FW try to feed us with non sensical zero sized regions 687 * such as power3 which look like some kind of attempt at exposing 688 * the VGA memory hole) 689 */ 690 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 691 continue; 692 693 /* Act based on address space type */ 694 res = NULL; 695 switch (range.flags & IORESOURCE_TYPE_BITS) { 696 case IORESOURCE_IO: 697 printk(KERN_INFO 698 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 699 range.cpu_addr, range.cpu_addr + range.size - 1, 700 range.pci_addr); 701 702 /* We support only one IO range */ 703 if (hose->pci_io_size) { 704 printk(KERN_INFO 705 " \\--> Skipped (too many) !\n"); 706 continue; 707 } 708 #ifdef CONFIG_PPC32 709 /* On 32 bits, limit I/O space to 16MB */ 710 if (range.size > 0x01000000) 711 range.size = 0x01000000; 712 713 /* 32 bits needs to map IOs here */ 714 hose->io_base_virt = ioremap(range.cpu_addr, 715 range.size); 716 717 /* Expect trouble if pci_addr is not 0 */ 718 if (primary) 719 isa_io_base = 720 (unsigned long)hose->io_base_virt; 721 #endif /* CONFIG_PPC32 */ 722 /* pci_io_size and io_base_phys always represent IO 723 * space starting at 0 so we factor in pci_addr 724 */ 725 hose->pci_io_size = range.pci_addr + range.size; 726 hose->io_base_phys = range.cpu_addr - range.pci_addr; 727 728 /* Build resource */ 729 res = &hose->io_resource; 730 range.cpu_addr = range.pci_addr; 731 break; 732 case IORESOURCE_MEM: 733 printk(KERN_INFO 734 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 735 range.cpu_addr, range.cpu_addr + range.size - 1, 736 range.pci_addr, 737 (range.pci_space & 0x40000000) ? 738 "Prefetch" : ""); 739 740 /* We support only 3 memory ranges */ 741 if (memno >= 3) { 742 printk(KERN_INFO 743 " \\--> Skipped (too many) !\n"); 744 continue; 745 } 746 /* Handles ISA memory hole space here */ 747 if (range.pci_addr == 0) { 748 if (primary || isa_mem_base == 0) 749 isa_mem_base = range.cpu_addr; 750 hose->isa_mem_phys = range.cpu_addr; 751 hose->isa_mem_size = range.size; 752 } 753 754 /* Build resource */ 755 hose->mem_offset[memno] = range.cpu_addr - 756 range.pci_addr; 757 res = &hose->mem_resources[memno++]; 758 break; 759 } 760 if (res != NULL) { 761 res->name = dev->full_name; 762 res->flags = range.flags; 763 res->start = range.cpu_addr; 764 res->end = range.cpu_addr + range.size - 1; 765 res->parent = res->child = res->sibling = NULL; 766 } 767 } 768 } 769 770 /* Decide whether to display the domain number in /proc */ 771 int pci_proc_domain(struct pci_bus *bus) 772 { 773 struct pci_controller *hose = pci_bus_to_host(bus); 774 775 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 776 return 0; 777 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 778 return hose->global_number != 0; 779 return 1; 780 } 781 782 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 783 { 784 if (ppc_md.pcibios_root_bridge_prepare) 785 return ppc_md.pcibios_root_bridge_prepare(bridge); 786 787 return 0; 788 } 789 790 /* This header fixup will do the resource fixup for all devices as they are 791 * probed, but not for bridge ranges 792 */ 793 static void pcibios_fixup_resources(struct pci_dev *dev) 794 { 795 struct pci_controller *hose = pci_bus_to_host(dev->bus); 796 int i; 797 798 if (!hose) { 799 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 800 pci_name(dev)); 801 return; 802 } 803 804 if (dev->is_virtfn) 805 return; 806 807 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 808 struct resource *res = dev->resource + i; 809 struct pci_bus_region reg; 810 if (!res->flags) 811 continue; 812 813 /* If we're going to re-assign everything, we mark all resources 814 * as unset (and 0-base them). In addition, we mark BARs starting 815 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 816 * since in that case, we don't want to re-assign anything 817 */ 818 pcibios_resource_to_bus(dev->bus, ®, res); 819 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 820 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 821 /* Only print message if not re-assigning */ 822 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 823 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 824 pci_name(dev), i, res); 825 res->end -= res->start; 826 res->start = 0; 827 res->flags |= IORESOURCE_UNSET; 828 continue; 829 } 830 831 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 832 } 833 834 /* Call machine specific resource fixup */ 835 if (ppc_md.pcibios_fixup_resources) 836 ppc_md.pcibios_fixup_resources(dev); 837 } 838 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 839 840 /* This function tries to figure out if a bridge resource has been initialized 841 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 842 * things go more smoothly when it gets it right. It should covers cases such 843 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 844 */ 845 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 846 struct resource *res) 847 { 848 struct pci_controller *hose = pci_bus_to_host(bus); 849 struct pci_dev *dev = bus->self; 850 resource_size_t offset; 851 struct pci_bus_region region; 852 u16 command; 853 int i; 854 855 /* We don't do anything if PCI_PROBE_ONLY is set */ 856 if (pci_has_flag(PCI_PROBE_ONLY)) 857 return 0; 858 859 /* Job is a bit different between memory and IO */ 860 if (res->flags & IORESOURCE_MEM) { 861 pcibios_resource_to_bus(dev->bus, ®ion, res); 862 863 /* If the BAR is non-0 then it's probably been initialized */ 864 if (region.start != 0) 865 return 0; 866 867 /* The BAR is 0, let's check if memory decoding is enabled on 868 * the bridge. If not, we consider it unassigned 869 */ 870 pci_read_config_word(dev, PCI_COMMAND, &command); 871 if ((command & PCI_COMMAND_MEMORY) == 0) 872 return 1; 873 874 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 875 * resources covers that starting address (0 then it's good enough for 876 * us for memory space) 877 */ 878 for (i = 0; i < 3; i++) { 879 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 880 hose->mem_resources[i].start == hose->mem_offset[i]) 881 return 0; 882 } 883 884 /* Well, it starts at 0 and we know it will collide so we may as 885 * well consider it as unassigned. That covers the Apple case. 886 */ 887 return 1; 888 } else { 889 /* If the BAR is non-0, then we consider it assigned */ 890 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 891 if (((res->start - offset) & 0xfffffffful) != 0) 892 return 0; 893 894 /* Here, we are a bit different than memory as typically IO space 895 * starting at low addresses -is- valid. What we do instead if that 896 * we consider as unassigned anything that doesn't have IO enabled 897 * in the PCI command register, and that's it. 898 */ 899 pci_read_config_word(dev, PCI_COMMAND, &command); 900 if (command & PCI_COMMAND_IO) 901 return 0; 902 903 /* It's starting at 0 and IO is disabled in the bridge, consider 904 * it unassigned 905 */ 906 return 1; 907 } 908 } 909 910 /* Fixup resources of a PCI<->PCI bridge */ 911 static void pcibios_fixup_bridge(struct pci_bus *bus) 912 { 913 struct resource *res; 914 int i; 915 916 struct pci_dev *dev = bus->self; 917 918 pci_bus_for_each_resource(bus, res, i) { 919 if (!res || !res->flags) 920 continue; 921 if (i >= 3 && bus->self->transparent) 922 continue; 923 924 /* If we're going to reassign everything, we can 925 * shrink the P2P resource to have size as being 926 * of 0 in order to save space. 927 */ 928 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 929 res->flags |= IORESOURCE_UNSET; 930 res->start = 0; 931 res->end = -1; 932 continue; 933 } 934 935 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 936 937 /* Try to detect uninitialized P2P bridge resources, 938 * and clear them out so they get re-assigned later 939 */ 940 if (pcibios_uninitialized_bridge_resource(bus, res)) { 941 res->flags = 0; 942 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 943 } 944 } 945 } 946 947 void pcibios_setup_bus_self(struct pci_bus *bus) 948 { 949 struct pci_controller *phb; 950 951 /* Fix up the bus resources for P2P bridges */ 952 if (bus->self != NULL) 953 pcibios_fixup_bridge(bus); 954 955 /* Platform specific bus fixups. This is currently only used 956 * by fsl_pci and I'm hoping to get rid of it at some point 957 */ 958 if (ppc_md.pcibios_fixup_bus) 959 ppc_md.pcibios_fixup_bus(bus); 960 961 /* Setup bus DMA mappings */ 962 phb = pci_bus_to_host(bus); 963 if (phb->controller_ops.dma_bus_setup) 964 phb->controller_ops.dma_bus_setup(bus); 965 } 966 967 static void pcibios_setup_device(struct pci_dev *dev) 968 { 969 struct pci_controller *phb; 970 /* Fixup NUMA node as it may not be setup yet by the generic 971 * code and is needed by the DMA init 972 */ 973 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 974 975 /* Hook up default DMA ops */ 976 set_dma_ops(&dev->dev, pci_dma_ops); 977 dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET; 978 979 /* Additional platform DMA/iommu setup */ 980 phb = pci_bus_to_host(dev->bus); 981 if (phb->controller_ops.dma_dev_setup) 982 phb->controller_ops.dma_dev_setup(dev); 983 984 /* Read default IRQs and fixup if necessary */ 985 pci_read_irq_line(dev); 986 if (ppc_md.pci_irq_fixup) 987 ppc_md.pci_irq_fixup(dev); 988 } 989 990 int pcibios_add_device(struct pci_dev *dev) 991 { 992 /* 993 * We can only call pcibios_setup_device() after bus setup is complete, 994 * since some of the platform specific DMA setup code depends on it. 995 */ 996 if (dev->bus->is_added) 997 pcibios_setup_device(dev); 998 999 #ifdef CONFIG_PCI_IOV 1000 if (ppc_md.pcibios_fixup_sriov) 1001 ppc_md.pcibios_fixup_sriov(dev); 1002 #endif /* CONFIG_PCI_IOV */ 1003 1004 return 0; 1005 } 1006 1007 void pcibios_setup_bus_devices(struct pci_bus *bus) 1008 { 1009 struct pci_dev *dev; 1010 1011 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1012 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1013 1014 list_for_each_entry(dev, &bus->devices, bus_list) { 1015 /* Cardbus can call us to add new devices to a bus, so ignore 1016 * those who are already fully discovered 1017 */ 1018 if (pci_dev_is_added(dev)) 1019 continue; 1020 1021 pcibios_setup_device(dev); 1022 } 1023 } 1024 1025 void pcibios_set_master(struct pci_dev *dev) 1026 { 1027 /* No special bus mastering setup handling */ 1028 } 1029 1030 void pcibios_fixup_bus(struct pci_bus *bus) 1031 { 1032 /* When called from the generic PCI probe, read PCI<->PCI bridge 1033 * bases. This is -not- called when generating the PCI tree from 1034 * the OF device-tree. 1035 */ 1036 pci_read_bridge_bases(bus); 1037 1038 /* Now fixup the bus bus */ 1039 pcibios_setup_bus_self(bus); 1040 1041 /* Now fixup devices on that bus */ 1042 pcibios_setup_bus_devices(bus); 1043 } 1044 EXPORT_SYMBOL(pcibios_fixup_bus); 1045 1046 void pci_fixup_cardbus(struct pci_bus *bus) 1047 { 1048 /* Now fixup devices on that bus */ 1049 pcibios_setup_bus_devices(bus); 1050 } 1051 1052 1053 static int skip_isa_ioresource_align(struct pci_dev *dev) 1054 { 1055 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1056 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1057 return 1; 1058 return 0; 1059 } 1060 1061 /* 1062 * We need to avoid collisions with `mirrored' VGA ports 1063 * and other strange ISA hardware, so we always want the 1064 * addresses to be allocated in the 0x000-0x0ff region 1065 * modulo 0x400. 1066 * 1067 * Why? Because some silly external IO cards only decode 1068 * the low 10 bits of the IO address. The 0x00-0xff region 1069 * is reserved for motherboard devices that decode all 16 1070 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1071 * but we want to try to avoid allocating at 0x2900-0x2bff 1072 * which might have be mirrored at 0x0100-0x03ff.. 1073 */ 1074 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1075 resource_size_t size, resource_size_t align) 1076 { 1077 struct pci_dev *dev = data; 1078 resource_size_t start = res->start; 1079 1080 if (res->flags & IORESOURCE_IO) { 1081 if (skip_isa_ioresource_align(dev)) 1082 return start; 1083 if (start & 0x300) 1084 start = (start + 0x3ff) & ~0x3ff; 1085 } 1086 1087 return start; 1088 } 1089 EXPORT_SYMBOL(pcibios_align_resource); 1090 1091 /* 1092 * Reparent resource children of pr that conflict with res 1093 * under res, and make res replace those children. 1094 */ 1095 static int reparent_resources(struct resource *parent, 1096 struct resource *res) 1097 { 1098 struct resource *p, **pp; 1099 struct resource **firstpp = NULL; 1100 1101 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1102 if (p->end < res->start) 1103 continue; 1104 if (res->end < p->start) 1105 break; 1106 if (p->start < res->start || p->end > res->end) 1107 return -1; /* not completely contained */ 1108 if (firstpp == NULL) 1109 firstpp = pp; 1110 } 1111 if (firstpp == NULL) 1112 return -1; /* didn't find any conflicting entries? */ 1113 res->parent = parent; 1114 res->child = *firstpp; 1115 res->sibling = *pp; 1116 *firstpp = res; 1117 *pp = NULL; 1118 for (p = res->child; p != NULL; p = p->sibling) { 1119 p->parent = res; 1120 pr_debug("PCI: Reparented %s %pR under %s\n", 1121 p->name, p, res->name); 1122 } 1123 return 0; 1124 } 1125 1126 /* 1127 * Handle resources of PCI devices. If the world were perfect, we could 1128 * just allocate all the resource regions and do nothing more. It isn't. 1129 * On the other hand, we cannot just re-allocate all devices, as it would 1130 * require us to know lots of host bridge internals. So we attempt to 1131 * keep as much of the original configuration as possible, but tweak it 1132 * when it's found to be wrong. 1133 * 1134 * Known BIOS problems we have to work around: 1135 * - I/O or memory regions not configured 1136 * - regions configured, but not enabled in the command register 1137 * - bogus I/O addresses above 64K used 1138 * - expansion ROMs left enabled (this may sound harmless, but given 1139 * the fact the PCI specs explicitly allow address decoders to be 1140 * shared between expansion ROMs and other resource regions, it's 1141 * at least dangerous) 1142 * 1143 * Our solution: 1144 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1145 * This gives us fixed barriers on where we can allocate. 1146 * (2) Allocate resources for all enabled devices. If there is 1147 * a collision, just mark the resource as unallocated. Also 1148 * disable expansion ROMs during this step. 1149 * (3) Try to allocate resources for disabled devices. If the 1150 * resources were assigned correctly, everything goes well, 1151 * if they weren't, they won't disturb allocation of other 1152 * resources. 1153 * (4) Assign new addresses to resources which were either 1154 * not configured at all or misconfigured. If explicitly 1155 * requested by the user, configure expansion ROM address 1156 * as well. 1157 */ 1158 1159 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1160 { 1161 struct pci_bus *b; 1162 int i; 1163 struct resource *res, *pr; 1164 1165 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1166 pci_domain_nr(bus), bus->number); 1167 1168 pci_bus_for_each_resource(bus, res, i) { 1169 if (!res || !res->flags || res->start > res->end || res->parent) 1170 continue; 1171 1172 /* If the resource was left unset at this point, we clear it */ 1173 if (res->flags & IORESOURCE_UNSET) 1174 goto clear_resource; 1175 1176 if (bus->parent == NULL) 1177 pr = (res->flags & IORESOURCE_IO) ? 1178 &ioport_resource : &iomem_resource; 1179 else { 1180 pr = pci_find_parent_resource(bus->self, res); 1181 if (pr == res) { 1182 /* this happens when the generic PCI 1183 * code (wrongly) decides that this 1184 * bridge is transparent -- paulus 1185 */ 1186 continue; 1187 } 1188 } 1189 1190 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1191 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1192 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1193 1194 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1195 struct pci_dev *dev = bus->self; 1196 1197 if (request_resource(pr, res) == 0) 1198 continue; 1199 /* 1200 * Must be a conflict with an existing entry. 1201 * Move that entry (or entries) under the 1202 * bridge resource and try again. 1203 */ 1204 if (reparent_resources(pr, res) == 0) 1205 continue; 1206 1207 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1208 pci_claim_bridge_resource(dev, 1209 i + PCI_BRIDGE_RESOURCES) == 0) 1210 continue; 1211 } 1212 pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", 1213 i, bus->number); 1214 clear_resource: 1215 /* The resource might be figured out when doing 1216 * reassignment based on the resources required 1217 * by the downstream PCI devices. Here we set 1218 * the size of the resource to be 0 in order to 1219 * save more space. 1220 */ 1221 res->start = 0; 1222 res->end = -1; 1223 res->flags = 0; 1224 } 1225 1226 list_for_each_entry(b, &bus->children, node) 1227 pcibios_allocate_bus_resources(b); 1228 } 1229 1230 static inline void alloc_resource(struct pci_dev *dev, int idx) 1231 { 1232 struct resource *pr, *r = &dev->resource[idx]; 1233 1234 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1235 pci_name(dev), idx, r); 1236 1237 pr = pci_find_parent_resource(dev, r); 1238 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1239 request_resource(pr, r) < 0) { 1240 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1241 " of device %s, will remap\n", idx, pci_name(dev)); 1242 if (pr) 1243 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1244 /* We'll assign a new address later */ 1245 r->flags |= IORESOURCE_UNSET; 1246 r->end -= r->start; 1247 r->start = 0; 1248 } 1249 } 1250 1251 static void __init pcibios_allocate_resources(int pass) 1252 { 1253 struct pci_dev *dev = NULL; 1254 int idx, disabled; 1255 u16 command; 1256 struct resource *r; 1257 1258 for_each_pci_dev(dev) { 1259 pci_read_config_word(dev, PCI_COMMAND, &command); 1260 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1261 r = &dev->resource[idx]; 1262 if (r->parent) /* Already allocated */ 1263 continue; 1264 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1265 continue; /* Not assigned at all */ 1266 /* We only allocate ROMs on pass 1 just in case they 1267 * have been screwed up by firmware 1268 */ 1269 if (idx == PCI_ROM_RESOURCE ) 1270 disabled = 1; 1271 if (r->flags & IORESOURCE_IO) 1272 disabled = !(command & PCI_COMMAND_IO); 1273 else 1274 disabled = !(command & PCI_COMMAND_MEMORY); 1275 if (pass == disabled) 1276 alloc_resource(dev, idx); 1277 } 1278 if (pass) 1279 continue; 1280 r = &dev->resource[PCI_ROM_RESOURCE]; 1281 if (r->flags) { 1282 /* Turn the ROM off, leave the resource region, 1283 * but keep it unregistered. 1284 */ 1285 u32 reg; 1286 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1287 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1288 pr_debug("PCI: Switching off ROM of %s\n", 1289 pci_name(dev)); 1290 r->flags &= ~IORESOURCE_ROM_ENABLE; 1291 pci_write_config_dword(dev, dev->rom_base_reg, 1292 reg & ~PCI_ROM_ADDRESS_ENABLE); 1293 } 1294 } 1295 } 1296 } 1297 1298 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1299 { 1300 struct pci_controller *hose = pci_bus_to_host(bus); 1301 resource_size_t offset; 1302 struct resource *res, *pres; 1303 int i; 1304 1305 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1306 1307 /* Check for IO */ 1308 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1309 goto no_io; 1310 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1311 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1312 BUG_ON(res == NULL); 1313 res->name = "Legacy IO"; 1314 res->flags = IORESOURCE_IO; 1315 res->start = offset; 1316 res->end = (offset + 0xfff) & 0xfffffffful; 1317 pr_debug("Candidate legacy IO: %pR\n", res); 1318 if (request_resource(&hose->io_resource, res)) { 1319 printk(KERN_DEBUG 1320 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1321 pci_domain_nr(bus), bus->number, res); 1322 kfree(res); 1323 } 1324 1325 no_io: 1326 /* Check for memory */ 1327 for (i = 0; i < 3; i++) { 1328 pres = &hose->mem_resources[i]; 1329 offset = hose->mem_offset[i]; 1330 if (!(pres->flags & IORESOURCE_MEM)) 1331 continue; 1332 pr_debug("hose mem res: %pR\n", pres); 1333 if ((pres->start - offset) <= 0xa0000 && 1334 (pres->end - offset) >= 0xbffff) 1335 break; 1336 } 1337 if (i >= 3) 1338 return; 1339 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1340 BUG_ON(res == NULL); 1341 res->name = "Legacy VGA memory"; 1342 res->flags = IORESOURCE_MEM; 1343 res->start = 0xa0000 + offset; 1344 res->end = 0xbffff + offset; 1345 pr_debug("Candidate VGA memory: %pR\n", res); 1346 if (request_resource(pres, res)) { 1347 printk(KERN_DEBUG 1348 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1349 pci_domain_nr(bus), bus->number, res); 1350 kfree(res); 1351 } 1352 } 1353 1354 void __init pcibios_resource_survey(void) 1355 { 1356 struct pci_bus *b; 1357 1358 /* Allocate and assign resources */ 1359 list_for_each_entry(b, &pci_root_buses, node) 1360 pcibios_allocate_bus_resources(b); 1361 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1362 pcibios_allocate_resources(0); 1363 pcibios_allocate_resources(1); 1364 } 1365 1366 /* Before we start assigning unassigned resource, we try to reserve 1367 * the low IO area and the VGA memory area if they intersect the 1368 * bus available resources to avoid allocating things on top of them 1369 */ 1370 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1371 list_for_each_entry(b, &pci_root_buses, node) 1372 pcibios_reserve_legacy_regions(b); 1373 } 1374 1375 /* Now, if the platform didn't decide to blindly trust the firmware, 1376 * we proceed to assigning things that were left unassigned 1377 */ 1378 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1379 pr_debug("PCI: Assigning unassigned resources...\n"); 1380 pci_assign_unassigned_resources(); 1381 } 1382 } 1383 1384 /* This is used by the PCI hotplug driver to allocate resource 1385 * of newly plugged busses. We can try to consolidate with the 1386 * rest of the code later, for now, keep it as-is as our main 1387 * resource allocation function doesn't deal with sub-trees yet. 1388 */ 1389 void pcibios_claim_one_bus(struct pci_bus *bus) 1390 { 1391 struct pci_dev *dev; 1392 struct pci_bus *child_bus; 1393 1394 list_for_each_entry(dev, &bus->devices, bus_list) { 1395 int i; 1396 1397 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1398 struct resource *r = &dev->resource[i]; 1399 1400 if (r->parent || !r->start || !r->flags) 1401 continue; 1402 1403 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1404 pci_name(dev), i, r); 1405 1406 if (pci_claim_resource(dev, i) == 0) 1407 continue; 1408 1409 pci_claim_bridge_resource(dev, i); 1410 } 1411 } 1412 1413 list_for_each_entry(child_bus, &bus->children, node) 1414 pcibios_claim_one_bus(child_bus); 1415 } 1416 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1417 1418 1419 /* pcibios_finish_adding_to_bus 1420 * 1421 * This is to be called by the hotplug code after devices have been 1422 * added to a bus, this include calling it for a PHB that is just 1423 * being added 1424 */ 1425 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1426 { 1427 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1428 pci_domain_nr(bus), bus->number); 1429 1430 /* Allocate bus and devices resources */ 1431 pcibios_allocate_bus_resources(bus); 1432 pcibios_claim_one_bus(bus); 1433 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1434 if (bus->self) 1435 pci_assign_unassigned_bridge_resources(bus->self); 1436 else 1437 pci_assign_unassigned_bus_resources(bus); 1438 } 1439 1440 /* Fixup EEH */ 1441 eeh_add_device_tree_late(bus); 1442 1443 /* Add new devices to global lists. Register in proc, sysfs. */ 1444 pci_bus_add_devices(bus); 1445 1446 /* sysfs files should only be added after devices are added */ 1447 eeh_add_sysfs_files(bus); 1448 } 1449 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1450 1451 int pcibios_enable_device(struct pci_dev *dev, int mask) 1452 { 1453 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1454 1455 if (phb->controller_ops.enable_device_hook) 1456 if (!phb->controller_ops.enable_device_hook(dev)) 1457 return -EINVAL; 1458 1459 return pci_enable_resources(dev, mask); 1460 } 1461 1462 void pcibios_disable_device(struct pci_dev *dev) 1463 { 1464 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1465 1466 if (phb->controller_ops.disable_device) 1467 phb->controller_ops.disable_device(dev); 1468 } 1469 1470 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1471 { 1472 return (unsigned long) hose->io_base_virt - _IO_BASE; 1473 } 1474 1475 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1476 struct list_head *resources) 1477 { 1478 struct resource *res; 1479 resource_size_t offset; 1480 int i; 1481 1482 /* Hookup PHB IO resource */ 1483 res = &hose->io_resource; 1484 1485 if (!res->flags) { 1486 pr_debug("PCI: I/O resource not set for host" 1487 " bridge %pOF (domain %d)\n", 1488 hose->dn, hose->global_number); 1489 } else { 1490 offset = pcibios_io_space_offset(hose); 1491 1492 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1493 res, (unsigned long long)offset); 1494 pci_add_resource_offset(resources, res, offset); 1495 } 1496 1497 /* Hookup PHB Memory resources */ 1498 for (i = 0; i < 3; ++i) { 1499 res = &hose->mem_resources[i]; 1500 if (!res->flags) 1501 continue; 1502 1503 offset = hose->mem_offset[i]; 1504 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1505 res, (unsigned long long)offset); 1506 1507 pci_add_resource_offset(resources, res, offset); 1508 } 1509 } 1510 1511 /* 1512 * Null PCI config access functions, for the case when we can't 1513 * find a hose. 1514 */ 1515 #define NULL_PCI_OP(rw, size, type) \ 1516 static int \ 1517 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1518 { \ 1519 return PCIBIOS_DEVICE_NOT_FOUND; \ 1520 } 1521 1522 static int 1523 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1524 int len, u32 *val) 1525 { 1526 return PCIBIOS_DEVICE_NOT_FOUND; 1527 } 1528 1529 static int 1530 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1531 int len, u32 val) 1532 { 1533 return PCIBIOS_DEVICE_NOT_FOUND; 1534 } 1535 1536 static struct pci_ops null_pci_ops = 1537 { 1538 .read = null_read_config, 1539 .write = null_write_config, 1540 }; 1541 1542 /* 1543 * These functions are used early on before PCI scanning is done 1544 * and all of the pci_dev and pci_bus structures have been created. 1545 */ 1546 static struct pci_bus * 1547 fake_pci_bus(struct pci_controller *hose, int busnr) 1548 { 1549 static struct pci_bus bus; 1550 1551 if (hose == NULL) { 1552 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1553 } 1554 bus.number = busnr; 1555 bus.sysdata = hose; 1556 bus.ops = hose? hose->ops: &null_pci_ops; 1557 return &bus; 1558 } 1559 1560 #define EARLY_PCI_OP(rw, size, type) \ 1561 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1562 int devfn, int offset, type value) \ 1563 { \ 1564 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1565 devfn, offset, value); \ 1566 } 1567 1568 EARLY_PCI_OP(read, byte, u8 *) 1569 EARLY_PCI_OP(read, word, u16 *) 1570 EARLY_PCI_OP(read, dword, u32 *) 1571 EARLY_PCI_OP(write, byte, u8) 1572 EARLY_PCI_OP(write, word, u16) 1573 EARLY_PCI_OP(write, dword, u32) 1574 1575 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1576 int cap) 1577 { 1578 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1579 } 1580 1581 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1582 { 1583 struct pci_controller *hose = bus->sysdata; 1584 1585 return of_node_get(hose->dn); 1586 } 1587 1588 /** 1589 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1590 * @hose: Pointer to the PCI host controller instance structure 1591 */ 1592 void pcibios_scan_phb(struct pci_controller *hose) 1593 { 1594 LIST_HEAD(resources); 1595 struct pci_bus *bus; 1596 struct device_node *node = hose->dn; 1597 int mode; 1598 1599 pr_debug("PCI: Scanning PHB %pOF\n", node); 1600 1601 /* Get some IO space for the new PHB */ 1602 pcibios_setup_phb_io_space(hose); 1603 1604 /* Wire up PHB bus resources */ 1605 pcibios_setup_phb_resources(hose, &resources); 1606 1607 hose->busn.start = hose->first_busno; 1608 hose->busn.end = hose->last_busno; 1609 hose->busn.flags = IORESOURCE_BUS; 1610 pci_add_resource(&resources, &hose->busn); 1611 1612 /* Create an empty bus for the toplevel */ 1613 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1614 hose->ops, hose, &resources); 1615 if (bus == NULL) { 1616 pr_err("Failed to create bus for PCI domain %04x\n", 1617 hose->global_number); 1618 pci_free_resource_list(&resources); 1619 return; 1620 } 1621 hose->bus = bus; 1622 1623 /* Get probe mode and perform scan */ 1624 mode = PCI_PROBE_NORMAL; 1625 if (node && hose->controller_ops.probe_mode) 1626 mode = hose->controller_ops.probe_mode(bus); 1627 pr_debug(" probe mode: %d\n", mode); 1628 if (mode == PCI_PROBE_DEVTREE) 1629 of_scan_bus(node, bus); 1630 1631 if (mode == PCI_PROBE_NORMAL) { 1632 pci_bus_update_busn_res_end(bus, 255); 1633 hose->last_busno = pci_scan_child_bus(bus); 1634 pci_bus_update_busn_res_end(bus, hose->last_busno); 1635 } 1636 1637 /* Platform gets a chance to do some global fixups before 1638 * we proceed to resource allocation 1639 */ 1640 if (ppc_md.pcibios_fixup_phb) 1641 ppc_md.pcibios_fixup_phb(hose); 1642 1643 /* Configure PCI Express settings */ 1644 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1645 struct pci_bus *child; 1646 list_for_each_entry(child, &bus->children, node) 1647 pcie_bus_configure_settings(child); 1648 } 1649 } 1650 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1651 1652 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1653 { 1654 int i, class = dev->class >> 8; 1655 /* When configured as agent, programing interface = 1 */ 1656 int prog_if = dev->class & 0xf; 1657 1658 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1659 class == PCI_CLASS_BRIDGE_OTHER) && 1660 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1661 (prog_if == 0) && 1662 (dev->bus->parent == NULL)) { 1663 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1664 dev->resource[i].start = 0; 1665 dev->resource[i].end = 0; 1666 dev->resource[i].flags = 0; 1667 } 1668 } 1669 } 1670 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1672