1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Contains common pci routines for ALL ppc platform 4 * (based on pci_32.c and pci_64.c) 5 * 6 * Port for PPC64 David Engebretsen, IBM Corp. 7 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 8 * 9 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 10 * Rework, based on alpha PCI code. 11 * 12 * Common pmac/prep/chrp pci routines. -- Cort 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/string.h> 18 #include <linux/init.h> 19 #include <linux/delay.h> 20 #include <linux/export.h> 21 #include <linux/of_address.h> 22 #include <linux/of_pci.h> 23 #include <linux/mm.h> 24 #include <linux/shmem_fs.h> 25 #include <linux/list.h> 26 #include <linux/syscalls.h> 27 #include <linux/irq.h> 28 #include <linux/vmalloc.h> 29 #include <linux/slab.h> 30 #include <linux/vgaarb.h> 31 #include <linux/numa.h> 32 #include <linux/msi.h> 33 #include <linux/irqdomain.h> 34 35 #include <asm/processor.h> 36 #include <asm/io.h> 37 #include <asm/pci-bridge.h> 38 #include <asm/byteorder.h> 39 #include <asm/machdep.h> 40 #include <asm/ppc-pci.h> 41 #include <asm/eeh.h> 42 #include <asm/setup.h> 43 44 #include "../../../drivers/pci/pci.h" 45 46 /* hose_spinlock protects accesses to the phb_bitmap. */ 47 static DEFINE_SPINLOCK(hose_spinlock); 48 LIST_HEAD(hose_list); 49 50 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 51 #define MAX_PHBS 0x10000 52 53 /* 54 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 55 * Accesses to this bitmap should be protected by hose_spinlock. 56 */ 57 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 58 59 /* ISA Memory physical address */ 60 resource_size_t isa_mem_base; 61 EXPORT_SYMBOL(isa_mem_base); 62 63 64 static const struct dma_map_ops *pci_dma_ops; 65 66 void __init set_pci_dma_ops(const struct dma_map_ops *dma_ops) 67 { 68 pci_dma_ops = dma_ops; 69 } 70 71 /* 72 * This function should run under locking protection, specifically 73 * hose_spinlock. 74 */ 75 static int get_phb_number(struct device_node *dn) 76 { 77 int ret, phb_id = -1; 78 u64 prop; 79 80 /* 81 * Try fixed PHB numbering first, by checking archs and reading 82 * the respective device-tree properties. Firstly, try reading 83 * standard "linux,pci-domain", then try reading "ibm,opal-phbid" 84 * (only present in powernv OPAL environment), then try device-tree 85 * alias and as the last try to use lower bits of "reg" property. 86 */ 87 ret = of_get_pci_domain_nr(dn); 88 if (ret >= 0) { 89 prop = ret; 90 ret = 0; 91 } 92 if (ret) 93 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 94 if (ret) 95 ret = of_alias_get_id(dn, "pci"); 96 if (ret >= 0) { 97 prop = ret; 98 ret = 0; 99 } 100 if (ret) { 101 u32 prop_32; 102 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 103 prop = prop_32; 104 } 105 106 if (!ret) 107 phb_id = (int)(prop & (MAX_PHBS - 1)); 108 109 /* We need to be sure to not use the same PHB number twice. */ 110 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 111 return phb_id; 112 113 /* If everything fails then fallback to dynamic PHB numbering. */ 114 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 115 BUG_ON(phb_id >= MAX_PHBS); 116 set_bit(phb_id, phb_bitmap); 117 118 return phb_id; 119 } 120 121 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 122 { 123 struct pci_controller *phb; 124 125 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 126 if (phb == NULL) 127 return NULL; 128 spin_lock(&hose_spinlock); 129 phb->global_number = get_phb_number(dev); 130 list_add_tail(&phb->list_node, &hose_list); 131 spin_unlock(&hose_spinlock); 132 phb->dn = dev; 133 phb->is_dynamic = slab_is_available(); 134 #ifdef CONFIG_PPC64 135 if (dev) { 136 int nid = of_node_to_nid(dev); 137 138 if (nid < 0 || !node_online(nid)) 139 nid = NUMA_NO_NODE; 140 141 PHB_SET_NODE(phb, nid); 142 } 143 #endif 144 return phb; 145 } 146 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 147 148 void pcibios_free_controller(struct pci_controller *phb) 149 { 150 spin_lock(&hose_spinlock); 151 152 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 153 if (phb->global_number < MAX_PHBS) 154 clear_bit(phb->global_number, phb_bitmap); 155 156 list_del(&phb->list_node); 157 spin_unlock(&hose_spinlock); 158 159 if (phb->is_dynamic) 160 kfree(phb); 161 } 162 EXPORT_SYMBOL_GPL(pcibios_free_controller); 163 164 /* 165 * This function is used to call pcibios_free_controller() 166 * in a deferred manner: a callback from the PCI subsystem. 167 * 168 * _*DO NOT*_ call pcibios_free_controller() explicitly if 169 * this is used (or it may access an invalid *phb pointer). 170 * 171 * The callback occurs when all references to the root bus 172 * are dropped (e.g., child buses/devices and their users). 173 * 174 * It's called as .release_fn() of 'struct pci_host_bridge' 175 * which is associated with the 'struct pci_controller.bus' 176 * (root bus) - it expects .release_data to hold a pointer 177 * to 'struct pci_controller'. 178 * 179 * In order to use it, register .release_fn()/release_data 180 * like this: 181 * 182 * pci_set_host_bridge_release(bridge, 183 * pcibios_free_controller_deferred 184 * (void *) phb); 185 * 186 * e.g. in the pcibios_root_bridge_prepare() callback from 187 * pci_create_root_bus(). 188 */ 189 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 190 { 191 struct pci_controller *phb = (struct pci_controller *) 192 bridge->release_data; 193 194 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 195 196 pcibios_free_controller(phb); 197 } 198 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 199 200 /* 201 * The function is used to return the minimal alignment 202 * for memory or I/O windows of the associated P2P bridge. 203 * By default, 4KiB alignment for I/O windows and 1MiB for 204 * memory windows. 205 */ 206 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 207 unsigned long type) 208 { 209 struct pci_controller *phb = pci_bus_to_host(bus); 210 211 if (phb->controller_ops.window_alignment) 212 return phb->controller_ops.window_alignment(bus, type); 213 214 /* 215 * PCI core will figure out the default 216 * alignment: 4KiB for I/O and 1MiB for 217 * memory window. 218 */ 219 return 1; 220 } 221 222 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 223 { 224 struct pci_controller *hose = pci_bus_to_host(bus); 225 226 if (hose->controller_ops.setup_bridge) 227 hose->controller_ops.setup_bridge(bus, type); 228 } 229 230 void pcibios_reset_secondary_bus(struct pci_dev *dev) 231 { 232 struct pci_controller *phb = pci_bus_to_host(dev->bus); 233 234 if (phb->controller_ops.reset_secondary_bus) { 235 phb->controller_ops.reset_secondary_bus(dev); 236 return; 237 } 238 239 pci_reset_secondary_bus(dev); 240 } 241 242 resource_size_t pcibios_default_alignment(void) 243 { 244 if (ppc_md.pcibios_default_alignment) 245 return ppc_md.pcibios_default_alignment(); 246 247 return 0; 248 } 249 250 #ifdef CONFIG_PCI_IOV 251 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 252 { 253 if (ppc_md.pcibios_iov_resource_alignment) 254 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 255 256 return pci_iov_resource_size(pdev, resno); 257 } 258 259 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 260 { 261 if (ppc_md.pcibios_sriov_enable) 262 return ppc_md.pcibios_sriov_enable(pdev, num_vfs); 263 264 return 0; 265 } 266 267 int pcibios_sriov_disable(struct pci_dev *pdev) 268 { 269 if (ppc_md.pcibios_sriov_disable) 270 return ppc_md.pcibios_sriov_disable(pdev); 271 272 return 0; 273 } 274 275 #endif /* CONFIG_PCI_IOV */ 276 277 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 278 { 279 #ifdef CONFIG_PPC64 280 return hose->pci_io_size; 281 #else 282 return resource_size(&hose->io_resource); 283 #endif 284 } 285 286 int pcibios_vaddr_is_ioport(void __iomem *address) 287 { 288 int ret = 0; 289 struct pci_controller *hose; 290 resource_size_t size; 291 292 spin_lock(&hose_spinlock); 293 list_for_each_entry(hose, &hose_list, list_node) { 294 size = pcibios_io_size(hose); 295 if (address >= hose->io_base_virt && 296 address < (hose->io_base_virt + size)) { 297 ret = 1; 298 break; 299 } 300 } 301 spin_unlock(&hose_spinlock); 302 return ret; 303 } 304 305 unsigned long pci_address_to_pio(phys_addr_t address) 306 { 307 struct pci_controller *hose; 308 resource_size_t size; 309 unsigned long ret = ~0; 310 311 spin_lock(&hose_spinlock); 312 list_for_each_entry(hose, &hose_list, list_node) { 313 size = pcibios_io_size(hose); 314 if (address >= hose->io_base_phys && 315 address < (hose->io_base_phys + size)) { 316 unsigned long base = 317 (unsigned long)hose->io_base_virt - _IO_BASE; 318 ret = base + (address - hose->io_base_phys); 319 break; 320 } 321 } 322 spin_unlock(&hose_spinlock); 323 324 return ret; 325 } 326 EXPORT_SYMBOL_GPL(pci_address_to_pio); 327 328 /* 329 * Return the domain number for this bus. 330 */ 331 int pci_domain_nr(struct pci_bus *bus) 332 { 333 struct pci_controller *hose = pci_bus_to_host(bus); 334 335 return hose->global_number; 336 } 337 EXPORT_SYMBOL(pci_domain_nr); 338 339 /* This routine is meant to be used early during boot, when the 340 * PCI bus numbers have not yet been assigned, and you need to 341 * issue PCI config cycles to an OF device. 342 * It could also be used to "fix" RTAS config cycles if you want 343 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 344 * config cycles. 345 */ 346 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 347 { 348 while(node) { 349 struct pci_controller *hose, *tmp; 350 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 351 if (hose->dn == node) 352 return hose; 353 node = node->parent; 354 } 355 return NULL; 356 } 357 358 struct pci_controller *pci_find_controller_for_domain(int domain_nr) 359 { 360 struct pci_controller *hose; 361 362 list_for_each_entry(hose, &hose_list, list_node) 363 if (hose->global_number == domain_nr) 364 return hose; 365 366 return NULL; 367 } 368 369 struct pci_intx_virq { 370 int virq; 371 struct kref kref; 372 struct list_head list_node; 373 }; 374 375 static LIST_HEAD(intx_list); 376 static DEFINE_MUTEX(intx_mutex); 377 378 static void ppc_pci_intx_release(struct kref *kref) 379 { 380 struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref); 381 382 list_del(&vi->list_node); 383 irq_dispose_mapping(vi->virq); 384 kfree(vi); 385 } 386 387 static int ppc_pci_unmap_irq_line(struct notifier_block *nb, 388 unsigned long action, void *data) 389 { 390 struct pci_dev *pdev = to_pci_dev(data); 391 392 if (action == BUS_NOTIFY_DEL_DEVICE) { 393 struct pci_intx_virq *vi; 394 395 mutex_lock(&intx_mutex); 396 list_for_each_entry(vi, &intx_list, list_node) { 397 if (vi->virq == pdev->irq) { 398 kref_put(&vi->kref, ppc_pci_intx_release); 399 break; 400 } 401 } 402 mutex_unlock(&intx_mutex); 403 } 404 405 return NOTIFY_DONE; 406 } 407 408 static struct notifier_block ppc_pci_unmap_irq_notifier = { 409 .notifier_call = ppc_pci_unmap_irq_line, 410 }; 411 412 static int ppc_pci_register_irq_notifier(void) 413 { 414 return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier); 415 } 416 arch_initcall(ppc_pci_register_irq_notifier); 417 418 /* 419 * Reads the interrupt pin to determine if interrupt is use by card. 420 * If the interrupt is used, then gets the interrupt line from the 421 * openfirmware and sets it in the pci_dev and pci_config line. 422 */ 423 static int pci_read_irq_line(struct pci_dev *pci_dev) 424 { 425 int virq; 426 struct pci_intx_virq *vi, *vitmp; 427 428 /* Preallocate vi as rewind is complex if this fails after mapping */ 429 vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL); 430 if (!vi) 431 return -1; 432 433 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 434 435 /* Try to get a mapping from the device-tree */ 436 virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); 437 if (virq <= 0) { 438 u8 line, pin; 439 440 /* If that fails, lets fallback to what is in the config 441 * space and map that through the default controller. We 442 * also set the type to level low since that's what PCI 443 * interrupts are. If your platform does differently, then 444 * either provide a proper interrupt tree or don't use this 445 * function. 446 */ 447 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 448 goto error_exit; 449 if (pin == 0) 450 goto error_exit; 451 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 452 line == 0xff || line == 0) { 453 goto error_exit; 454 } 455 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 456 line, pin); 457 458 virq = irq_create_mapping(NULL, line); 459 if (virq) 460 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 461 } 462 463 if (!virq) { 464 pr_debug(" Failed to map !\n"); 465 goto error_exit; 466 } 467 468 pr_debug(" Mapped to linux irq %d\n", virq); 469 470 pci_dev->irq = virq; 471 472 mutex_lock(&intx_mutex); 473 list_for_each_entry(vitmp, &intx_list, list_node) { 474 if (vitmp->virq == virq) { 475 kref_get(&vitmp->kref); 476 kfree(vi); 477 vi = NULL; 478 break; 479 } 480 } 481 if (vi) { 482 vi->virq = virq; 483 kref_init(&vi->kref); 484 list_add_tail(&vi->list_node, &intx_list); 485 } 486 mutex_unlock(&intx_mutex); 487 488 return 0; 489 error_exit: 490 kfree(vi); 491 return -1; 492 } 493 494 /* 495 * Platform support for /proc/bus/pci/X/Y mmap()s. 496 * -- paulus. 497 */ 498 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) 499 { 500 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 501 resource_size_t ioaddr = pci_resource_start(pdev, bar); 502 503 if (!hose) 504 return -EINVAL; 505 506 /* Convert to an offset within this PCI controller */ 507 ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; 508 509 vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; 510 return 0; 511 } 512 513 /* 514 * This one is used by /dev/mem and fbdev who have no clue about the 515 * PCI device, it tries to find the PCI device first and calls the 516 * above routine 517 */ 518 pgprot_t pci_phys_mem_access_prot(struct file *file, 519 unsigned long pfn, 520 unsigned long size, 521 pgprot_t prot) 522 { 523 struct pci_dev *pdev = NULL; 524 struct resource *found = NULL; 525 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 526 int i; 527 528 if (page_is_ram(pfn)) 529 return prot; 530 531 prot = pgprot_noncached(prot); 532 for_each_pci_dev(pdev) { 533 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 534 struct resource *rp = &pdev->resource[i]; 535 int flags = rp->flags; 536 537 /* Active and same type? */ 538 if ((flags & IORESOURCE_MEM) == 0) 539 continue; 540 /* In the range of this resource? */ 541 if (offset < (rp->start & PAGE_MASK) || 542 offset > rp->end) 543 continue; 544 found = rp; 545 break; 546 } 547 if (found) 548 break; 549 } 550 if (found) { 551 if (found->flags & IORESOURCE_PREFETCH) 552 prot = pgprot_noncached_wc(prot); 553 pci_dev_put(pdev); 554 } 555 556 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 557 (unsigned long long)offset, pgprot_val(prot)); 558 559 return prot; 560 } 561 562 /* This provides legacy IO read access on a bus */ 563 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 564 { 565 unsigned long offset; 566 struct pci_controller *hose = pci_bus_to_host(bus); 567 struct resource *rp = &hose->io_resource; 568 void __iomem *addr; 569 570 /* Check if port can be supported by that bus. We only check 571 * the ranges of the PHB though, not the bus itself as the rules 572 * for forwarding legacy cycles down bridges are not our problem 573 * here. So if the host bridge supports it, we do it. 574 */ 575 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 576 offset += port; 577 578 if (!(rp->flags & IORESOURCE_IO)) 579 return -ENXIO; 580 if (offset < rp->start || (offset + size) > rp->end) 581 return -ENXIO; 582 addr = hose->io_base_virt + port; 583 584 switch(size) { 585 case 1: 586 *((u8 *)val) = in_8(addr); 587 return 1; 588 case 2: 589 if (port & 1) 590 return -EINVAL; 591 *((u16 *)val) = in_le16(addr); 592 return 2; 593 case 4: 594 if (port & 3) 595 return -EINVAL; 596 *((u32 *)val) = in_le32(addr); 597 return 4; 598 } 599 return -EINVAL; 600 } 601 602 /* This provides legacy IO write access on a bus */ 603 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 604 { 605 unsigned long offset; 606 struct pci_controller *hose = pci_bus_to_host(bus); 607 struct resource *rp = &hose->io_resource; 608 void __iomem *addr; 609 610 /* Check if port can be supported by that bus. We only check 611 * the ranges of the PHB though, not the bus itself as the rules 612 * for forwarding legacy cycles down bridges are not our problem 613 * here. So if the host bridge supports it, we do it. 614 */ 615 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 616 offset += port; 617 618 if (!(rp->flags & IORESOURCE_IO)) 619 return -ENXIO; 620 if (offset < rp->start || (offset + size) > rp->end) 621 return -ENXIO; 622 addr = hose->io_base_virt + port; 623 624 /* WARNING: The generic code is idiotic. It gets passed a pointer 625 * to what can be a 1, 2 or 4 byte quantity and always reads that 626 * as a u32, which means that we have to correct the location of 627 * the data read within those 32 bits for size 1 and 2 628 */ 629 switch(size) { 630 case 1: 631 out_8(addr, val >> 24); 632 return 1; 633 case 2: 634 if (port & 1) 635 return -EINVAL; 636 out_le16(addr, val >> 16); 637 return 2; 638 case 4: 639 if (port & 3) 640 return -EINVAL; 641 out_le32(addr, val); 642 return 4; 643 } 644 return -EINVAL; 645 } 646 647 /* This provides legacy IO or memory mmap access on a bus */ 648 int pci_mmap_legacy_page_range(struct pci_bus *bus, 649 struct vm_area_struct *vma, 650 enum pci_mmap_state mmap_state) 651 { 652 struct pci_controller *hose = pci_bus_to_host(bus); 653 resource_size_t offset = 654 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 655 resource_size_t size = vma->vm_end - vma->vm_start; 656 struct resource *rp; 657 658 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 659 pci_domain_nr(bus), bus->number, 660 mmap_state == pci_mmap_mem ? "MEM" : "IO", 661 (unsigned long long)offset, 662 (unsigned long long)(offset + size - 1)); 663 664 if (mmap_state == pci_mmap_mem) { 665 /* Hack alert ! 666 * 667 * Because X is lame and can fail starting if it gets an error trying 668 * to mmap legacy_mem (instead of just moving on without legacy memory 669 * access) we fake it here by giving it anonymous memory, effectively 670 * behaving just like /dev/zero 671 */ 672 if ((offset + size) > hose->isa_mem_size) { 673 printk(KERN_DEBUG 674 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 675 current->comm, current->pid, pci_domain_nr(bus), bus->number); 676 if (vma->vm_flags & VM_SHARED) 677 return shmem_zero_setup(vma); 678 return 0; 679 } 680 offset += hose->isa_mem_phys; 681 } else { 682 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 683 unsigned long roffset = offset + io_offset; 684 rp = &hose->io_resource; 685 if (!(rp->flags & IORESOURCE_IO)) 686 return -ENXIO; 687 if (roffset < rp->start || (roffset + size) > rp->end) 688 return -ENXIO; 689 offset += hose->io_base_phys; 690 } 691 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 692 693 vma->vm_pgoff = offset >> PAGE_SHIFT; 694 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 695 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 696 vma->vm_end - vma->vm_start, 697 vma->vm_page_prot); 698 } 699 700 void pci_resource_to_user(const struct pci_dev *dev, int bar, 701 const struct resource *rsrc, 702 resource_size_t *start, resource_size_t *end) 703 { 704 struct pci_bus_region region; 705 706 if (rsrc->flags & IORESOURCE_IO) { 707 pcibios_resource_to_bus(dev->bus, ®ion, 708 (struct resource *) rsrc); 709 *start = region.start; 710 *end = region.end; 711 return; 712 } 713 714 /* We pass a CPU physical address to userland for MMIO instead of a 715 * BAR value because X is lame and expects to be able to use that 716 * to pass to /dev/mem! 717 * 718 * That means we may have 64-bit values where some apps only expect 719 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 720 */ 721 *start = rsrc->start; 722 *end = rsrc->end; 723 } 724 725 /** 726 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 727 * @hose: newly allocated pci_controller to be setup 728 * @dev: device node of the host bridge 729 * @primary: set if primary bus (32 bits only, soon to be deprecated) 730 * 731 * This function will parse the "ranges" property of a PCI host bridge device 732 * node and setup the resource mapping of a pci controller based on its 733 * content. 734 * 735 * Life would be boring if it wasn't for a few issues that we have to deal 736 * with here: 737 * 738 * - We can only cope with one IO space range and up to 3 Memory space 739 * ranges. However, some machines (thanks Apple !) tend to split their 740 * space into lots of small contiguous ranges. So we have to coalesce. 741 * 742 * - Some busses have IO space not starting at 0, which causes trouble with 743 * the way we do our IO resource renumbering. The code somewhat deals with 744 * it for 64 bits but I would expect problems on 32 bits. 745 * 746 * - Some 32 bits platforms such as 4xx can have physical space larger than 747 * 32 bits so we need to use 64 bits values for the parsing 748 */ 749 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 750 struct device_node *dev, int primary) 751 { 752 int memno = 0; 753 struct resource *res; 754 struct of_pci_range range; 755 struct of_pci_range_parser parser; 756 757 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", 758 dev, primary ? "(primary)" : ""); 759 760 /* Check for ranges property */ 761 if (of_pci_range_parser_init(&parser, dev)) 762 return; 763 764 /* Parse it */ 765 for_each_of_pci_range(&parser, &range) { 766 /* If we failed translation or got a zero-sized region 767 * (some FW try to feed us with non sensical zero sized regions 768 * such as power3 which look like some kind of attempt at exposing 769 * the VGA memory hole) 770 */ 771 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 772 continue; 773 774 /* Act based on address space type */ 775 res = NULL; 776 switch (range.flags & IORESOURCE_TYPE_BITS) { 777 case IORESOURCE_IO: 778 printk(KERN_INFO 779 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 780 range.cpu_addr, range.cpu_addr + range.size - 1, 781 range.pci_addr); 782 783 /* We support only one IO range */ 784 if (hose->pci_io_size) { 785 printk(KERN_INFO 786 " \\--> Skipped (too many) !\n"); 787 continue; 788 } 789 #ifdef CONFIG_PPC32 790 /* On 32 bits, limit I/O space to 16MB */ 791 if (range.size > 0x01000000) 792 range.size = 0x01000000; 793 794 /* 32 bits needs to map IOs here */ 795 hose->io_base_virt = ioremap(range.cpu_addr, 796 range.size); 797 798 /* Expect trouble if pci_addr is not 0 */ 799 if (primary) 800 isa_io_base = 801 (unsigned long)hose->io_base_virt; 802 #endif /* CONFIG_PPC32 */ 803 /* pci_io_size and io_base_phys always represent IO 804 * space starting at 0 so we factor in pci_addr 805 */ 806 hose->pci_io_size = range.pci_addr + range.size; 807 hose->io_base_phys = range.cpu_addr - range.pci_addr; 808 809 /* Build resource */ 810 res = &hose->io_resource; 811 range.cpu_addr = range.pci_addr; 812 break; 813 case IORESOURCE_MEM: 814 printk(KERN_INFO 815 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 816 range.cpu_addr, range.cpu_addr + range.size - 1, 817 range.pci_addr, 818 (range.flags & IORESOURCE_PREFETCH) ? 819 "Prefetch" : ""); 820 821 /* We support only 3 memory ranges */ 822 if (memno >= 3) { 823 printk(KERN_INFO 824 " \\--> Skipped (too many) !\n"); 825 continue; 826 } 827 /* Handles ISA memory hole space here */ 828 if (range.pci_addr == 0) { 829 if (primary || isa_mem_base == 0) 830 isa_mem_base = range.cpu_addr; 831 hose->isa_mem_phys = range.cpu_addr; 832 hose->isa_mem_size = range.size; 833 } 834 835 /* Build resource */ 836 hose->mem_offset[memno] = range.cpu_addr - 837 range.pci_addr; 838 res = &hose->mem_resources[memno++]; 839 break; 840 } 841 if (res != NULL) { 842 res->name = dev->full_name; 843 res->flags = range.flags; 844 res->start = range.cpu_addr; 845 res->end = range.cpu_addr + range.size - 1; 846 res->parent = res->child = res->sibling = NULL; 847 } 848 } 849 } 850 851 /* Decide whether to display the domain number in /proc */ 852 int pci_proc_domain(struct pci_bus *bus) 853 { 854 struct pci_controller *hose = pci_bus_to_host(bus); 855 856 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 857 return 0; 858 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 859 return hose->global_number != 0; 860 return 1; 861 } 862 863 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 864 { 865 if (ppc_md.pcibios_root_bridge_prepare) 866 return ppc_md.pcibios_root_bridge_prepare(bridge); 867 868 return 0; 869 } 870 871 /* This header fixup will do the resource fixup for all devices as they are 872 * probed, but not for bridge ranges 873 */ 874 static void pcibios_fixup_resources(struct pci_dev *dev) 875 { 876 struct pci_controller *hose = pci_bus_to_host(dev->bus); 877 int i; 878 879 if (!hose) { 880 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 881 pci_name(dev)); 882 return; 883 } 884 885 if (dev->is_virtfn) 886 return; 887 888 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 889 struct resource *res = dev->resource + i; 890 struct pci_bus_region reg; 891 if (!res->flags) 892 continue; 893 894 /* If we're going to re-assign everything, we mark all resources 895 * as unset (and 0-base them). In addition, we mark BARs starting 896 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 897 * since in that case, we don't want to re-assign anything 898 */ 899 pcibios_resource_to_bus(dev->bus, ®, res); 900 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 901 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 902 /* Only print message if not re-assigning */ 903 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 904 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 905 pci_name(dev), i, res); 906 res->end -= res->start; 907 res->start = 0; 908 res->flags |= IORESOURCE_UNSET; 909 continue; 910 } 911 912 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 913 } 914 915 /* Call machine specific resource fixup */ 916 if (ppc_md.pcibios_fixup_resources) 917 ppc_md.pcibios_fixup_resources(dev); 918 } 919 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 920 921 /* This function tries to figure out if a bridge resource has been initialized 922 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 923 * things go more smoothly when it gets it right. It should covers cases such 924 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 925 */ 926 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 927 struct resource *res) 928 { 929 struct pci_controller *hose = pci_bus_to_host(bus); 930 struct pci_dev *dev = bus->self; 931 resource_size_t offset; 932 struct pci_bus_region region; 933 u16 command; 934 int i; 935 936 /* We don't do anything if PCI_PROBE_ONLY is set */ 937 if (pci_has_flag(PCI_PROBE_ONLY)) 938 return 0; 939 940 /* Job is a bit different between memory and IO */ 941 if (res->flags & IORESOURCE_MEM) { 942 pcibios_resource_to_bus(dev->bus, ®ion, res); 943 944 /* If the BAR is non-0 then it's probably been initialized */ 945 if (region.start != 0) 946 return 0; 947 948 /* The BAR is 0, let's check if memory decoding is enabled on 949 * the bridge. If not, we consider it unassigned 950 */ 951 pci_read_config_word(dev, PCI_COMMAND, &command); 952 if ((command & PCI_COMMAND_MEMORY) == 0) 953 return 1; 954 955 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 956 * resources covers that starting address (0 then it's good enough for 957 * us for memory space) 958 */ 959 for (i = 0; i < 3; i++) { 960 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 961 hose->mem_resources[i].start == hose->mem_offset[i]) 962 return 0; 963 } 964 965 /* Well, it starts at 0 and we know it will collide so we may as 966 * well consider it as unassigned. That covers the Apple case. 967 */ 968 return 1; 969 } else { 970 /* If the BAR is non-0, then we consider it assigned */ 971 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 972 if (((res->start - offset) & 0xfffffffful) != 0) 973 return 0; 974 975 /* Here, we are a bit different than memory as typically IO space 976 * starting at low addresses -is- valid. What we do instead if that 977 * we consider as unassigned anything that doesn't have IO enabled 978 * in the PCI command register, and that's it. 979 */ 980 pci_read_config_word(dev, PCI_COMMAND, &command); 981 if (command & PCI_COMMAND_IO) 982 return 0; 983 984 /* It's starting at 0 and IO is disabled in the bridge, consider 985 * it unassigned 986 */ 987 return 1; 988 } 989 } 990 991 /* Fixup resources of a PCI<->PCI bridge */ 992 static void pcibios_fixup_bridge(struct pci_bus *bus) 993 { 994 struct resource *res; 995 int i; 996 997 struct pci_dev *dev = bus->self; 998 999 pci_bus_for_each_resource(bus, res, i) { 1000 if (!res || !res->flags) 1001 continue; 1002 if (i >= 3 && bus->self->transparent) 1003 continue; 1004 1005 /* If we're going to reassign everything, we can 1006 * shrink the P2P resource to have size as being 1007 * of 0 in order to save space. 1008 */ 1009 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1010 res->flags |= IORESOURCE_UNSET; 1011 res->start = 0; 1012 res->end = -1; 1013 continue; 1014 } 1015 1016 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 1017 1018 /* Try to detect uninitialized P2P bridge resources, 1019 * and clear them out so they get re-assigned later 1020 */ 1021 if (pcibios_uninitialized_bridge_resource(bus, res)) { 1022 res->flags = 0; 1023 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 1024 } 1025 } 1026 } 1027 1028 void pcibios_setup_bus_self(struct pci_bus *bus) 1029 { 1030 struct pci_controller *phb; 1031 1032 /* Fix up the bus resources for P2P bridges */ 1033 if (bus->self != NULL) 1034 pcibios_fixup_bridge(bus); 1035 1036 /* Platform specific bus fixups. This is currently only used 1037 * by fsl_pci and I'm hoping to get rid of it at some point 1038 */ 1039 if (ppc_md.pcibios_fixup_bus) 1040 ppc_md.pcibios_fixup_bus(bus); 1041 1042 /* Setup bus DMA mappings */ 1043 phb = pci_bus_to_host(bus); 1044 if (phb->controller_ops.dma_bus_setup) 1045 phb->controller_ops.dma_bus_setup(bus); 1046 } 1047 1048 void pcibios_bus_add_device(struct pci_dev *dev) 1049 { 1050 struct pci_controller *phb; 1051 /* Fixup NUMA node as it may not be setup yet by the generic 1052 * code and is needed by the DMA init 1053 */ 1054 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1055 1056 /* Hook up default DMA ops */ 1057 set_dma_ops(&dev->dev, pci_dma_ops); 1058 dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET; 1059 1060 /* Additional platform DMA/iommu setup */ 1061 phb = pci_bus_to_host(dev->bus); 1062 if (phb->controller_ops.dma_dev_setup) 1063 phb->controller_ops.dma_dev_setup(dev); 1064 1065 /* Read default IRQs and fixup if necessary */ 1066 pci_read_irq_line(dev); 1067 if (ppc_md.pci_irq_fixup) 1068 ppc_md.pci_irq_fixup(dev); 1069 1070 if (ppc_md.pcibios_bus_add_device) 1071 ppc_md.pcibios_bus_add_device(dev); 1072 } 1073 1074 int pcibios_device_add(struct pci_dev *dev) 1075 { 1076 struct irq_domain *d; 1077 1078 #ifdef CONFIG_PCI_IOV 1079 if (ppc_md.pcibios_fixup_sriov) 1080 ppc_md.pcibios_fixup_sriov(dev); 1081 #endif /* CONFIG_PCI_IOV */ 1082 1083 d = dev_get_msi_domain(&dev->bus->dev); 1084 if (d) 1085 dev_set_msi_domain(&dev->dev, d); 1086 return 0; 1087 } 1088 1089 void pcibios_set_master(struct pci_dev *dev) 1090 { 1091 /* No special bus mastering setup handling */ 1092 } 1093 1094 void pcibios_fixup_bus(struct pci_bus *bus) 1095 { 1096 /* When called from the generic PCI probe, read PCI<->PCI bridge 1097 * bases. This is -not- called when generating the PCI tree from 1098 * the OF device-tree. 1099 */ 1100 pci_read_bridge_bases(bus); 1101 1102 /* Now fixup the bus */ 1103 pcibios_setup_bus_self(bus); 1104 } 1105 EXPORT_SYMBOL(pcibios_fixup_bus); 1106 1107 static int skip_isa_ioresource_align(struct pci_dev *dev) 1108 { 1109 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1110 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1111 return 1; 1112 return 0; 1113 } 1114 1115 /* 1116 * We need to avoid collisions with `mirrored' VGA ports 1117 * and other strange ISA hardware, so we always want the 1118 * addresses to be allocated in the 0x000-0x0ff region 1119 * modulo 0x400. 1120 * 1121 * Why? Because some silly external IO cards only decode 1122 * the low 10 bits of the IO address. The 0x00-0xff region 1123 * is reserved for motherboard devices that decode all 16 1124 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1125 * but we want to try to avoid allocating at 0x2900-0x2bff 1126 * which might have be mirrored at 0x0100-0x03ff.. 1127 */ 1128 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1129 resource_size_t size, resource_size_t align) 1130 { 1131 struct pci_dev *dev = data; 1132 resource_size_t start = res->start; 1133 1134 if (res->flags & IORESOURCE_IO) { 1135 if (skip_isa_ioresource_align(dev)) 1136 return start; 1137 if (start & 0x300) 1138 start = (start + 0x3ff) & ~0x3ff; 1139 } 1140 1141 return start; 1142 } 1143 EXPORT_SYMBOL(pcibios_align_resource); 1144 1145 /* 1146 * Reparent resource children of pr that conflict with res 1147 * under res, and make res replace those children. 1148 */ 1149 static int reparent_resources(struct resource *parent, 1150 struct resource *res) 1151 { 1152 struct resource *p, **pp; 1153 struct resource **firstpp = NULL; 1154 1155 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1156 if (p->end < res->start) 1157 continue; 1158 if (res->end < p->start) 1159 break; 1160 if (p->start < res->start || p->end > res->end) 1161 return -1; /* not completely contained */ 1162 if (firstpp == NULL) 1163 firstpp = pp; 1164 } 1165 if (firstpp == NULL) 1166 return -1; /* didn't find any conflicting entries? */ 1167 res->parent = parent; 1168 res->child = *firstpp; 1169 res->sibling = *pp; 1170 *firstpp = res; 1171 *pp = NULL; 1172 for (p = res->child; p != NULL; p = p->sibling) { 1173 p->parent = res; 1174 pr_debug("PCI: Reparented %s %pR under %s\n", 1175 p->name, p, res->name); 1176 } 1177 return 0; 1178 } 1179 1180 /* 1181 * Handle resources of PCI devices. If the world were perfect, we could 1182 * just allocate all the resource regions and do nothing more. It isn't. 1183 * On the other hand, we cannot just re-allocate all devices, as it would 1184 * require us to know lots of host bridge internals. So we attempt to 1185 * keep as much of the original configuration as possible, but tweak it 1186 * when it's found to be wrong. 1187 * 1188 * Known BIOS problems we have to work around: 1189 * - I/O or memory regions not configured 1190 * - regions configured, but not enabled in the command register 1191 * - bogus I/O addresses above 64K used 1192 * - expansion ROMs left enabled (this may sound harmless, but given 1193 * the fact the PCI specs explicitly allow address decoders to be 1194 * shared between expansion ROMs and other resource regions, it's 1195 * at least dangerous) 1196 * 1197 * Our solution: 1198 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1199 * This gives us fixed barriers on where we can allocate. 1200 * (2) Allocate resources for all enabled devices. If there is 1201 * a collision, just mark the resource as unallocated. Also 1202 * disable expansion ROMs during this step. 1203 * (3) Try to allocate resources for disabled devices. If the 1204 * resources were assigned correctly, everything goes well, 1205 * if they weren't, they won't disturb allocation of other 1206 * resources. 1207 * (4) Assign new addresses to resources which were either 1208 * not configured at all or misconfigured. If explicitly 1209 * requested by the user, configure expansion ROM address 1210 * as well. 1211 */ 1212 1213 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1214 { 1215 struct pci_bus *b; 1216 int i; 1217 struct resource *res, *pr; 1218 1219 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1220 pci_domain_nr(bus), bus->number); 1221 1222 pci_bus_for_each_resource(bus, res, i) { 1223 if (!res || !res->flags || res->start > res->end || res->parent) 1224 continue; 1225 1226 /* If the resource was left unset at this point, we clear it */ 1227 if (res->flags & IORESOURCE_UNSET) 1228 goto clear_resource; 1229 1230 if (bus->parent == NULL) 1231 pr = (res->flags & IORESOURCE_IO) ? 1232 &ioport_resource : &iomem_resource; 1233 else { 1234 pr = pci_find_parent_resource(bus->self, res); 1235 if (pr == res) { 1236 /* this happens when the generic PCI 1237 * code (wrongly) decides that this 1238 * bridge is transparent -- paulus 1239 */ 1240 continue; 1241 } 1242 } 1243 1244 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1245 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1246 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1247 1248 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1249 struct pci_dev *dev = bus->self; 1250 1251 if (request_resource(pr, res) == 0) 1252 continue; 1253 /* 1254 * Must be a conflict with an existing entry. 1255 * Move that entry (or entries) under the 1256 * bridge resource and try again. 1257 */ 1258 if (reparent_resources(pr, res) == 0) 1259 continue; 1260 1261 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1262 pci_claim_bridge_resource(dev, 1263 i + PCI_BRIDGE_RESOURCES) == 0) 1264 continue; 1265 } 1266 pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", 1267 i, bus->number); 1268 clear_resource: 1269 /* The resource might be figured out when doing 1270 * reassignment based on the resources required 1271 * by the downstream PCI devices. Here we set 1272 * the size of the resource to be 0 in order to 1273 * save more space. 1274 */ 1275 res->start = 0; 1276 res->end = -1; 1277 res->flags = 0; 1278 } 1279 1280 list_for_each_entry(b, &bus->children, node) 1281 pcibios_allocate_bus_resources(b); 1282 } 1283 1284 static inline void alloc_resource(struct pci_dev *dev, int idx) 1285 { 1286 struct resource *pr, *r = &dev->resource[idx]; 1287 1288 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1289 pci_name(dev), idx, r); 1290 1291 pr = pci_find_parent_resource(dev, r); 1292 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1293 request_resource(pr, r) < 0) { 1294 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1295 " of device %s, will remap\n", idx, pci_name(dev)); 1296 if (pr) 1297 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1298 /* We'll assign a new address later */ 1299 r->flags |= IORESOURCE_UNSET; 1300 r->end -= r->start; 1301 r->start = 0; 1302 } 1303 } 1304 1305 static void __init pcibios_allocate_resources(int pass) 1306 { 1307 struct pci_dev *dev = NULL; 1308 int idx, disabled; 1309 u16 command; 1310 struct resource *r; 1311 1312 for_each_pci_dev(dev) { 1313 pci_read_config_word(dev, PCI_COMMAND, &command); 1314 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1315 r = &dev->resource[idx]; 1316 if (r->parent) /* Already allocated */ 1317 continue; 1318 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1319 continue; /* Not assigned at all */ 1320 /* We only allocate ROMs on pass 1 just in case they 1321 * have been screwed up by firmware 1322 */ 1323 if (idx == PCI_ROM_RESOURCE ) 1324 disabled = 1; 1325 if (r->flags & IORESOURCE_IO) 1326 disabled = !(command & PCI_COMMAND_IO); 1327 else 1328 disabled = !(command & PCI_COMMAND_MEMORY); 1329 if (pass == disabled) 1330 alloc_resource(dev, idx); 1331 } 1332 if (pass) 1333 continue; 1334 r = &dev->resource[PCI_ROM_RESOURCE]; 1335 if (r->flags) { 1336 /* Turn the ROM off, leave the resource region, 1337 * but keep it unregistered. 1338 */ 1339 u32 reg; 1340 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1341 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1342 pr_debug("PCI: Switching off ROM of %s\n", 1343 pci_name(dev)); 1344 r->flags &= ~IORESOURCE_ROM_ENABLE; 1345 pci_write_config_dword(dev, dev->rom_base_reg, 1346 reg & ~PCI_ROM_ADDRESS_ENABLE); 1347 } 1348 } 1349 } 1350 } 1351 1352 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1353 { 1354 struct pci_controller *hose = pci_bus_to_host(bus); 1355 resource_size_t offset; 1356 struct resource *res, *pres; 1357 int i; 1358 1359 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1360 1361 /* Check for IO */ 1362 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1363 goto no_io; 1364 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1365 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1366 BUG_ON(res == NULL); 1367 res->name = "Legacy IO"; 1368 res->flags = IORESOURCE_IO; 1369 res->start = offset; 1370 res->end = (offset + 0xfff) & 0xfffffffful; 1371 pr_debug("Candidate legacy IO: %pR\n", res); 1372 if (request_resource(&hose->io_resource, res)) { 1373 printk(KERN_DEBUG 1374 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1375 pci_domain_nr(bus), bus->number, res); 1376 kfree(res); 1377 } 1378 1379 no_io: 1380 /* Check for memory */ 1381 for (i = 0; i < 3; i++) { 1382 pres = &hose->mem_resources[i]; 1383 offset = hose->mem_offset[i]; 1384 if (!(pres->flags & IORESOURCE_MEM)) 1385 continue; 1386 pr_debug("hose mem res: %pR\n", pres); 1387 if ((pres->start - offset) <= 0xa0000 && 1388 (pres->end - offset) >= 0xbffff) 1389 break; 1390 } 1391 if (i >= 3) 1392 return; 1393 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1394 BUG_ON(res == NULL); 1395 res->name = "Legacy VGA memory"; 1396 res->flags = IORESOURCE_MEM; 1397 res->start = 0xa0000 + offset; 1398 res->end = 0xbffff + offset; 1399 pr_debug("Candidate VGA memory: %pR\n", res); 1400 if (request_resource(pres, res)) { 1401 printk(KERN_DEBUG 1402 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1403 pci_domain_nr(bus), bus->number, res); 1404 kfree(res); 1405 } 1406 } 1407 1408 void __init pcibios_resource_survey(void) 1409 { 1410 struct pci_bus *b; 1411 1412 /* Allocate and assign resources */ 1413 list_for_each_entry(b, &pci_root_buses, node) 1414 pcibios_allocate_bus_resources(b); 1415 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1416 pcibios_allocate_resources(0); 1417 pcibios_allocate_resources(1); 1418 } 1419 1420 /* Before we start assigning unassigned resource, we try to reserve 1421 * the low IO area and the VGA memory area if they intersect the 1422 * bus available resources to avoid allocating things on top of them 1423 */ 1424 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1425 list_for_each_entry(b, &pci_root_buses, node) 1426 pcibios_reserve_legacy_regions(b); 1427 } 1428 1429 /* Now, if the platform didn't decide to blindly trust the firmware, 1430 * we proceed to assigning things that were left unassigned 1431 */ 1432 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1433 pr_debug("PCI: Assigning unassigned resources...\n"); 1434 pci_assign_unassigned_resources(); 1435 } 1436 } 1437 1438 /* This is used by the PCI hotplug driver to allocate resource 1439 * of newly plugged busses. We can try to consolidate with the 1440 * rest of the code later, for now, keep it as-is as our main 1441 * resource allocation function doesn't deal with sub-trees yet. 1442 */ 1443 void pcibios_claim_one_bus(struct pci_bus *bus) 1444 { 1445 struct pci_dev *dev; 1446 struct pci_bus *child_bus; 1447 1448 list_for_each_entry(dev, &bus->devices, bus_list) { 1449 int i; 1450 1451 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1452 struct resource *r = &dev->resource[i]; 1453 1454 if (r->parent || !r->start || !r->flags) 1455 continue; 1456 1457 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1458 pci_name(dev), i, r); 1459 1460 if (pci_claim_resource(dev, i) == 0) 1461 continue; 1462 1463 pci_claim_bridge_resource(dev, i); 1464 } 1465 } 1466 1467 list_for_each_entry(child_bus, &bus->children, node) 1468 pcibios_claim_one_bus(child_bus); 1469 } 1470 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1471 1472 1473 /* pcibios_finish_adding_to_bus 1474 * 1475 * This is to be called by the hotplug code after devices have been 1476 * added to a bus, this include calling it for a PHB that is just 1477 * being added 1478 */ 1479 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1480 { 1481 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1482 pci_domain_nr(bus), bus->number); 1483 1484 /* Allocate bus and devices resources */ 1485 pcibios_allocate_bus_resources(bus); 1486 pcibios_claim_one_bus(bus); 1487 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1488 if (bus->self) 1489 pci_assign_unassigned_bridge_resources(bus->self); 1490 else 1491 pci_assign_unassigned_bus_resources(bus); 1492 } 1493 1494 /* Add new devices to global lists. Register in proc, sysfs. */ 1495 pci_bus_add_devices(bus); 1496 } 1497 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1498 1499 int pcibios_enable_device(struct pci_dev *dev, int mask) 1500 { 1501 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1502 1503 if (phb->controller_ops.enable_device_hook) 1504 if (!phb->controller_ops.enable_device_hook(dev)) 1505 return -EINVAL; 1506 1507 return pci_enable_resources(dev, mask); 1508 } 1509 1510 void pcibios_disable_device(struct pci_dev *dev) 1511 { 1512 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1513 1514 if (phb->controller_ops.disable_device) 1515 phb->controller_ops.disable_device(dev); 1516 } 1517 1518 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1519 { 1520 return (unsigned long) hose->io_base_virt - _IO_BASE; 1521 } 1522 1523 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1524 struct list_head *resources) 1525 { 1526 struct resource *res; 1527 resource_size_t offset; 1528 int i; 1529 1530 /* Hookup PHB IO resource */ 1531 res = &hose->io_resource; 1532 1533 if (!res->flags) { 1534 pr_debug("PCI: I/O resource not set for host" 1535 " bridge %pOF (domain %d)\n", 1536 hose->dn, hose->global_number); 1537 } else { 1538 offset = pcibios_io_space_offset(hose); 1539 1540 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1541 res, (unsigned long long)offset); 1542 pci_add_resource_offset(resources, res, offset); 1543 } 1544 1545 /* Hookup PHB Memory resources */ 1546 for (i = 0; i < 3; ++i) { 1547 res = &hose->mem_resources[i]; 1548 if (!res->flags) 1549 continue; 1550 1551 offset = hose->mem_offset[i]; 1552 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1553 res, (unsigned long long)offset); 1554 1555 pci_add_resource_offset(resources, res, offset); 1556 } 1557 } 1558 1559 /* 1560 * Null PCI config access functions, for the case when we can't 1561 * find a hose. 1562 */ 1563 #define NULL_PCI_OP(rw, size, type) \ 1564 static int \ 1565 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1566 { \ 1567 return PCIBIOS_DEVICE_NOT_FOUND; \ 1568 } 1569 1570 static int 1571 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1572 int len, u32 *val) 1573 { 1574 return PCIBIOS_DEVICE_NOT_FOUND; 1575 } 1576 1577 static int 1578 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1579 int len, u32 val) 1580 { 1581 return PCIBIOS_DEVICE_NOT_FOUND; 1582 } 1583 1584 static struct pci_ops null_pci_ops = 1585 { 1586 .read = null_read_config, 1587 .write = null_write_config, 1588 }; 1589 1590 /* 1591 * These functions are used early on before PCI scanning is done 1592 * and all of the pci_dev and pci_bus structures have been created. 1593 */ 1594 static struct pci_bus * 1595 fake_pci_bus(struct pci_controller *hose, int busnr) 1596 { 1597 static struct pci_bus bus; 1598 1599 if (hose == NULL) { 1600 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1601 } 1602 bus.number = busnr; 1603 bus.sysdata = hose; 1604 bus.ops = hose? hose->ops: &null_pci_ops; 1605 return &bus; 1606 } 1607 1608 #define EARLY_PCI_OP(rw, size, type) \ 1609 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1610 int devfn, int offset, type value) \ 1611 { \ 1612 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1613 devfn, offset, value); \ 1614 } 1615 1616 EARLY_PCI_OP(read, byte, u8 *) 1617 EARLY_PCI_OP(read, word, u16 *) 1618 EARLY_PCI_OP(read, dword, u32 *) 1619 EARLY_PCI_OP(write, byte, u8) 1620 EARLY_PCI_OP(write, word, u16) 1621 EARLY_PCI_OP(write, dword, u32) 1622 1623 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1624 int cap) 1625 { 1626 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1627 } 1628 1629 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1630 { 1631 struct pci_controller *hose = bus->sysdata; 1632 1633 return of_node_get(hose->dn); 1634 } 1635 1636 /** 1637 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1638 * @hose: Pointer to the PCI host controller instance structure 1639 */ 1640 void pcibios_scan_phb(struct pci_controller *hose) 1641 { 1642 LIST_HEAD(resources); 1643 struct pci_bus *bus; 1644 struct device_node *node = hose->dn; 1645 int mode; 1646 1647 pr_debug("PCI: Scanning PHB %pOF\n", node); 1648 1649 /* Get some IO space for the new PHB */ 1650 pcibios_setup_phb_io_space(hose); 1651 1652 /* Wire up PHB bus resources */ 1653 pcibios_setup_phb_resources(hose, &resources); 1654 1655 hose->busn.start = hose->first_busno; 1656 hose->busn.end = hose->last_busno; 1657 hose->busn.flags = IORESOURCE_BUS; 1658 pci_add_resource(&resources, &hose->busn); 1659 1660 /* Create an empty bus for the toplevel */ 1661 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1662 hose->ops, hose, &resources); 1663 if (bus == NULL) { 1664 pr_err("Failed to create bus for PCI domain %04x\n", 1665 hose->global_number); 1666 pci_free_resource_list(&resources); 1667 return; 1668 } 1669 hose->bus = bus; 1670 1671 /* Get probe mode and perform scan */ 1672 mode = PCI_PROBE_NORMAL; 1673 if (node && hose->controller_ops.probe_mode) 1674 mode = hose->controller_ops.probe_mode(bus); 1675 pr_debug(" probe mode: %d\n", mode); 1676 if (mode == PCI_PROBE_DEVTREE) 1677 of_scan_bus(node, bus); 1678 1679 if (mode == PCI_PROBE_NORMAL) { 1680 pci_bus_update_busn_res_end(bus, 255); 1681 hose->last_busno = pci_scan_child_bus(bus); 1682 pci_bus_update_busn_res_end(bus, hose->last_busno); 1683 } 1684 1685 /* Platform gets a chance to do some global fixups before 1686 * we proceed to resource allocation 1687 */ 1688 if (ppc_md.pcibios_fixup_phb) 1689 ppc_md.pcibios_fixup_phb(hose); 1690 1691 /* Configure PCI Express settings */ 1692 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1693 struct pci_bus *child; 1694 list_for_each_entry(child, &bus->children, node) 1695 pcie_bus_configure_settings(child); 1696 } 1697 } 1698 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1699 1700 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1701 { 1702 int i, class = dev->class >> 8; 1703 /* When configured as agent, programming interface = 1 */ 1704 int prog_if = dev->class & 0xf; 1705 1706 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1707 class == PCI_CLASS_BRIDGE_OTHER) && 1708 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1709 (prog_if == 0) && 1710 (dev->bus->parent == NULL)) { 1711 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1712 dev->resource[i].start = 0; 1713 dev->resource[i].end = 0; 1714 dev->resource[i].flags = 0; 1715 } 1716 } 1717 } 1718 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1719 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1720 1721 1722 static int __init discover_phbs(void) 1723 { 1724 if (ppc_md.discover_phbs) 1725 ppc_md.discover_phbs(); 1726 1727 return 0; 1728 } 1729 core_initcall(discover_phbs); 1730