1 /* 2 * c 2001 PPC 64 Team, IBM Corp 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * /dev/nvram driver for PPC64 10 * 11 * This perhaps should live in drivers/char 12 * 13 * TODO: Split the /dev/nvram part (that one can use 14 * drivers/char/generic_nvram.c) from the arch & partition 15 * parsing code. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/errno.h> 20 #include <linux/fs.h> 21 #include <linux/miscdevice.h> 22 #include <linux/fcntl.h> 23 #include <linux/nvram.h> 24 #include <linux/init.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/kmsg_dump.h> 28 #include <linux/pagemap.h> 29 #include <linux/pstore.h> 30 #include <linux/zlib.h> 31 #include <linux/uaccess.h> 32 #include <asm/nvram.h> 33 #include <asm/rtas.h> 34 #include <asm/prom.h> 35 #include <asm/machdep.h> 36 37 #undef DEBUG_NVRAM 38 39 #define NVRAM_HEADER_LEN sizeof(struct nvram_header) 40 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN 41 42 /* If change this size, then change the size of NVNAME_LEN */ 43 struct nvram_header { 44 unsigned char signature; 45 unsigned char checksum; 46 unsigned short length; 47 /* Terminating null required only for names < 12 chars. */ 48 char name[12]; 49 }; 50 51 struct nvram_partition { 52 struct list_head partition; 53 struct nvram_header header; 54 unsigned int index; 55 }; 56 57 static LIST_HEAD(nvram_partitions); 58 59 #ifdef CONFIG_PPC_PSERIES 60 struct nvram_os_partition rtas_log_partition = { 61 .name = "ibm,rtas-log", 62 .req_size = 2079, 63 .min_size = 1055, 64 .index = -1, 65 .os_partition = true 66 }; 67 #endif 68 69 struct nvram_os_partition oops_log_partition = { 70 .name = "lnx,oops-log", 71 .req_size = 4000, 72 .min_size = 2000, 73 .index = -1, 74 .os_partition = true 75 }; 76 77 static const char *nvram_os_partitions[] = { 78 #ifdef CONFIG_PPC_PSERIES 79 "ibm,rtas-log", 80 #endif 81 "lnx,oops-log", 82 NULL 83 }; 84 85 static void oops_to_nvram(struct kmsg_dumper *dumper, 86 enum kmsg_dump_reason reason); 87 88 static struct kmsg_dumper nvram_kmsg_dumper = { 89 .dump = oops_to_nvram 90 }; 91 92 /* 93 * For capturing and compressing an oops or panic report... 94 95 * big_oops_buf[] holds the uncompressed text we're capturing. 96 * 97 * oops_buf[] holds the compressed text, preceded by a oops header. 98 * oops header has u16 holding the version of oops header (to differentiate 99 * between old and new format header) followed by u16 holding the length of 100 * the compressed* text (*Or uncompressed, if compression fails.) and u64 101 * holding the timestamp. oops_buf[] gets written to NVRAM. 102 * 103 * oops_log_info points to the header. oops_data points to the compressed text. 104 * 105 * +- oops_buf 106 * | +- oops_data 107 * v v 108 * +-----------+-----------+-----------+------------------------+ 109 * | version | length | timestamp | text | 110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) | 111 * +-----------+-----------+-----------+------------------------+ 112 * ^ 113 * +- oops_log_info 114 * 115 * We preallocate these buffers during init to avoid kmalloc during oops/panic. 116 */ 117 static size_t big_oops_buf_sz; 118 static char *big_oops_buf, *oops_buf; 119 static char *oops_data; 120 static size_t oops_data_sz; 121 122 /* Compression parameters */ 123 #define COMPR_LEVEL 6 124 #define WINDOW_BITS 12 125 #define MEM_LEVEL 4 126 static struct z_stream_s stream; 127 128 #ifdef CONFIG_PSTORE 129 #ifdef CONFIG_PPC_POWERNV 130 static struct nvram_os_partition skiboot_partition = { 131 .name = "ibm,skiboot", 132 .index = -1, 133 .os_partition = false 134 }; 135 #endif 136 137 #ifdef CONFIG_PPC_PSERIES 138 static struct nvram_os_partition of_config_partition = { 139 .name = "of-config", 140 .index = -1, 141 .os_partition = false 142 }; 143 #endif 144 145 static struct nvram_os_partition common_partition = { 146 .name = "common", 147 .index = -1, 148 .os_partition = false 149 }; 150 151 static enum pstore_type_id nvram_type_ids[] = { 152 PSTORE_TYPE_DMESG, 153 PSTORE_TYPE_PPC_COMMON, 154 -1, 155 -1, 156 -1 157 }; 158 static int read_type; 159 #endif 160 161 /* nvram_write_os_partition 162 * 163 * We need to buffer the error logs into nvram to ensure that we have 164 * the failure information to decode. If we have a severe error there 165 * is no way to guarantee that the OS or the machine is in a state to 166 * get back to user land and write the error to disk. For example if 167 * the SCSI device driver causes a Machine Check by writing to a bad 168 * IO address, there is no way of guaranteeing that the device driver 169 * is in any state that is would also be able to write the error data 170 * captured to disk, thus we buffer it in NVRAM for analysis on the 171 * next boot. 172 * 173 * In NVRAM the partition containing the error log buffer will looks like: 174 * Header (in bytes): 175 * +-----------+----------+--------+------------+------------------+ 176 * | signature | checksum | length | name | data | 177 * |0 |1 |2 3|4 15|16 length-1| 178 * +-----------+----------+--------+------------+------------------+ 179 * 180 * The 'data' section would look like (in bytes): 181 * +--------------+------------+-----------------------------------+ 182 * | event_logged | sequence # | error log | 183 * |0 3|4 7|8 error_log_size-1| 184 * +--------------+------------+-----------------------------------+ 185 * 186 * event_logged: 0 if event has not been logged to syslog, 1 if it has 187 * sequence #: The unique sequence # for each event. (until it wraps) 188 * error log: The error log from event_scan 189 */ 190 int nvram_write_os_partition(struct nvram_os_partition *part, 191 char *buff, int length, 192 unsigned int err_type, 193 unsigned int error_log_cnt) 194 { 195 int rc; 196 loff_t tmp_index; 197 struct err_log_info info; 198 199 if (part->index == -1) 200 return -ESPIPE; 201 202 if (length > part->size) 203 length = part->size; 204 205 info.error_type = cpu_to_be32(err_type); 206 info.seq_num = cpu_to_be32(error_log_cnt); 207 208 tmp_index = part->index; 209 210 rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index); 211 if (rc <= 0) { 212 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 213 return rc; 214 } 215 216 rc = ppc_md.nvram_write(buff, length, &tmp_index); 217 if (rc <= 0) { 218 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 219 return rc; 220 } 221 222 return 0; 223 } 224 225 /* nvram_read_partition 226 * 227 * Reads nvram partition for at most 'length' 228 */ 229 int nvram_read_partition(struct nvram_os_partition *part, char *buff, 230 int length, unsigned int *err_type, 231 unsigned int *error_log_cnt) 232 { 233 int rc; 234 loff_t tmp_index; 235 struct err_log_info info; 236 237 if (part->index == -1) 238 return -1; 239 240 if (length > part->size) 241 length = part->size; 242 243 tmp_index = part->index; 244 245 if (part->os_partition) { 246 rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index); 247 if (rc <= 0) { 248 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 249 return rc; 250 } 251 } 252 253 rc = ppc_md.nvram_read(buff, length, &tmp_index); 254 if (rc <= 0) { 255 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 256 return rc; 257 } 258 259 if (part->os_partition) { 260 *error_log_cnt = be32_to_cpu(info.seq_num); 261 *err_type = be32_to_cpu(info.error_type); 262 } 263 264 return 0; 265 } 266 267 /* nvram_init_os_partition 268 * 269 * This sets up a partition with an "OS" signature. 270 * 271 * The general strategy is the following: 272 * 1.) If a partition with the indicated name already exists... 273 * - If it's large enough, use it. 274 * - Otherwise, recycle it and keep going. 275 * 2.) Search for a free partition that is large enough. 276 * 3.) If there's not a free partition large enough, recycle any obsolete 277 * OS partitions and try again. 278 * 4.) Will first try getting a chunk that will satisfy the requested size. 279 * 5.) If a chunk of the requested size cannot be allocated, then try finding 280 * a chunk that will satisfy the minum needed. 281 * 282 * Returns 0 on success, else -1. 283 */ 284 int __init nvram_init_os_partition(struct nvram_os_partition *part) 285 { 286 loff_t p; 287 int size; 288 289 /* Look for ours */ 290 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size); 291 292 /* Found one but too small, remove it */ 293 if (p && size < part->min_size) { 294 pr_info("nvram: Found too small %s partition," 295 " removing it...\n", part->name); 296 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL); 297 p = 0; 298 } 299 300 /* Create one if we didn't find */ 301 if (!p) { 302 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 303 part->req_size, part->min_size); 304 if (p == -ENOSPC) { 305 pr_info("nvram: No room to create %s partition, " 306 "deleting any obsolete OS partitions...\n", 307 part->name); 308 nvram_remove_partition(NULL, NVRAM_SIG_OS, 309 nvram_os_partitions); 310 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 311 part->req_size, part->min_size); 312 } 313 } 314 315 if (p <= 0) { 316 pr_err("nvram: Failed to find or create %s" 317 " partition, err %d\n", part->name, (int)p); 318 return -1; 319 } 320 321 part->index = p; 322 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info); 323 324 return 0; 325 } 326 327 /* Derived from logfs_compress() */ 328 static int nvram_compress(const void *in, void *out, size_t inlen, 329 size_t outlen) 330 { 331 int err, ret; 332 333 ret = -EIO; 334 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS, 335 MEM_LEVEL, Z_DEFAULT_STRATEGY); 336 if (err != Z_OK) 337 goto error; 338 339 stream.next_in = in; 340 stream.avail_in = inlen; 341 stream.total_in = 0; 342 stream.next_out = out; 343 stream.avail_out = outlen; 344 stream.total_out = 0; 345 346 err = zlib_deflate(&stream, Z_FINISH); 347 if (err != Z_STREAM_END) 348 goto error; 349 350 err = zlib_deflateEnd(&stream); 351 if (err != Z_OK) 352 goto error; 353 354 if (stream.total_out >= stream.total_in) 355 goto error; 356 357 ret = stream.total_out; 358 error: 359 return ret; 360 } 361 362 /* Compress the text from big_oops_buf into oops_buf. */ 363 static int zip_oops(size_t text_len) 364 { 365 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 366 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len, 367 oops_data_sz); 368 if (zipped_len < 0) { 369 pr_err("nvram: compression failed; returned %d\n", zipped_len); 370 pr_err("nvram: logging uncompressed oops/panic report\n"); 371 return -1; 372 } 373 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 374 oops_hdr->report_length = cpu_to_be16(zipped_len); 375 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 376 return 0; 377 } 378 379 #ifdef CONFIG_PSTORE 380 static int nvram_pstore_open(struct pstore_info *psi) 381 { 382 /* Reset the iterator to start reading partitions again */ 383 read_type = -1; 384 return 0; 385 } 386 387 /** 388 * nvram_pstore_write - pstore write callback for nvram 389 * @record: pstore record to write, with @id to be set 390 * 391 * Called by pstore_dump() when an oops or panic report is logged in the 392 * printk buffer. 393 * Returns 0 on successful write. 394 */ 395 static int nvram_pstore_write(struct pstore_record *record) 396 { 397 int rc; 398 unsigned int err_type = ERR_TYPE_KERNEL_PANIC; 399 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf; 400 401 /* part 1 has the recent messages from printk buffer */ 402 if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG)) 403 return -1; 404 405 if (clobbering_unread_rtas_event()) 406 return -1; 407 408 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 409 oops_hdr->report_length = cpu_to_be16(record->size); 410 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 411 412 if (record->compressed) 413 err_type = ERR_TYPE_KERNEL_PANIC_GZ; 414 415 rc = nvram_write_os_partition(&oops_log_partition, oops_buf, 416 (int) (sizeof(*oops_hdr) + record->size), err_type, 417 record->count); 418 419 if (rc != 0) 420 return rc; 421 422 record->id = record->part; 423 return 0; 424 } 425 426 /* 427 * Reads the oops/panic report, rtas, of-config and common partition. 428 * Returns the length of the data we read from each partition. 429 * Returns 0 if we've been called before. 430 */ 431 static ssize_t nvram_pstore_read(struct pstore_record *record) 432 { 433 struct oops_log_info *oops_hdr; 434 unsigned int err_type, id_no, size = 0; 435 struct nvram_os_partition *part = NULL; 436 char *buff = NULL; 437 int sig = 0; 438 loff_t p; 439 440 read_type++; 441 442 switch (nvram_type_ids[read_type]) { 443 case PSTORE_TYPE_DMESG: 444 part = &oops_log_partition; 445 record->type = PSTORE_TYPE_DMESG; 446 break; 447 case PSTORE_TYPE_PPC_COMMON: 448 sig = NVRAM_SIG_SYS; 449 part = &common_partition; 450 record->type = PSTORE_TYPE_PPC_COMMON; 451 record->id = PSTORE_TYPE_PPC_COMMON; 452 record->time.tv_sec = 0; 453 record->time.tv_nsec = 0; 454 break; 455 #ifdef CONFIG_PPC_PSERIES 456 case PSTORE_TYPE_PPC_RTAS: 457 part = &rtas_log_partition; 458 record->type = PSTORE_TYPE_PPC_RTAS; 459 record->time.tv_sec = last_rtas_event; 460 record->time.tv_nsec = 0; 461 break; 462 case PSTORE_TYPE_PPC_OF: 463 sig = NVRAM_SIG_OF; 464 part = &of_config_partition; 465 record->type = PSTORE_TYPE_PPC_OF; 466 record->id = PSTORE_TYPE_PPC_OF; 467 record->time.tv_sec = 0; 468 record->time.tv_nsec = 0; 469 break; 470 #endif 471 #ifdef CONFIG_PPC_POWERNV 472 case PSTORE_TYPE_PPC_OPAL: 473 sig = NVRAM_SIG_FW; 474 part = &skiboot_partition; 475 record->type = PSTORE_TYPE_PPC_OPAL; 476 record->id = PSTORE_TYPE_PPC_OPAL; 477 record->time.tv_sec = 0; 478 record->time.tv_nsec = 0; 479 break; 480 #endif 481 default: 482 return 0; 483 } 484 485 if (!part->os_partition) { 486 p = nvram_find_partition(part->name, sig, &size); 487 if (p <= 0) { 488 pr_err("nvram: Failed to find partition %s, " 489 "err %d\n", part->name, (int)p); 490 return 0; 491 } 492 part->index = p; 493 part->size = size; 494 } 495 496 buff = kmalloc(part->size, GFP_KERNEL); 497 498 if (!buff) 499 return -ENOMEM; 500 501 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) { 502 kfree(buff); 503 return 0; 504 } 505 506 record->count = 0; 507 508 if (part->os_partition) 509 record->id = id_no; 510 511 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) { 512 size_t length, hdr_size; 513 514 oops_hdr = (struct oops_log_info *)buff; 515 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) { 516 /* Old format oops header had 2-byte record size */ 517 hdr_size = sizeof(u16); 518 length = be16_to_cpu(oops_hdr->version); 519 record->time.tv_sec = 0; 520 record->time.tv_nsec = 0; 521 } else { 522 hdr_size = sizeof(*oops_hdr); 523 length = be16_to_cpu(oops_hdr->report_length); 524 record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp); 525 record->time.tv_nsec = 0; 526 } 527 record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL); 528 kfree(buff); 529 if (record->buf == NULL) 530 return -ENOMEM; 531 532 record->ecc_notice_size = 0; 533 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) 534 record->compressed = true; 535 else 536 record->compressed = false; 537 return length; 538 } 539 540 record->buf = buff; 541 return part->size; 542 } 543 544 static struct pstore_info nvram_pstore_info = { 545 .owner = THIS_MODULE, 546 .name = "nvram", 547 .flags = PSTORE_FLAGS_DMESG, 548 .open = nvram_pstore_open, 549 .read = nvram_pstore_read, 550 .write = nvram_pstore_write, 551 }; 552 553 static int nvram_pstore_init(void) 554 { 555 int rc = 0; 556 557 if (machine_is(pseries)) { 558 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS; 559 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF; 560 } else 561 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL; 562 563 nvram_pstore_info.buf = oops_data; 564 nvram_pstore_info.bufsize = oops_data_sz; 565 566 spin_lock_init(&nvram_pstore_info.buf_lock); 567 568 rc = pstore_register(&nvram_pstore_info); 569 if (rc && (rc != -EPERM)) 570 /* Print error only when pstore.backend == nvram */ 571 pr_err("nvram: pstore_register() failed, returned %d. " 572 "Defaults to kmsg_dump\n", rc); 573 574 return rc; 575 } 576 #else 577 static int nvram_pstore_init(void) 578 { 579 return -1; 580 } 581 #endif 582 583 void __init nvram_init_oops_partition(int rtas_partition_exists) 584 { 585 int rc; 586 587 rc = nvram_init_os_partition(&oops_log_partition); 588 if (rc != 0) { 589 #ifdef CONFIG_PPC_PSERIES 590 if (!rtas_partition_exists) { 591 pr_err("nvram: Failed to initialize oops partition!"); 592 return; 593 } 594 pr_notice("nvram: Using %s partition to log both" 595 " RTAS errors and oops/panic reports\n", 596 rtas_log_partition.name); 597 memcpy(&oops_log_partition, &rtas_log_partition, 598 sizeof(rtas_log_partition)); 599 #else 600 pr_err("nvram: Failed to initialize oops partition!"); 601 return; 602 #endif 603 } 604 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL); 605 if (!oops_buf) { 606 pr_err("nvram: No memory for %s partition\n", 607 oops_log_partition.name); 608 return; 609 } 610 oops_data = oops_buf + sizeof(struct oops_log_info); 611 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info); 612 613 rc = nvram_pstore_init(); 614 615 if (!rc) 616 return; 617 618 /* 619 * Figure compression (preceded by elimination of each line's <n> 620 * severity prefix) will reduce the oops/panic report to at most 621 * 45% of its original size. 622 */ 623 big_oops_buf_sz = (oops_data_sz * 100) / 45; 624 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL); 625 if (big_oops_buf) { 626 stream.workspace = kmalloc(zlib_deflate_workspacesize( 627 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL); 628 if (!stream.workspace) { 629 pr_err("nvram: No memory for compression workspace; " 630 "skipping compression of %s partition data\n", 631 oops_log_partition.name); 632 kfree(big_oops_buf); 633 big_oops_buf = NULL; 634 } 635 } else { 636 pr_err("No memory for uncompressed %s data; " 637 "skipping compression\n", oops_log_partition.name); 638 stream.workspace = NULL; 639 } 640 641 rc = kmsg_dump_register(&nvram_kmsg_dumper); 642 if (rc != 0) { 643 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc); 644 kfree(oops_buf); 645 kfree(big_oops_buf); 646 kfree(stream.workspace); 647 } 648 } 649 650 /* 651 * This is our kmsg_dump callback, called after an oops or panic report 652 * has been written to the printk buffer. We want to capture as much 653 * of the printk buffer as possible. First, capture as much as we can 654 * that we think will compress sufficiently to fit in the lnx,oops-log 655 * partition. If that's too much, go back and capture uncompressed text. 656 */ 657 static void oops_to_nvram(struct kmsg_dumper *dumper, 658 enum kmsg_dump_reason reason) 659 { 660 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 661 static unsigned int oops_count = 0; 662 static bool panicking = false; 663 static DEFINE_SPINLOCK(lock); 664 unsigned long flags; 665 size_t text_len; 666 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ; 667 int rc = -1; 668 669 switch (reason) { 670 case KMSG_DUMP_RESTART: 671 case KMSG_DUMP_HALT: 672 case KMSG_DUMP_POWEROFF: 673 /* These are almost always orderly shutdowns. */ 674 return; 675 case KMSG_DUMP_OOPS: 676 break; 677 case KMSG_DUMP_PANIC: 678 panicking = true; 679 break; 680 case KMSG_DUMP_EMERG: 681 if (panicking) 682 /* Panic report already captured. */ 683 return; 684 break; 685 default: 686 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n", 687 __func__, (int) reason); 688 return; 689 } 690 691 if (clobbering_unread_rtas_event()) 692 return; 693 694 if (!spin_trylock_irqsave(&lock, flags)) 695 return; 696 697 if (big_oops_buf) { 698 kmsg_dump_get_buffer(dumper, false, 699 big_oops_buf, big_oops_buf_sz, &text_len); 700 rc = zip_oops(text_len); 701 } 702 if (rc != 0) { 703 kmsg_dump_rewind(dumper); 704 kmsg_dump_get_buffer(dumper, false, 705 oops_data, oops_data_sz, &text_len); 706 err_type = ERR_TYPE_KERNEL_PANIC; 707 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 708 oops_hdr->report_length = cpu_to_be16(text_len); 709 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 710 } 711 712 (void) nvram_write_os_partition(&oops_log_partition, oops_buf, 713 (int) (sizeof(*oops_hdr) + text_len), err_type, 714 ++oops_count); 715 716 spin_unlock_irqrestore(&lock, flags); 717 } 718 719 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin) 720 { 721 if (ppc_md.nvram_size == NULL) 722 return -ENODEV; 723 return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE, 724 ppc_md.nvram_size()); 725 } 726 727 728 static ssize_t dev_nvram_read(struct file *file, char __user *buf, 729 size_t count, loff_t *ppos) 730 { 731 ssize_t ret; 732 char *tmp = NULL; 733 ssize_t size; 734 735 if (!ppc_md.nvram_size) { 736 ret = -ENODEV; 737 goto out; 738 } 739 740 size = ppc_md.nvram_size(); 741 if (size < 0) { 742 ret = size; 743 goto out; 744 } 745 746 if (*ppos >= size) { 747 ret = 0; 748 goto out; 749 } 750 751 count = min_t(size_t, count, size - *ppos); 752 count = min(count, PAGE_SIZE); 753 754 tmp = kmalloc(count, GFP_KERNEL); 755 if (!tmp) { 756 ret = -ENOMEM; 757 goto out; 758 } 759 760 ret = ppc_md.nvram_read(tmp, count, ppos); 761 if (ret <= 0) 762 goto out; 763 764 if (copy_to_user(buf, tmp, ret)) 765 ret = -EFAULT; 766 767 out: 768 kfree(tmp); 769 return ret; 770 771 } 772 773 static ssize_t dev_nvram_write(struct file *file, const char __user *buf, 774 size_t count, loff_t *ppos) 775 { 776 ssize_t ret; 777 char *tmp = NULL; 778 ssize_t size; 779 780 ret = -ENODEV; 781 if (!ppc_md.nvram_size) 782 goto out; 783 784 ret = 0; 785 size = ppc_md.nvram_size(); 786 if (*ppos >= size || size < 0) 787 goto out; 788 789 count = min_t(size_t, count, size - *ppos); 790 count = min(count, PAGE_SIZE); 791 792 tmp = memdup_user(buf, count); 793 if (IS_ERR(tmp)) { 794 ret = PTR_ERR(tmp); 795 goto out; 796 } 797 798 ret = ppc_md.nvram_write(tmp, count, ppos); 799 800 kfree(tmp); 801 out: 802 return ret; 803 } 804 805 static long dev_nvram_ioctl(struct file *file, unsigned int cmd, 806 unsigned long arg) 807 { 808 switch(cmd) { 809 #ifdef CONFIG_PPC_PMAC 810 case OBSOLETE_PMAC_NVRAM_GET_OFFSET: 811 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n"); 812 case IOC_NVRAM_GET_OFFSET: { 813 int part, offset; 814 815 if (!machine_is(powermac)) 816 return -EINVAL; 817 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0) 818 return -EFAULT; 819 if (part < pmac_nvram_OF || part > pmac_nvram_NR) 820 return -EINVAL; 821 offset = pmac_get_partition(part); 822 if (offset < 0) 823 return offset; 824 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0) 825 return -EFAULT; 826 return 0; 827 } 828 #endif /* CONFIG_PPC_PMAC */ 829 default: 830 return -EINVAL; 831 } 832 } 833 834 static const struct file_operations nvram_fops = { 835 .owner = THIS_MODULE, 836 .llseek = dev_nvram_llseek, 837 .read = dev_nvram_read, 838 .write = dev_nvram_write, 839 .unlocked_ioctl = dev_nvram_ioctl, 840 }; 841 842 static struct miscdevice nvram_dev = { 843 NVRAM_MINOR, 844 "nvram", 845 &nvram_fops 846 }; 847 848 849 #ifdef DEBUG_NVRAM 850 static void __init nvram_print_partitions(char * label) 851 { 852 struct nvram_partition * tmp_part; 853 854 printk(KERN_WARNING "--------%s---------\n", label); 855 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); 856 list_for_each_entry(tmp_part, &nvram_partitions, partition) { 857 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n", 858 tmp_part->index, tmp_part->header.signature, 859 tmp_part->header.checksum, tmp_part->header.length, 860 tmp_part->header.name); 861 } 862 } 863 #endif 864 865 866 static int __init nvram_write_header(struct nvram_partition * part) 867 { 868 loff_t tmp_index; 869 int rc; 870 struct nvram_header phead; 871 872 memcpy(&phead, &part->header, NVRAM_HEADER_LEN); 873 phead.length = cpu_to_be16(phead.length); 874 875 tmp_index = part->index; 876 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index); 877 878 return rc; 879 } 880 881 882 static unsigned char __init nvram_checksum(struct nvram_header *p) 883 { 884 unsigned int c_sum, c_sum2; 885 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ 886 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; 887 888 /* The sum may have spilled into the 3rd byte. Fold it back. */ 889 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; 890 /* The sum cannot exceed 2 bytes. Fold it into a checksum */ 891 c_sum2 = (c_sum >> 8) + (c_sum << 8); 892 c_sum = ((c_sum + c_sum2) >> 8) & 0xff; 893 return c_sum; 894 } 895 896 /* 897 * Per the criteria passed via nvram_remove_partition(), should this 898 * partition be removed? 1=remove, 0=keep 899 */ 900 static int nvram_can_remove_partition(struct nvram_partition *part, 901 const char *name, int sig, const char *exceptions[]) 902 { 903 if (part->header.signature != sig) 904 return 0; 905 if (name) { 906 if (strncmp(name, part->header.name, 12)) 907 return 0; 908 } else if (exceptions) { 909 const char **except; 910 for (except = exceptions; *except; except++) { 911 if (!strncmp(*except, part->header.name, 12)) 912 return 0; 913 } 914 } 915 return 1; 916 } 917 918 /** 919 * nvram_remove_partition - Remove one or more partitions in nvram 920 * @name: name of the partition to remove, or NULL for a 921 * signature only match 922 * @sig: signature of the partition(s) to remove 923 * @exceptions: When removing all partitions with a matching signature, 924 * leave these alone. 925 */ 926 927 int __init nvram_remove_partition(const char *name, int sig, 928 const char *exceptions[]) 929 { 930 struct nvram_partition *part, *prev, *tmp; 931 int rc; 932 933 list_for_each_entry(part, &nvram_partitions, partition) { 934 if (!nvram_can_remove_partition(part, name, sig, exceptions)) 935 continue; 936 937 /* Make partition a free partition */ 938 part->header.signature = NVRAM_SIG_FREE; 939 memset(part->header.name, 'w', 12); 940 part->header.checksum = nvram_checksum(&part->header); 941 rc = nvram_write_header(part); 942 if (rc <= 0) { 943 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 944 return rc; 945 } 946 } 947 948 /* Merge contiguous ones */ 949 prev = NULL; 950 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) { 951 if (part->header.signature != NVRAM_SIG_FREE) { 952 prev = NULL; 953 continue; 954 } 955 if (prev) { 956 prev->header.length += part->header.length; 957 prev->header.checksum = nvram_checksum(&prev->header); 958 rc = nvram_write_header(prev); 959 if (rc <= 0) { 960 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 961 return rc; 962 } 963 list_del(&part->partition); 964 kfree(part); 965 } else 966 prev = part; 967 } 968 969 return 0; 970 } 971 972 /** 973 * nvram_create_partition - Create a partition in nvram 974 * @name: name of the partition to create 975 * @sig: signature of the partition to create 976 * @req_size: size of data to allocate in bytes 977 * @min_size: minimum acceptable size (0 means req_size) 978 * 979 * Returns a negative error code or a positive nvram index 980 * of the beginning of the data area of the newly created 981 * partition. If you provided a min_size smaller than req_size 982 * you need to query for the actual size yourself after the 983 * call using nvram_partition_get_size(). 984 */ 985 loff_t __init nvram_create_partition(const char *name, int sig, 986 int req_size, int min_size) 987 { 988 struct nvram_partition *part; 989 struct nvram_partition *new_part; 990 struct nvram_partition *free_part = NULL; 991 static char nv_init_vals[16]; 992 loff_t tmp_index; 993 long size = 0; 994 int rc; 995 996 /* Convert sizes from bytes to blocks */ 997 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 998 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 999 1000 /* If no minimum size specified, make it the same as the 1001 * requested size 1002 */ 1003 if (min_size == 0) 1004 min_size = req_size; 1005 if (min_size > req_size) 1006 return -EINVAL; 1007 1008 /* Now add one block to each for the header */ 1009 req_size += 1; 1010 min_size += 1; 1011 1012 /* Find a free partition that will give us the maximum needed size 1013 If can't find one that will give us the minimum size needed */ 1014 list_for_each_entry(part, &nvram_partitions, partition) { 1015 if (part->header.signature != NVRAM_SIG_FREE) 1016 continue; 1017 1018 if (part->header.length >= req_size) { 1019 size = req_size; 1020 free_part = part; 1021 break; 1022 } 1023 if (part->header.length > size && 1024 part->header.length >= min_size) { 1025 size = part->header.length; 1026 free_part = part; 1027 } 1028 } 1029 if (!size) 1030 return -ENOSPC; 1031 1032 /* Create our OS partition */ 1033 new_part = kmalloc(sizeof(*new_part), GFP_KERNEL); 1034 if (!new_part) { 1035 pr_err("%s: kmalloc failed\n", __func__); 1036 return -ENOMEM; 1037 } 1038 1039 new_part->index = free_part->index; 1040 new_part->header.signature = sig; 1041 new_part->header.length = size; 1042 strncpy(new_part->header.name, name, 12); 1043 new_part->header.checksum = nvram_checksum(&new_part->header); 1044 1045 rc = nvram_write_header(new_part); 1046 if (rc <= 0) { 1047 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc); 1048 kfree(new_part); 1049 return rc; 1050 } 1051 list_add_tail(&new_part->partition, &free_part->partition); 1052 1053 /* Adjust or remove the partition we stole the space from */ 1054 if (free_part->header.length > size) { 1055 free_part->index += size * NVRAM_BLOCK_LEN; 1056 free_part->header.length -= size; 1057 free_part->header.checksum = nvram_checksum(&free_part->header); 1058 rc = nvram_write_header(free_part); 1059 if (rc <= 0) { 1060 pr_err("%s: nvram_write_header failed (%d)\n", 1061 __func__, rc); 1062 return rc; 1063 } 1064 } else { 1065 list_del(&free_part->partition); 1066 kfree(free_part); 1067 } 1068 1069 /* Clear the new partition */ 1070 for (tmp_index = new_part->index + NVRAM_HEADER_LEN; 1071 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN); 1072 tmp_index += NVRAM_BLOCK_LEN) { 1073 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index); 1074 if (rc <= 0) { 1075 pr_err("%s: nvram_write failed (%d)\n", 1076 __func__, rc); 1077 return rc; 1078 } 1079 } 1080 1081 return new_part->index + NVRAM_HEADER_LEN; 1082 } 1083 1084 /** 1085 * nvram_get_partition_size - Get the data size of an nvram partition 1086 * @data_index: This is the offset of the start of the data of 1087 * the partition. The same value that is returned by 1088 * nvram_create_partition(). 1089 */ 1090 int nvram_get_partition_size(loff_t data_index) 1091 { 1092 struct nvram_partition *part; 1093 1094 list_for_each_entry(part, &nvram_partitions, partition) { 1095 if (part->index + NVRAM_HEADER_LEN == data_index) 1096 return (part->header.length - 1) * NVRAM_BLOCK_LEN; 1097 } 1098 return -1; 1099 } 1100 1101 1102 /** 1103 * nvram_find_partition - Find an nvram partition by signature and name 1104 * @name: Name of the partition or NULL for any name 1105 * @sig: Signature to test against 1106 * @out_size: if non-NULL, returns the size of the data part of the partition 1107 */ 1108 loff_t nvram_find_partition(const char *name, int sig, int *out_size) 1109 { 1110 struct nvram_partition *p; 1111 1112 list_for_each_entry(p, &nvram_partitions, partition) { 1113 if (p->header.signature == sig && 1114 (!name || !strncmp(p->header.name, name, 12))) { 1115 if (out_size) 1116 *out_size = (p->header.length - 1) * 1117 NVRAM_BLOCK_LEN; 1118 return p->index + NVRAM_HEADER_LEN; 1119 } 1120 } 1121 return 0; 1122 } 1123 1124 int __init nvram_scan_partitions(void) 1125 { 1126 loff_t cur_index = 0; 1127 struct nvram_header phead; 1128 struct nvram_partition * tmp_part; 1129 unsigned char c_sum; 1130 char * header; 1131 int total_size; 1132 int err; 1133 1134 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 1135 return -ENODEV; 1136 total_size = ppc_md.nvram_size(); 1137 1138 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); 1139 if (!header) { 1140 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); 1141 return -ENOMEM; 1142 } 1143 1144 while (cur_index < total_size) { 1145 1146 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); 1147 if (err != NVRAM_HEADER_LEN) { 1148 printk(KERN_ERR "nvram_scan_partitions: Error parsing " 1149 "nvram partitions\n"); 1150 goto out; 1151 } 1152 1153 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ 1154 1155 memcpy(&phead, header, NVRAM_HEADER_LEN); 1156 1157 phead.length = be16_to_cpu(phead.length); 1158 1159 err = 0; 1160 c_sum = nvram_checksum(&phead); 1161 if (c_sum != phead.checksum) { 1162 printk(KERN_WARNING "WARNING: nvram partition checksum" 1163 " was %02x, should be %02x!\n", 1164 phead.checksum, c_sum); 1165 printk(KERN_WARNING "Terminating nvram partition scan\n"); 1166 goto out; 1167 } 1168 if (!phead.length) { 1169 printk(KERN_WARNING "WARNING: nvram corruption " 1170 "detected: 0-length partition\n"); 1171 goto out; 1172 } 1173 tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL); 1174 err = -ENOMEM; 1175 if (!tmp_part) { 1176 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); 1177 goto out; 1178 } 1179 1180 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); 1181 tmp_part->index = cur_index; 1182 list_add_tail(&tmp_part->partition, &nvram_partitions); 1183 1184 cur_index += phead.length * NVRAM_BLOCK_LEN; 1185 } 1186 err = 0; 1187 1188 #ifdef DEBUG_NVRAM 1189 nvram_print_partitions("NVRAM Partitions"); 1190 #endif 1191 1192 out: 1193 kfree(header); 1194 return err; 1195 } 1196 1197 static int __init nvram_init(void) 1198 { 1199 int rc; 1200 1201 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16); 1202 1203 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 1204 return -ENODEV; 1205 1206 rc = misc_register(&nvram_dev); 1207 if (rc != 0) { 1208 printk(KERN_ERR "nvram_init: failed to register device\n"); 1209 return rc; 1210 } 1211 1212 return rc; 1213 } 1214 device_initcall(nvram_init); 1215