xref: /openbmc/linux/arch/powerpc/kernel/nvram_64.c (revision ae40e94f)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/fs.h>
15 #include <linux/miscdevice.h>
16 #include <linux/fcntl.h>
17 #include <linux/nvram.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/kmsg_dump.h>
22 #include <linux/pagemap.h>
23 #include <linux/pstore.h>
24 #include <linux/zlib.h>
25 #include <linux/uaccess.h>
26 #include <asm/nvram.h>
27 #include <asm/rtas.h>
28 #include <asm/prom.h>
29 #include <asm/machdep.h>
30 
31 #undef DEBUG_NVRAM
32 
33 #define NVRAM_HEADER_LEN	sizeof(struct nvram_header)
34 #define NVRAM_BLOCK_LEN		NVRAM_HEADER_LEN
35 
36 /* If change this size, then change the size of NVNAME_LEN */
37 struct nvram_header {
38 	unsigned char signature;
39 	unsigned char checksum;
40 	unsigned short length;
41 	/* Terminating null required only for names < 12 chars. */
42 	char name[12];
43 };
44 
45 struct nvram_partition {
46 	struct list_head partition;
47 	struct nvram_header header;
48 	unsigned int index;
49 };
50 
51 static LIST_HEAD(nvram_partitions);
52 
53 #ifdef CONFIG_PPC_PSERIES
54 struct nvram_os_partition rtas_log_partition = {
55 	.name = "ibm,rtas-log",
56 	.req_size = 2079,
57 	.min_size = 1055,
58 	.index = -1,
59 	.os_partition = true
60 };
61 #endif
62 
63 struct nvram_os_partition oops_log_partition = {
64 	.name = "lnx,oops-log",
65 	.req_size = 4000,
66 	.min_size = 2000,
67 	.index = -1,
68 	.os_partition = true
69 };
70 
71 static const char *nvram_os_partitions[] = {
72 #ifdef CONFIG_PPC_PSERIES
73 	"ibm,rtas-log",
74 #endif
75 	"lnx,oops-log",
76 	NULL
77 };
78 
79 static void oops_to_nvram(struct kmsg_dumper *dumper,
80 			  enum kmsg_dump_reason reason);
81 
82 static struct kmsg_dumper nvram_kmsg_dumper = {
83 	.dump = oops_to_nvram
84 };
85 
86 /*
87  * For capturing and compressing an oops or panic report...
88 
89  * big_oops_buf[] holds the uncompressed text we're capturing.
90  *
91  * oops_buf[] holds the compressed text, preceded by a oops header.
92  * oops header has u16 holding the version of oops header (to differentiate
93  * between old and new format header) followed by u16 holding the length of
94  * the compressed* text (*Or uncompressed, if compression fails.) and u64
95  * holding the timestamp. oops_buf[] gets written to NVRAM.
96  *
97  * oops_log_info points to the header. oops_data points to the compressed text.
98  *
99  * +- oops_buf
100  * |                                   +- oops_data
101  * v                                   v
102  * +-----------+-----------+-----------+------------------------+
103  * | version   | length    | timestamp | text                   |
104  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
105  * +-----------+-----------+-----------+------------------------+
106  * ^
107  * +- oops_log_info
108  *
109  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
110  */
111 static size_t big_oops_buf_sz;
112 static char *big_oops_buf, *oops_buf;
113 static char *oops_data;
114 static size_t oops_data_sz;
115 
116 /* Compression parameters */
117 #define COMPR_LEVEL 6
118 #define WINDOW_BITS 12
119 #define MEM_LEVEL 4
120 static struct z_stream_s stream;
121 
122 #ifdef CONFIG_PSTORE
123 #ifdef CONFIG_PPC_POWERNV
124 static struct nvram_os_partition skiboot_partition = {
125 	.name = "ibm,skiboot",
126 	.index = -1,
127 	.os_partition = false
128 };
129 #endif
130 
131 #ifdef CONFIG_PPC_PSERIES
132 static struct nvram_os_partition of_config_partition = {
133 	.name = "of-config",
134 	.index = -1,
135 	.os_partition = false
136 };
137 #endif
138 
139 static struct nvram_os_partition common_partition = {
140 	.name = "common",
141 	.index = -1,
142 	.os_partition = false
143 };
144 
145 static enum pstore_type_id nvram_type_ids[] = {
146 	PSTORE_TYPE_DMESG,
147 	PSTORE_TYPE_PPC_COMMON,
148 	-1,
149 	-1,
150 	-1
151 };
152 static int read_type;
153 #endif
154 
155 /* nvram_write_os_partition
156  *
157  * We need to buffer the error logs into nvram to ensure that we have
158  * the failure information to decode.  If we have a severe error there
159  * is no way to guarantee that the OS or the machine is in a state to
160  * get back to user land and write the error to disk.  For example if
161  * the SCSI device driver causes a Machine Check by writing to a bad
162  * IO address, there is no way of guaranteeing that the device driver
163  * is in any state that is would also be able to write the error data
164  * captured to disk, thus we buffer it in NVRAM for analysis on the
165  * next boot.
166  *
167  * In NVRAM the partition containing the error log buffer will looks like:
168  * Header (in bytes):
169  * +-----------+----------+--------+------------+------------------+
170  * | signature | checksum | length | name       | data             |
171  * |0          |1         |2      3|4         15|16        length-1|
172  * +-----------+----------+--------+------------+------------------+
173  *
174  * The 'data' section would look like (in bytes):
175  * +--------------+------------+-----------------------------------+
176  * | event_logged | sequence # | error log                         |
177  * |0            3|4          7|8                  error_log_size-1|
178  * +--------------+------------+-----------------------------------+
179  *
180  * event_logged: 0 if event has not been logged to syslog, 1 if it has
181  * sequence #: The unique sequence # for each event. (until it wraps)
182  * error log: The error log from event_scan
183  */
184 int nvram_write_os_partition(struct nvram_os_partition *part,
185 			     char *buff, int length,
186 			     unsigned int err_type,
187 			     unsigned int error_log_cnt)
188 {
189 	int rc;
190 	loff_t tmp_index;
191 	struct err_log_info info;
192 
193 	if (part->index == -1)
194 		return -ESPIPE;
195 
196 	if (length > part->size)
197 		length = part->size;
198 
199 	info.error_type = cpu_to_be32(err_type);
200 	info.seq_num = cpu_to_be32(error_log_cnt);
201 
202 	tmp_index = part->index;
203 
204 	rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index);
205 	if (rc <= 0) {
206 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
207 		return rc;
208 	}
209 
210 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
211 	if (rc <= 0) {
212 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
213 		return rc;
214 	}
215 
216 	return 0;
217 }
218 
219 /* nvram_read_partition
220  *
221  * Reads nvram partition for at most 'length'
222  */
223 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
224 			 int length, unsigned int *err_type,
225 			 unsigned int *error_log_cnt)
226 {
227 	int rc;
228 	loff_t tmp_index;
229 	struct err_log_info info;
230 
231 	if (part->index == -1)
232 		return -1;
233 
234 	if (length > part->size)
235 		length = part->size;
236 
237 	tmp_index = part->index;
238 
239 	if (part->os_partition) {
240 		rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index);
241 		if (rc <= 0) {
242 			pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
243 			return rc;
244 		}
245 	}
246 
247 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
248 	if (rc <= 0) {
249 		pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
250 		return rc;
251 	}
252 
253 	if (part->os_partition) {
254 		*error_log_cnt = be32_to_cpu(info.seq_num);
255 		*err_type = be32_to_cpu(info.error_type);
256 	}
257 
258 	return 0;
259 }
260 
261 /* nvram_init_os_partition
262  *
263  * This sets up a partition with an "OS" signature.
264  *
265  * The general strategy is the following:
266  * 1.) If a partition with the indicated name already exists...
267  *	- If it's large enough, use it.
268  *	- Otherwise, recycle it and keep going.
269  * 2.) Search for a free partition that is large enough.
270  * 3.) If there's not a free partition large enough, recycle any obsolete
271  * OS partitions and try again.
272  * 4.) Will first try getting a chunk that will satisfy the requested size.
273  * 5.) If a chunk of the requested size cannot be allocated, then try finding
274  * a chunk that will satisfy the minum needed.
275  *
276  * Returns 0 on success, else -1.
277  */
278 int __init nvram_init_os_partition(struct nvram_os_partition *part)
279 {
280 	loff_t p;
281 	int size;
282 
283 	/* Look for ours */
284 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
285 
286 	/* Found one but too small, remove it */
287 	if (p && size < part->min_size) {
288 		pr_info("nvram: Found too small %s partition,"
289 					" removing it...\n", part->name);
290 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
291 		p = 0;
292 	}
293 
294 	/* Create one if we didn't find */
295 	if (!p) {
296 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
297 					part->req_size, part->min_size);
298 		if (p == -ENOSPC) {
299 			pr_info("nvram: No room to create %s partition, "
300 				"deleting any obsolete OS partitions...\n",
301 				part->name);
302 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
303 					nvram_os_partitions);
304 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
305 					part->req_size, part->min_size);
306 		}
307 	}
308 
309 	if (p <= 0) {
310 		pr_err("nvram: Failed to find or create %s"
311 		       " partition, err %d\n", part->name, (int)p);
312 		return -1;
313 	}
314 
315 	part->index = p;
316 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
317 
318 	return 0;
319 }
320 
321 /* Derived from logfs_compress() */
322 static int nvram_compress(const void *in, void *out, size_t inlen,
323 							size_t outlen)
324 {
325 	int err, ret;
326 
327 	ret = -EIO;
328 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
329 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
330 	if (err != Z_OK)
331 		goto error;
332 
333 	stream.next_in = in;
334 	stream.avail_in = inlen;
335 	stream.total_in = 0;
336 	stream.next_out = out;
337 	stream.avail_out = outlen;
338 	stream.total_out = 0;
339 
340 	err = zlib_deflate(&stream, Z_FINISH);
341 	if (err != Z_STREAM_END)
342 		goto error;
343 
344 	err = zlib_deflateEnd(&stream);
345 	if (err != Z_OK)
346 		goto error;
347 
348 	if (stream.total_out >= stream.total_in)
349 		goto error;
350 
351 	ret = stream.total_out;
352 error:
353 	return ret;
354 }
355 
356 /* Compress the text from big_oops_buf into oops_buf. */
357 static int zip_oops(size_t text_len)
358 {
359 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
360 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
361 								oops_data_sz);
362 	if (zipped_len < 0) {
363 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
364 		pr_err("nvram: logging uncompressed oops/panic report\n");
365 		return -1;
366 	}
367 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
368 	oops_hdr->report_length = cpu_to_be16(zipped_len);
369 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
370 	return 0;
371 }
372 
373 #ifdef CONFIG_PSTORE
374 static int nvram_pstore_open(struct pstore_info *psi)
375 {
376 	/* Reset the iterator to start reading partitions again */
377 	read_type = -1;
378 	return 0;
379 }
380 
381 /**
382  * nvram_pstore_write - pstore write callback for nvram
383  * @record:             pstore record to write, with @id to be set
384  *
385  * Called by pstore_dump() when an oops or panic report is logged in the
386  * printk buffer.
387  * Returns 0 on successful write.
388  */
389 static int nvram_pstore_write(struct pstore_record *record)
390 {
391 	int rc;
392 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
393 	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
394 
395 	/* part 1 has the recent messages from printk buffer */
396 	if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG))
397 		return -1;
398 
399 	if (clobbering_unread_rtas_event())
400 		return -1;
401 
402 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
403 	oops_hdr->report_length = cpu_to_be16(record->size);
404 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
405 
406 	if (record->compressed)
407 		err_type = ERR_TYPE_KERNEL_PANIC_GZ;
408 
409 	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
410 		(int) (sizeof(*oops_hdr) + record->size), err_type,
411 		record->count);
412 
413 	if (rc != 0)
414 		return rc;
415 
416 	record->id = record->part;
417 	return 0;
418 }
419 
420 /*
421  * Reads the oops/panic report, rtas, of-config and common partition.
422  * Returns the length of the data we read from each partition.
423  * Returns 0 if we've been called before.
424  */
425 static ssize_t nvram_pstore_read(struct pstore_record *record)
426 {
427 	struct oops_log_info *oops_hdr;
428 	unsigned int err_type, id_no, size = 0;
429 	struct nvram_os_partition *part = NULL;
430 	char *buff = NULL;
431 	int sig = 0;
432 	loff_t p;
433 
434 	read_type++;
435 
436 	switch (nvram_type_ids[read_type]) {
437 	case PSTORE_TYPE_DMESG:
438 		part = &oops_log_partition;
439 		record->type = PSTORE_TYPE_DMESG;
440 		break;
441 	case PSTORE_TYPE_PPC_COMMON:
442 		sig = NVRAM_SIG_SYS;
443 		part = &common_partition;
444 		record->type = PSTORE_TYPE_PPC_COMMON;
445 		record->id = PSTORE_TYPE_PPC_COMMON;
446 		record->time.tv_sec = 0;
447 		record->time.tv_nsec = 0;
448 		break;
449 #ifdef CONFIG_PPC_PSERIES
450 	case PSTORE_TYPE_PPC_RTAS:
451 		part = &rtas_log_partition;
452 		record->type = PSTORE_TYPE_PPC_RTAS;
453 		record->time.tv_sec = last_rtas_event;
454 		record->time.tv_nsec = 0;
455 		break;
456 	case PSTORE_TYPE_PPC_OF:
457 		sig = NVRAM_SIG_OF;
458 		part = &of_config_partition;
459 		record->type = PSTORE_TYPE_PPC_OF;
460 		record->id = PSTORE_TYPE_PPC_OF;
461 		record->time.tv_sec = 0;
462 		record->time.tv_nsec = 0;
463 		break;
464 #endif
465 #ifdef CONFIG_PPC_POWERNV
466 	case PSTORE_TYPE_PPC_OPAL:
467 		sig = NVRAM_SIG_FW;
468 		part = &skiboot_partition;
469 		record->type = PSTORE_TYPE_PPC_OPAL;
470 		record->id = PSTORE_TYPE_PPC_OPAL;
471 		record->time.tv_sec = 0;
472 		record->time.tv_nsec = 0;
473 		break;
474 #endif
475 	default:
476 		return 0;
477 	}
478 
479 	if (!part->os_partition) {
480 		p = nvram_find_partition(part->name, sig, &size);
481 		if (p <= 0) {
482 			pr_err("nvram: Failed to find partition %s, "
483 				"err %d\n", part->name, (int)p);
484 			return 0;
485 		}
486 		part->index = p;
487 		part->size = size;
488 	}
489 
490 	buff = kmalloc(part->size, GFP_KERNEL);
491 
492 	if (!buff)
493 		return -ENOMEM;
494 
495 	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
496 		kfree(buff);
497 		return 0;
498 	}
499 
500 	record->count = 0;
501 
502 	if (part->os_partition)
503 		record->id = id_no;
504 
505 	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
506 		size_t length, hdr_size;
507 
508 		oops_hdr = (struct oops_log_info *)buff;
509 		if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
510 			/* Old format oops header had 2-byte record size */
511 			hdr_size = sizeof(u16);
512 			length = be16_to_cpu(oops_hdr->version);
513 			record->time.tv_sec = 0;
514 			record->time.tv_nsec = 0;
515 		} else {
516 			hdr_size = sizeof(*oops_hdr);
517 			length = be16_to_cpu(oops_hdr->report_length);
518 			record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp);
519 			record->time.tv_nsec = 0;
520 		}
521 		record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
522 		kfree(buff);
523 		if (record->buf == NULL)
524 			return -ENOMEM;
525 
526 		record->ecc_notice_size = 0;
527 		if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
528 			record->compressed = true;
529 		else
530 			record->compressed = false;
531 		return length;
532 	}
533 
534 	record->buf = buff;
535 	return part->size;
536 }
537 
538 static struct pstore_info nvram_pstore_info = {
539 	.owner = THIS_MODULE,
540 	.name = "nvram",
541 	.flags = PSTORE_FLAGS_DMESG,
542 	.open = nvram_pstore_open,
543 	.read = nvram_pstore_read,
544 	.write = nvram_pstore_write,
545 };
546 
547 static int nvram_pstore_init(void)
548 {
549 	int rc = 0;
550 
551 	if (machine_is(pseries)) {
552 		nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
553 		nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
554 	} else
555 		nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
556 
557 	nvram_pstore_info.buf = oops_data;
558 	nvram_pstore_info.bufsize = oops_data_sz;
559 
560 	rc = pstore_register(&nvram_pstore_info);
561 	if (rc && (rc != -EPERM))
562 		/* Print error only when pstore.backend == nvram */
563 		pr_err("nvram: pstore_register() failed, returned %d. "
564 				"Defaults to kmsg_dump\n", rc);
565 
566 	return rc;
567 }
568 #else
569 static int nvram_pstore_init(void)
570 {
571 	return -1;
572 }
573 #endif
574 
575 void __init nvram_init_oops_partition(int rtas_partition_exists)
576 {
577 	int rc;
578 
579 	rc = nvram_init_os_partition(&oops_log_partition);
580 	if (rc != 0) {
581 #ifdef CONFIG_PPC_PSERIES
582 		if (!rtas_partition_exists) {
583 			pr_err("nvram: Failed to initialize oops partition!");
584 			return;
585 		}
586 		pr_notice("nvram: Using %s partition to log both"
587 			" RTAS errors and oops/panic reports\n",
588 			rtas_log_partition.name);
589 		memcpy(&oops_log_partition, &rtas_log_partition,
590 						sizeof(rtas_log_partition));
591 #else
592 		pr_err("nvram: Failed to initialize oops partition!");
593 		return;
594 #endif
595 	}
596 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
597 	if (!oops_buf) {
598 		pr_err("nvram: No memory for %s partition\n",
599 						oops_log_partition.name);
600 		return;
601 	}
602 	oops_data = oops_buf + sizeof(struct oops_log_info);
603 	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
604 
605 	rc = nvram_pstore_init();
606 
607 	if (!rc)
608 		return;
609 
610 	/*
611 	 * Figure compression (preceded by elimination of each line's <n>
612 	 * severity prefix) will reduce the oops/panic report to at most
613 	 * 45% of its original size.
614 	 */
615 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
616 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
617 	if (big_oops_buf) {
618 		stream.workspace =  kmalloc(zlib_deflate_workspacesize(
619 					WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
620 		if (!stream.workspace) {
621 			pr_err("nvram: No memory for compression workspace; "
622 				"skipping compression of %s partition data\n",
623 				oops_log_partition.name);
624 			kfree(big_oops_buf);
625 			big_oops_buf = NULL;
626 		}
627 	} else {
628 		pr_err("No memory for uncompressed %s data; "
629 			"skipping compression\n", oops_log_partition.name);
630 		stream.workspace = NULL;
631 	}
632 
633 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
634 	if (rc != 0) {
635 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
636 		kfree(oops_buf);
637 		kfree(big_oops_buf);
638 		kfree(stream.workspace);
639 	}
640 }
641 
642 /*
643  * This is our kmsg_dump callback, called after an oops or panic report
644  * has been written to the printk buffer.  We want to capture as much
645  * of the printk buffer as possible.  First, capture as much as we can
646  * that we think will compress sufficiently to fit in the lnx,oops-log
647  * partition.  If that's too much, go back and capture uncompressed text.
648  */
649 static void oops_to_nvram(struct kmsg_dumper *dumper,
650 			  enum kmsg_dump_reason reason)
651 {
652 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
653 	static unsigned int oops_count = 0;
654 	static bool panicking = false;
655 	static DEFINE_SPINLOCK(lock);
656 	unsigned long flags;
657 	size_t text_len;
658 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
659 	int rc = -1;
660 
661 	switch (reason) {
662 	case KMSG_DUMP_RESTART:
663 	case KMSG_DUMP_HALT:
664 	case KMSG_DUMP_POWEROFF:
665 		/* These are almost always orderly shutdowns. */
666 		return;
667 	case KMSG_DUMP_OOPS:
668 		break;
669 	case KMSG_DUMP_PANIC:
670 		panicking = true;
671 		break;
672 	case KMSG_DUMP_EMERG:
673 		if (panicking)
674 			/* Panic report already captured. */
675 			return;
676 		break;
677 	default:
678 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
679 		       __func__, (int) reason);
680 		return;
681 	}
682 
683 	if (clobbering_unread_rtas_event())
684 		return;
685 
686 	if (!spin_trylock_irqsave(&lock, flags))
687 		return;
688 
689 	if (big_oops_buf) {
690 		kmsg_dump_get_buffer(dumper, false,
691 				     big_oops_buf, big_oops_buf_sz, &text_len);
692 		rc = zip_oops(text_len);
693 	}
694 	if (rc != 0) {
695 		kmsg_dump_rewind(dumper);
696 		kmsg_dump_get_buffer(dumper, false,
697 				     oops_data, oops_data_sz, &text_len);
698 		err_type = ERR_TYPE_KERNEL_PANIC;
699 		oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
700 		oops_hdr->report_length = cpu_to_be16(text_len);
701 		oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
702 	}
703 
704 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
705 		(int) (sizeof(*oops_hdr) + text_len), err_type,
706 		++oops_count);
707 
708 	spin_unlock_irqrestore(&lock, flags);
709 }
710 
711 #ifdef DEBUG_NVRAM
712 static void __init nvram_print_partitions(char * label)
713 {
714 	struct nvram_partition * tmp_part;
715 
716 	printk(KERN_WARNING "--------%s---------\n", label);
717 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
718 	list_for_each_entry(tmp_part, &nvram_partitions, partition) {
719 		printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
720 		       tmp_part->index, tmp_part->header.signature,
721 		       tmp_part->header.checksum, tmp_part->header.length,
722 		       tmp_part->header.name);
723 	}
724 }
725 #endif
726 
727 
728 static int __init nvram_write_header(struct nvram_partition * part)
729 {
730 	loff_t tmp_index;
731 	int rc;
732 	struct nvram_header phead;
733 
734 	memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
735 	phead.length = cpu_to_be16(phead.length);
736 
737 	tmp_index = part->index;
738 	rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
739 
740 	return rc;
741 }
742 
743 
744 static unsigned char __init nvram_checksum(struct nvram_header *p)
745 {
746 	unsigned int c_sum, c_sum2;
747 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
748 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
749 
750 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
751 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
752 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
753 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
754 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
755 	return c_sum;
756 }
757 
758 /*
759  * Per the criteria passed via nvram_remove_partition(), should this
760  * partition be removed?  1=remove, 0=keep
761  */
762 static int nvram_can_remove_partition(struct nvram_partition *part,
763 		const char *name, int sig, const char *exceptions[])
764 {
765 	if (part->header.signature != sig)
766 		return 0;
767 	if (name) {
768 		if (strncmp(name, part->header.name, 12))
769 			return 0;
770 	} else if (exceptions) {
771 		const char **except;
772 		for (except = exceptions; *except; except++) {
773 			if (!strncmp(*except, part->header.name, 12))
774 				return 0;
775 		}
776 	}
777 	return 1;
778 }
779 
780 /**
781  * nvram_remove_partition - Remove one or more partitions in nvram
782  * @name: name of the partition to remove, or NULL for a
783  *        signature only match
784  * @sig: signature of the partition(s) to remove
785  * @exceptions: When removing all partitions with a matching signature,
786  *        leave these alone.
787  */
788 
789 int __init nvram_remove_partition(const char *name, int sig,
790 						const char *exceptions[])
791 {
792 	struct nvram_partition *part, *prev, *tmp;
793 	int rc;
794 
795 	list_for_each_entry(part, &nvram_partitions, partition) {
796 		if (!nvram_can_remove_partition(part, name, sig, exceptions))
797 			continue;
798 
799 		/* Make partition a free partition */
800 		part->header.signature = NVRAM_SIG_FREE;
801 		memset(part->header.name, 'w', 12);
802 		part->header.checksum = nvram_checksum(&part->header);
803 		rc = nvram_write_header(part);
804 		if (rc <= 0) {
805 			printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
806 			return rc;
807 		}
808 	}
809 
810 	/* Merge contiguous ones */
811 	prev = NULL;
812 	list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
813 		if (part->header.signature != NVRAM_SIG_FREE) {
814 			prev = NULL;
815 			continue;
816 		}
817 		if (prev) {
818 			prev->header.length += part->header.length;
819 			prev->header.checksum = nvram_checksum(&prev->header);
820 			rc = nvram_write_header(prev);
821 			if (rc <= 0) {
822 				printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
823 				return rc;
824 			}
825 			list_del(&part->partition);
826 			kfree(part);
827 		} else
828 			prev = part;
829 	}
830 
831 	return 0;
832 }
833 
834 /**
835  * nvram_create_partition - Create a partition in nvram
836  * @name: name of the partition to create
837  * @sig: signature of the partition to create
838  * @req_size: size of data to allocate in bytes
839  * @min_size: minimum acceptable size (0 means req_size)
840  *
841  * Returns a negative error code or a positive nvram index
842  * of the beginning of the data area of the newly created
843  * partition. If you provided a min_size smaller than req_size
844  * you need to query for the actual size yourself after the
845  * call using nvram_partition_get_size().
846  */
847 loff_t __init nvram_create_partition(const char *name, int sig,
848 				     int req_size, int min_size)
849 {
850 	struct nvram_partition *part;
851 	struct nvram_partition *new_part;
852 	struct nvram_partition *free_part = NULL;
853 	static char nv_init_vals[16];
854 	loff_t tmp_index;
855 	long size = 0;
856 	int rc;
857 
858 	BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
859 
860 	/* Convert sizes from bytes to blocks */
861 	req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
862 	min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
863 
864 	/* If no minimum size specified, make it the same as the
865 	 * requested size
866 	 */
867 	if (min_size == 0)
868 		min_size = req_size;
869 	if (min_size > req_size)
870 		return -EINVAL;
871 
872 	/* Now add one block to each for the header */
873 	req_size += 1;
874 	min_size += 1;
875 
876 	/* Find a free partition that will give us the maximum needed size
877 	   If can't find one that will give us the minimum size needed */
878 	list_for_each_entry(part, &nvram_partitions, partition) {
879 		if (part->header.signature != NVRAM_SIG_FREE)
880 			continue;
881 
882 		if (part->header.length >= req_size) {
883 			size = req_size;
884 			free_part = part;
885 			break;
886 		}
887 		if (part->header.length > size &&
888 		    part->header.length >= min_size) {
889 			size = part->header.length;
890 			free_part = part;
891 		}
892 	}
893 	if (!size)
894 		return -ENOSPC;
895 
896 	/* Create our OS partition */
897 	new_part = kzalloc(sizeof(*new_part), GFP_KERNEL);
898 	if (!new_part) {
899 		pr_err("%s: kmalloc failed\n", __func__);
900 		return -ENOMEM;
901 	}
902 
903 	new_part->index = free_part->index;
904 	new_part->header.signature = sig;
905 	new_part->header.length = size;
906 	memcpy(new_part->header.name, name, strnlen(name, sizeof(new_part->header.name)));
907 	new_part->header.checksum = nvram_checksum(&new_part->header);
908 
909 	rc = nvram_write_header(new_part);
910 	if (rc <= 0) {
911 		pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
912 		kfree(new_part);
913 		return rc;
914 	}
915 	list_add_tail(&new_part->partition, &free_part->partition);
916 
917 	/* Adjust or remove the partition we stole the space from */
918 	if (free_part->header.length > size) {
919 		free_part->index += size * NVRAM_BLOCK_LEN;
920 		free_part->header.length -= size;
921 		free_part->header.checksum = nvram_checksum(&free_part->header);
922 		rc = nvram_write_header(free_part);
923 		if (rc <= 0) {
924 			pr_err("%s: nvram_write_header failed (%d)\n",
925 			       __func__, rc);
926 			return rc;
927 		}
928 	} else {
929 		list_del(&free_part->partition);
930 		kfree(free_part);
931 	}
932 
933 	/* Clear the new partition */
934 	for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
935 	     tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
936 	     tmp_index += NVRAM_BLOCK_LEN) {
937 		rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
938 		if (rc <= 0) {
939 			pr_err("%s: nvram_write failed (%d)\n",
940 			       __func__, rc);
941 			return rc;
942 		}
943 	}
944 
945 	return new_part->index + NVRAM_HEADER_LEN;
946 }
947 
948 /**
949  * nvram_get_partition_size - Get the data size of an nvram partition
950  * @data_index: This is the offset of the start of the data of
951  *              the partition. The same value that is returned by
952  *              nvram_create_partition().
953  */
954 int nvram_get_partition_size(loff_t data_index)
955 {
956 	struct nvram_partition *part;
957 
958 	list_for_each_entry(part, &nvram_partitions, partition) {
959 		if (part->index + NVRAM_HEADER_LEN == data_index)
960 			return (part->header.length - 1) * NVRAM_BLOCK_LEN;
961 	}
962 	return -1;
963 }
964 
965 
966 /**
967  * nvram_find_partition - Find an nvram partition by signature and name
968  * @name: Name of the partition or NULL for any name
969  * @sig: Signature to test against
970  * @out_size: if non-NULL, returns the size of the data part of the partition
971  */
972 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
973 {
974 	struct nvram_partition *p;
975 
976 	list_for_each_entry(p, &nvram_partitions, partition) {
977 		if (p->header.signature == sig &&
978 		    (!name || !strncmp(p->header.name, name, 12))) {
979 			if (out_size)
980 				*out_size = (p->header.length - 1) *
981 					NVRAM_BLOCK_LEN;
982 			return p->index + NVRAM_HEADER_LEN;
983 		}
984 	}
985 	return 0;
986 }
987 
988 int __init nvram_scan_partitions(void)
989 {
990 	loff_t cur_index = 0;
991 	struct nvram_header phead;
992 	struct nvram_partition * tmp_part;
993 	unsigned char c_sum;
994 	char * header;
995 	int total_size;
996 	int err;
997 
998 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
999 		return -ENODEV;
1000 	total_size = ppc_md.nvram_size();
1001 
1002 	header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1003 	if (!header) {
1004 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1005 		return -ENOMEM;
1006 	}
1007 
1008 	while (cur_index < total_size) {
1009 
1010 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1011 		if (err != NVRAM_HEADER_LEN) {
1012 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1013 			       "nvram partitions\n");
1014 			goto out;
1015 		}
1016 
1017 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1018 
1019 		memcpy(&phead, header, NVRAM_HEADER_LEN);
1020 
1021 		phead.length = be16_to_cpu(phead.length);
1022 
1023 		err = 0;
1024 		c_sum = nvram_checksum(&phead);
1025 		if (c_sum != phead.checksum) {
1026 			printk(KERN_WARNING "WARNING: nvram partition checksum"
1027 			       " was %02x, should be %02x!\n",
1028 			       phead.checksum, c_sum);
1029 			printk(KERN_WARNING "Terminating nvram partition scan\n");
1030 			goto out;
1031 		}
1032 		if (!phead.length) {
1033 			printk(KERN_WARNING "WARNING: nvram corruption "
1034 			       "detected: 0-length partition\n");
1035 			goto out;
1036 		}
1037 		tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL);
1038 		err = -ENOMEM;
1039 		if (!tmp_part) {
1040 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1041 			goto out;
1042 		}
1043 
1044 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1045 		tmp_part->index = cur_index;
1046 		list_add_tail(&tmp_part->partition, &nvram_partitions);
1047 
1048 		cur_index += phead.length * NVRAM_BLOCK_LEN;
1049 	}
1050 	err = 0;
1051 
1052 #ifdef DEBUG_NVRAM
1053 	nvram_print_partitions("NVRAM Partitions");
1054 #endif
1055 
1056  out:
1057 	kfree(header);
1058 	return err;
1059 }
1060