xref: /openbmc/linux/arch/powerpc/kernel/nvram_64.c (revision 8cb5d748)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/fs.h>
21 #include <linux/miscdevice.h>
22 #include <linux/fcntl.h>
23 #include <linux/nvram.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/kmsg_dump.h>
28 #include <linux/pagemap.h>
29 #include <linux/pstore.h>
30 #include <linux/zlib.h>
31 #include <linux/uaccess.h>
32 #include <asm/nvram.h>
33 #include <asm/rtas.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36 
37 #undef DEBUG_NVRAM
38 
39 #define NVRAM_HEADER_LEN	sizeof(struct nvram_header)
40 #define NVRAM_BLOCK_LEN		NVRAM_HEADER_LEN
41 
42 /* If change this size, then change the size of NVNAME_LEN */
43 struct nvram_header {
44 	unsigned char signature;
45 	unsigned char checksum;
46 	unsigned short length;
47 	/* Terminating null required only for names < 12 chars. */
48 	char name[12];
49 };
50 
51 struct nvram_partition {
52 	struct list_head partition;
53 	struct nvram_header header;
54 	unsigned int index;
55 };
56 
57 static LIST_HEAD(nvram_partitions);
58 
59 #ifdef CONFIG_PPC_PSERIES
60 struct nvram_os_partition rtas_log_partition = {
61 	.name = "ibm,rtas-log",
62 	.req_size = 2079,
63 	.min_size = 1055,
64 	.index = -1,
65 	.os_partition = true
66 };
67 #endif
68 
69 struct nvram_os_partition oops_log_partition = {
70 	.name = "lnx,oops-log",
71 	.req_size = 4000,
72 	.min_size = 2000,
73 	.index = -1,
74 	.os_partition = true
75 };
76 
77 static const char *nvram_os_partitions[] = {
78 #ifdef CONFIG_PPC_PSERIES
79 	"ibm,rtas-log",
80 #endif
81 	"lnx,oops-log",
82 	NULL
83 };
84 
85 static void oops_to_nvram(struct kmsg_dumper *dumper,
86 			  enum kmsg_dump_reason reason);
87 
88 static struct kmsg_dumper nvram_kmsg_dumper = {
89 	.dump = oops_to_nvram
90 };
91 
92 /*
93  * For capturing and compressing an oops or panic report...
94 
95  * big_oops_buf[] holds the uncompressed text we're capturing.
96  *
97  * oops_buf[] holds the compressed text, preceded by a oops header.
98  * oops header has u16 holding the version of oops header (to differentiate
99  * between old and new format header) followed by u16 holding the length of
100  * the compressed* text (*Or uncompressed, if compression fails.) and u64
101  * holding the timestamp. oops_buf[] gets written to NVRAM.
102  *
103  * oops_log_info points to the header. oops_data points to the compressed text.
104  *
105  * +- oops_buf
106  * |                                   +- oops_data
107  * v                                   v
108  * +-----------+-----------+-----------+------------------------+
109  * | version   | length    | timestamp | text                   |
110  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
111  * +-----------+-----------+-----------+------------------------+
112  * ^
113  * +- oops_log_info
114  *
115  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
116  */
117 static size_t big_oops_buf_sz;
118 static char *big_oops_buf, *oops_buf;
119 static char *oops_data;
120 static size_t oops_data_sz;
121 
122 /* Compression parameters */
123 #define COMPR_LEVEL 6
124 #define WINDOW_BITS 12
125 #define MEM_LEVEL 4
126 static struct z_stream_s stream;
127 
128 #ifdef CONFIG_PSTORE
129 #ifdef CONFIG_PPC_POWERNV
130 static struct nvram_os_partition skiboot_partition = {
131 	.name = "ibm,skiboot",
132 	.index = -1,
133 	.os_partition = false
134 };
135 #endif
136 
137 #ifdef CONFIG_PPC_PSERIES
138 static struct nvram_os_partition of_config_partition = {
139 	.name = "of-config",
140 	.index = -1,
141 	.os_partition = false
142 };
143 #endif
144 
145 static struct nvram_os_partition common_partition = {
146 	.name = "common",
147 	.index = -1,
148 	.os_partition = false
149 };
150 
151 static enum pstore_type_id nvram_type_ids[] = {
152 	PSTORE_TYPE_DMESG,
153 	PSTORE_TYPE_PPC_COMMON,
154 	-1,
155 	-1,
156 	-1
157 };
158 static int read_type;
159 #endif
160 
161 /* nvram_write_os_partition
162  *
163  * We need to buffer the error logs into nvram to ensure that we have
164  * the failure information to decode.  If we have a severe error there
165  * is no way to guarantee that the OS or the machine is in a state to
166  * get back to user land and write the error to disk.  For example if
167  * the SCSI device driver causes a Machine Check by writing to a bad
168  * IO address, there is no way of guaranteeing that the device driver
169  * is in any state that is would also be able to write the error data
170  * captured to disk, thus we buffer it in NVRAM for analysis on the
171  * next boot.
172  *
173  * In NVRAM the partition containing the error log buffer will looks like:
174  * Header (in bytes):
175  * +-----------+----------+--------+------------+------------------+
176  * | signature | checksum | length | name       | data             |
177  * |0          |1         |2      3|4         15|16        length-1|
178  * +-----------+----------+--------+------------+------------------+
179  *
180  * The 'data' section would look like (in bytes):
181  * +--------------+------------+-----------------------------------+
182  * | event_logged | sequence # | error log                         |
183  * |0            3|4          7|8                  error_log_size-1|
184  * +--------------+------------+-----------------------------------+
185  *
186  * event_logged: 0 if event has not been logged to syslog, 1 if it has
187  * sequence #: The unique sequence # for each event. (until it wraps)
188  * error log: The error log from event_scan
189  */
190 int nvram_write_os_partition(struct nvram_os_partition *part,
191 			     char *buff, int length,
192 			     unsigned int err_type,
193 			     unsigned int error_log_cnt)
194 {
195 	int rc;
196 	loff_t tmp_index;
197 	struct err_log_info info;
198 
199 	if (part->index == -1)
200 		return -ESPIPE;
201 
202 	if (length > part->size)
203 		length = part->size;
204 
205 	info.error_type = cpu_to_be32(err_type);
206 	info.seq_num = cpu_to_be32(error_log_cnt);
207 
208 	tmp_index = part->index;
209 
210 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
211 				&tmp_index);
212 	if (rc <= 0) {
213 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
214 		return rc;
215 	}
216 
217 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
218 	if (rc <= 0) {
219 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
220 		return rc;
221 	}
222 
223 	return 0;
224 }
225 
226 /* nvram_read_partition
227  *
228  * Reads nvram partition for at most 'length'
229  */
230 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
231 			 int length, unsigned int *err_type,
232 			 unsigned int *error_log_cnt)
233 {
234 	int rc;
235 	loff_t tmp_index;
236 	struct err_log_info info;
237 
238 	if (part->index == -1)
239 		return -1;
240 
241 	if (length > part->size)
242 		length = part->size;
243 
244 	tmp_index = part->index;
245 
246 	if (part->os_partition) {
247 		rc = ppc_md.nvram_read((char *)&info,
248 					sizeof(struct err_log_info),
249 					&tmp_index);
250 		if (rc <= 0) {
251 			pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
252 			return rc;
253 		}
254 	}
255 
256 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
257 	if (rc <= 0) {
258 		pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
259 		return rc;
260 	}
261 
262 	if (part->os_partition) {
263 		*error_log_cnt = be32_to_cpu(info.seq_num);
264 		*err_type = be32_to_cpu(info.error_type);
265 	}
266 
267 	return 0;
268 }
269 
270 /* nvram_init_os_partition
271  *
272  * This sets up a partition with an "OS" signature.
273  *
274  * The general strategy is the following:
275  * 1.) If a partition with the indicated name already exists...
276  *	- If it's large enough, use it.
277  *	- Otherwise, recycle it and keep going.
278  * 2.) Search for a free partition that is large enough.
279  * 3.) If there's not a free partition large enough, recycle any obsolete
280  * OS partitions and try again.
281  * 4.) Will first try getting a chunk that will satisfy the requested size.
282  * 5.) If a chunk of the requested size cannot be allocated, then try finding
283  * a chunk that will satisfy the minum needed.
284  *
285  * Returns 0 on success, else -1.
286  */
287 int __init nvram_init_os_partition(struct nvram_os_partition *part)
288 {
289 	loff_t p;
290 	int size;
291 
292 	/* Look for ours */
293 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
294 
295 	/* Found one but too small, remove it */
296 	if (p && size < part->min_size) {
297 		pr_info("nvram: Found too small %s partition,"
298 					" removing it...\n", part->name);
299 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
300 		p = 0;
301 	}
302 
303 	/* Create one if we didn't find */
304 	if (!p) {
305 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
306 					part->req_size, part->min_size);
307 		if (p == -ENOSPC) {
308 			pr_info("nvram: No room to create %s partition, "
309 				"deleting any obsolete OS partitions...\n",
310 				part->name);
311 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
312 					nvram_os_partitions);
313 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
314 					part->req_size, part->min_size);
315 		}
316 	}
317 
318 	if (p <= 0) {
319 		pr_err("nvram: Failed to find or create %s"
320 		       " partition, err %d\n", part->name, (int)p);
321 		return -1;
322 	}
323 
324 	part->index = p;
325 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
326 
327 	return 0;
328 }
329 
330 /* Derived from logfs_compress() */
331 static int nvram_compress(const void *in, void *out, size_t inlen,
332 							size_t outlen)
333 {
334 	int err, ret;
335 
336 	ret = -EIO;
337 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
338 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
339 	if (err != Z_OK)
340 		goto error;
341 
342 	stream.next_in = in;
343 	stream.avail_in = inlen;
344 	stream.total_in = 0;
345 	stream.next_out = out;
346 	stream.avail_out = outlen;
347 	stream.total_out = 0;
348 
349 	err = zlib_deflate(&stream, Z_FINISH);
350 	if (err != Z_STREAM_END)
351 		goto error;
352 
353 	err = zlib_deflateEnd(&stream);
354 	if (err != Z_OK)
355 		goto error;
356 
357 	if (stream.total_out >= stream.total_in)
358 		goto error;
359 
360 	ret = stream.total_out;
361 error:
362 	return ret;
363 }
364 
365 /* Compress the text from big_oops_buf into oops_buf. */
366 static int zip_oops(size_t text_len)
367 {
368 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
369 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
370 								oops_data_sz);
371 	if (zipped_len < 0) {
372 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
373 		pr_err("nvram: logging uncompressed oops/panic report\n");
374 		return -1;
375 	}
376 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
377 	oops_hdr->report_length = cpu_to_be16(zipped_len);
378 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
379 	return 0;
380 }
381 
382 #ifdef CONFIG_PSTORE
383 static int nvram_pstore_open(struct pstore_info *psi)
384 {
385 	/* Reset the iterator to start reading partitions again */
386 	read_type = -1;
387 	return 0;
388 }
389 
390 /**
391  * nvram_pstore_write - pstore write callback for nvram
392  * @record:             pstore record to write, with @id to be set
393  *
394  * Called by pstore_dump() when an oops or panic report is logged in the
395  * printk buffer.
396  * Returns 0 on successful write.
397  */
398 static int nvram_pstore_write(struct pstore_record *record)
399 {
400 	int rc;
401 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
402 	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
403 
404 	/* part 1 has the recent messages from printk buffer */
405 	if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG))
406 		return -1;
407 
408 	if (clobbering_unread_rtas_event())
409 		return -1;
410 
411 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
412 	oops_hdr->report_length = cpu_to_be16(record->size);
413 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
414 
415 	if (record->compressed)
416 		err_type = ERR_TYPE_KERNEL_PANIC_GZ;
417 
418 	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
419 		(int) (sizeof(*oops_hdr) + record->size), err_type,
420 		record->count);
421 
422 	if (rc != 0)
423 		return rc;
424 
425 	record->id = record->part;
426 	return 0;
427 }
428 
429 /*
430  * Reads the oops/panic report, rtas, of-config and common partition.
431  * Returns the length of the data we read from each partition.
432  * Returns 0 if we've been called before.
433  */
434 static ssize_t nvram_pstore_read(struct pstore_record *record)
435 {
436 	struct oops_log_info *oops_hdr;
437 	unsigned int err_type, id_no, size = 0;
438 	struct nvram_os_partition *part = NULL;
439 	char *buff = NULL;
440 	int sig = 0;
441 	loff_t p;
442 
443 	read_type++;
444 
445 	switch (nvram_type_ids[read_type]) {
446 	case PSTORE_TYPE_DMESG:
447 		part = &oops_log_partition;
448 		record->type = PSTORE_TYPE_DMESG;
449 		break;
450 	case PSTORE_TYPE_PPC_COMMON:
451 		sig = NVRAM_SIG_SYS;
452 		part = &common_partition;
453 		record->type = PSTORE_TYPE_PPC_COMMON;
454 		record->id = PSTORE_TYPE_PPC_COMMON;
455 		record->time.tv_sec = 0;
456 		record->time.tv_nsec = 0;
457 		break;
458 #ifdef CONFIG_PPC_PSERIES
459 	case PSTORE_TYPE_PPC_RTAS:
460 		part = &rtas_log_partition;
461 		record->type = PSTORE_TYPE_PPC_RTAS;
462 		record->time.tv_sec = last_rtas_event;
463 		record->time.tv_nsec = 0;
464 		break;
465 	case PSTORE_TYPE_PPC_OF:
466 		sig = NVRAM_SIG_OF;
467 		part = &of_config_partition;
468 		record->type = PSTORE_TYPE_PPC_OF;
469 		record->id = PSTORE_TYPE_PPC_OF;
470 		record->time.tv_sec = 0;
471 		record->time.tv_nsec = 0;
472 		break;
473 #endif
474 #ifdef CONFIG_PPC_POWERNV
475 	case PSTORE_TYPE_PPC_OPAL:
476 		sig = NVRAM_SIG_FW;
477 		part = &skiboot_partition;
478 		record->type = PSTORE_TYPE_PPC_OPAL;
479 		record->id = PSTORE_TYPE_PPC_OPAL;
480 		record->time.tv_sec = 0;
481 		record->time.tv_nsec = 0;
482 		break;
483 #endif
484 	default:
485 		return 0;
486 	}
487 
488 	if (!part->os_partition) {
489 		p = nvram_find_partition(part->name, sig, &size);
490 		if (p <= 0) {
491 			pr_err("nvram: Failed to find partition %s, "
492 				"err %d\n", part->name, (int)p);
493 			return 0;
494 		}
495 		part->index = p;
496 		part->size = size;
497 	}
498 
499 	buff = kmalloc(part->size, GFP_KERNEL);
500 
501 	if (!buff)
502 		return -ENOMEM;
503 
504 	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
505 		kfree(buff);
506 		return 0;
507 	}
508 
509 	record->count = 0;
510 
511 	if (part->os_partition)
512 		record->id = id_no;
513 
514 	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
515 		size_t length, hdr_size;
516 
517 		oops_hdr = (struct oops_log_info *)buff;
518 		if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
519 			/* Old format oops header had 2-byte record size */
520 			hdr_size = sizeof(u16);
521 			length = be16_to_cpu(oops_hdr->version);
522 			record->time.tv_sec = 0;
523 			record->time.tv_nsec = 0;
524 		} else {
525 			hdr_size = sizeof(*oops_hdr);
526 			length = be16_to_cpu(oops_hdr->report_length);
527 			record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp);
528 			record->time.tv_nsec = 0;
529 		}
530 		record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
531 		kfree(buff);
532 		if (record->buf == NULL)
533 			return -ENOMEM;
534 
535 		record->ecc_notice_size = 0;
536 		if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
537 			record->compressed = true;
538 		else
539 			record->compressed = false;
540 		return length;
541 	}
542 
543 	record->buf = buff;
544 	return part->size;
545 }
546 
547 static struct pstore_info nvram_pstore_info = {
548 	.owner = THIS_MODULE,
549 	.name = "nvram",
550 	.flags = PSTORE_FLAGS_DMESG,
551 	.open = nvram_pstore_open,
552 	.read = nvram_pstore_read,
553 	.write = nvram_pstore_write,
554 };
555 
556 static int nvram_pstore_init(void)
557 {
558 	int rc = 0;
559 
560 	if (machine_is(pseries)) {
561 		nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
562 		nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
563 	} else
564 		nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
565 
566 	nvram_pstore_info.buf = oops_data;
567 	nvram_pstore_info.bufsize = oops_data_sz;
568 
569 	spin_lock_init(&nvram_pstore_info.buf_lock);
570 
571 	rc = pstore_register(&nvram_pstore_info);
572 	if (rc && (rc != -EPERM))
573 		/* Print error only when pstore.backend == nvram */
574 		pr_err("nvram: pstore_register() failed, returned %d. "
575 				"Defaults to kmsg_dump\n", rc);
576 
577 	return rc;
578 }
579 #else
580 static int nvram_pstore_init(void)
581 {
582 	return -1;
583 }
584 #endif
585 
586 void __init nvram_init_oops_partition(int rtas_partition_exists)
587 {
588 	int rc;
589 
590 	rc = nvram_init_os_partition(&oops_log_partition);
591 	if (rc != 0) {
592 #ifdef CONFIG_PPC_PSERIES
593 		if (!rtas_partition_exists) {
594 			pr_err("nvram: Failed to initialize oops partition!");
595 			return;
596 		}
597 		pr_notice("nvram: Using %s partition to log both"
598 			" RTAS errors and oops/panic reports\n",
599 			rtas_log_partition.name);
600 		memcpy(&oops_log_partition, &rtas_log_partition,
601 						sizeof(rtas_log_partition));
602 #else
603 		pr_err("nvram: Failed to initialize oops partition!");
604 		return;
605 #endif
606 	}
607 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
608 	if (!oops_buf) {
609 		pr_err("nvram: No memory for %s partition\n",
610 						oops_log_partition.name);
611 		return;
612 	}
613 	oops_data = oops_buf + sizeof(struct oops_log_info);
614 	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
615 
616 	rc = nvram_pstore_init();
617 
618 	if (!rc)
619 		return;
620 
621 	/*
622 	 * Figure compression (preceded by elimination of each line's <n>
623 	 * severity prefix) will reduce the oops/panic report to at most
624 	 * 45% of its original size.
625 	 */
626 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
627 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
628 	if (big_oops_buf) {
629 		stream.workspace =  kmalloc(zlib_deflate_workspacesize(
630 					WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
631 		if (!stream.workspace) {
632 			pr_err("nvram: No memory for compression workspace; "
633 				"skipping compression of %s partition data\n",
634 				oops_log_partition.name);
635 			kfree(big_oops_buf);
636 			big_oops_buf = NULL;
637 		}
638 	} else {
639 		pr_err("No memory for uncompressed %s data; "
640 			"skipping compression\n", oops_log_partition.name);
641 		stream.workspace = NULL;
642 	}
643 
644 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
645 	if (rc != 0) {
646 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
647 		kfree(oops_buf);
648 		kfree(big_oops_buf);
649 		kfree(stream.workspace);
650 	}
651 }
652 
653 /*
654  * This is our kmsg_dump callback, called after an oops or panic report
655  * has been written to the printk buffer.  We want to capture as much
656  * of the printk buffer as possible.  First, capture as much as we can
657  * that we think will compress sufficiently to fit in the lnx,oops-log
658  * partition.  If that's too much, go back and capture uncompressed text.
659  */
660 static void oops_to_nvram(struct kmsg_dumper *dumper,
661 			  enum kmsg_dump_reason reason)
662 {
663 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
664 	static unsigned int oops_count = 0;
665 	static bool panicking = false;
666 	static DEFINE_SPINLOCK(lock);
667 	unsigned long flags;
668 	size_t text_len;
669 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
670 	int rc = -1;
671 
672 	switch (reason) {
673 	case KMSG_DUMP_RESTART:
674 	case KMSG_DUMP_HALT:
675 	case KMSG_DUMP_POWEROFF:
676 		/* These are almost always orderly shutdowns. */
677 		return;
678 	case KMSG_DUMP_OOPS:
679 		break;
680 	case KMSG_DUMP_PANIC:
681 		panicking = true;
682 		break;
683 	case KMSG_DUMP_EMERG:
684 		if (panicking)
685 			/* Panic report already captured. */
686 			return;
687 		break;
688 	default:
689 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
690 		       __func__, (int) reason);
691 		return;
692 	}
693 
694 	if (clobbering_unread_rtas_event())
695 		return;
696 
697 	if (!spin_trylock_irqsave(&lock, flags))
698 		return;
699 
700 	if (big_oops_buf) {
701 		kmsg_dump_get_buffer(dumper, false,
702 				     big_oops_buf, big_oops_buf_sz, &text_len);
703 		rc = zip_oops(text_len);
704 	}
705 	if (rc != 0) {
706 		kmsg_dump_rewind(dumper);
707 		kmsg_dump_get_buffer(dumper, false,
708 				     oops_data, oops_data_sz, &text_len);
709 		err_type = ERR_TYPE_KERNEL_PANIC;
710 		oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
711 		oops_hdr->report_length = cpu_to_be16(text_len);
712 		oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
713 	}
714 
715 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
716 		(int) (sizeof(*oops_hdr) + text_len), err_type,
717 		++oops_count);
718 
719 	spin_unlock_irqrestore(&lock, flags);
720 }
721 
722 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
723 {
724 	if (ppc_md.nvram_size == NULL)
725 		return -ENODEV;
726 	return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
727 					ppc_md.nvram_size());
728 }
729 
730 
731 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
732 			  size_t count, loff_t *ppos)
733 {
734 	ssize_t ret;
735 	char *tmp = NULL;
736 	ssize_t size;
737 
738 	if (!ppc_md.nvram_size) {
739 		ret = -ENODEV;
740 		goto out;
741 	}
742 
743 	size = ppc_md.nvram_size();
744 	if (size < 0) {
745 		ret = size;
746 		goto out;
747 	}
748 
749 	if (*ppos >= size) {
750 		ret = 0;
751 		goto out;
752 	}
753 
754 	count = min_t(size_t, count, size - *ppos);
755 	count = min(count, PAGE_SIZE);
756 
757 	tmp = kmalloc(count, GFP_KERNEL);
758 	if (!tmp) {
759 		ret = -ENOMEM;
760 		goto out;
761 	}
762 
763 	ret = ppc_md.nvram_read(tmp, count, ppos);
764 	if (ret <= 0)
765 		goto out;
766 
767 	if (copy_to_user(buf, tmp, ret))
768 		ret = -EFAULT;
769 
770 out:
771 	kfree(tmp);
772 	return ret;
773 
774 }
775 
776 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
777 			  size_t count, loff_t *ppos)
778 {
779 	ssize_t ret;
780 	char *tmp = NULL;
781 	ssize_t size;
782 
783 	ret = -ENODEV;
784 	if (!ppc_md.nvram_size)
785 		goto out;
786 
787 	ret = 0;
788 	size = ppc_md.nvram_size();
789 	if (*ppos >= size || size < 0)
790 		goto out;
791 
792 	count = min_t(size_t, count, size - *ppos);
793 	count = min(count, PAGE_SIZE);
794 
795 	tmp = memdup_user(buf, count);
796 	if (IS_ERR(tmp)) {
797 		ret = PTR_ERR(tmp);
798 		goto out;
799 	}
800 
801 	ret = ppc_md.nvram_write(tmp, count, ppos);
802 
803 	kfree(tmp);
804 out:
805 	return ret;
806 }
807 
808 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
809 			    unsigned long arg)
810 {
811 	switch(cmd) {
812 #ifdef CONFIG_PPC_PMAC
813 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
814 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
815 	case IOC_NVRAM_GET_OFFSET: {
816 		int part, offset;
817 
818 		if (!machine_is(powermac))
819 			return -EINVAL;
820 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
821 			return -EFAULT;
822 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
823 			return -EINVAL;
824 		offset = pmac_get_partition(part);
825 		if (offset < 0)
826 			return offset;
827 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
828 			return -EFAULT;
829 		return 0;
830 	}
831 #endif /* CONFIG_PPC_PMAC */
832 	default:
833 		return -EINVAL;
834 	}
835 }
836 
837 static const struct file_operations nvram_fops = {
838 	.owner		= THIS_MODULE,
839 	.llseek		= dev_nvram_llseek,
840 	.read		= dev_nvram_read,
841 	.write		= dev_nvram_write,
842 	.unlocked_ioctl	= dev_nvram_ioctl,
843 };
844 
845 static struct miscdevice nvram_dev = {
846 	NVRAM_MINOR,
847 	"nvram",
848 	&nvram_fops
849 };
850 
851 
852 #ifdef DEBUG_NVRAM
853 static void __init nvram_print_partitions(char * label)
854 {
855 	struct nvram_partition * tmp_part;
856 
857 	printk(KERN_WARNING "--------%s---------\n", label);
858 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
859 	list_for_each_entry(tmp_part, &nvram_partitions, partition) {
860 		printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
861 		       tmp_part->index, tmp_part->header.signature,
862 		       tmp_part->header.checksum, tmp_part->header.length,
863 		       tmp_part->header.name);
864 	}
865 }
866 #endif
867 
868 
869 static int __init nvram_write_header(struct nvram_partition * part)
870 {
871 	loff_t tmp_index;
872 	int rc;
873 	struct nvram_header phead;
874 
875 	memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
876 	phead.length = cpu_to_be16(phead.length);
877 
878 	tmp_index = part->index;
879 	rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
880 
881 	return rc;
882 }
883 
884 
885 static unsigned char __init nvram_checksum(struct nvram_header *p)
886 {
887 	unsigned int c_sum, c_sum2;
888 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
889 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
890 
891 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
892 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
893 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
894 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
895 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
896 	return c_sum;
897 }
898 
899 /*
900  * Per the criteria passed via nvram_remove_partition(), should this
901  * partition be removed?  1=remove, 0=keep
902  */
903 static int nvram_can_remove_partition(struct nvram_partition *part,
904 		const char *name, int sig, const char *exceptions[])
905 {
906 	if (part->header.signature != sig)
907 		return 0;
908 	if (name) {
909 		if (strncmp(name, part->header.name, 12))
910 			return 0;
911 	} else if (exceptions) {
912 		const char **except;
913 		for (except = exceptions; *except; except++) {
914 			if (!strncmp(*except, part->header.name, 12))
915 				return 0;
916 		}
917 	}
918 	return 1;
919 }
920 
921 /**
922  * nvram_remove_partition - Remove one or more partitions in nvram
923  * @name: name of the partition to remove, or NULL for a
924  *        signature only match
925  * @sig: signature of the partition(s) to remove
926  * @exceptions: When removing all partitions with a matching signature,
927  *        leave these alone.
928  */
929 
930 int __init nvram_remove_partition(const char *name, int sig,
931 						const char *exceptions[])
932 {
933 	struct nvram_partition *part, *prev, *tmp;
934 	int rc;
935 
936 	list_for_each_entry(part, &nvram_partitions, partition) {
937 		if (!nvram_can_remove_partition(part, name, sig, exceptions))
938 			continue;
939 
940 		/* Make partition a free partition */
941 		part->header.signature = NVRAM_SIG_FREE;
942 		memset(part->header.name, 'w', 12);
943 		part->header.checksum = nvram_checksum(&part->header);
944 		rc = nvram_write_header(part);
945 		if (rc <= 0) {
946 			printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
947 			return rc;
948 		}
949 	}
950 
951 	/* Merge contiguous ones */
952 	prev = NULL;
953 	list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
954 		if (part->header.signature != NVRAM_SIG_FREE) {
955 			prev = NULL;
956 			continue;
957 		}
958 		if (prev) {
959 			prev->header.length += part->header.length;
960 			prev->header.checksum = nvram_checksum(&prev->header);
961 			rc = nvram_write_header(prev);
962 			if (rc <= 0) {
963 				printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
964 				return rc;
965 			}
966 			list_del(&part->partition);
967 			kfree(part);
968 		} else
969 			prev = part;
970 	}
971 
972 	return 0;
973 }
974 
975 /**
976  * nvram_create_partition - Create a partition in nvram
977  * @name: name of the partition to create
978  * @sig: signature of the partition to create
979  * @req_size: size of data to allocate in bytes
980  * @min_size: minimum acceptable size (0 means req_size)
981  *
982  * Returns a negative error code or a positive nvram index
983  * of the beginning of the data area of the newly created
984  * partition. If you provided a min_size smaller than req_size
985  * you need to query for the actual size yourself after the
986  * call using nvram_partition_get_size().
987  */
988 loff_t __init nvram_create_partition(const char *name, int sig,
989 				     int req_size, int min_size)
990 {
991 	struct nvram_partition *part;
992 	struct nvram_partition *new_part;
993 	struct nvram_partition *free_part = NULL;
994 	static char nv_init_vals[16];
995 	loff_t tmp_index;
996 	long size = 0;
997 	int rc;
998 
999 	/* Convert sizes from bytes to blocks */
1000 	req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1001 	min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1002 
1003 	/* If no minimum size specified, make it the same as the
1004 	 * requested size
1005 	 */
1006 	if (min_size == 0)
1007 		min_size = req_size;
1008 	if (min_size > req_size)
1009 		return -EINVAL;
1010 
1011 	/* Now add one block to each for the header */
1012 	req_size += 1;
1013 	min_size += 1;
1014 
1015 	/* Find a free partition that will give us the maximum needed size
1016 	   If can't find one that will give us the minimum size needed */
1017 	list_for_each_entry(part, &nvram_partitions, partition) {
1018 		if (part->header.signature != NVRAM_SIG_FREE)
1019 			continue;
1020 
1021 		if (part->header.length >= req_size) {
1022 			size = req_size;
1023 			free_part = part;
1024 			break;
1025 		}
1026 		if (part->header.length > size &&
1027 		    part->header.length >= min_size) {
1028 			size = part->header.length;
1029 			free_part = part;
1030 		}
1031 	}
1032 	if (!size)
1033 		return -ENOSPC;
1034 
1035 	/* Create our OS partition */
1036 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1037 	if (!new_part) {
1038 		pr_err("%s: kmalloc failed\n", __func__);
1039 		return -ENOMEM;
1040 	}
1041 
1042 	new_part->index = free_part->index;
1043 	new_part->header.signature = sig;
1044 	new_part->header.length = size;
1045 	strncpy(new_part->header.name, name, 12);
1046 	new_part->header.checksum = nvram_checksum(&new_part->header);
1047 
1048 	rc = nvram_write_header(new_part);
1049 	if (rc <= 0) {
1050 		pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1051 		kfree(new_part);
1052 		return rc;
1053 	}
1054 	list_add_tail(&new_part->partition, &free_part->partition);
1055 
1056 	/* Adjust or remove the partition we stole the space from */
1057 	if (free_part->header.length > size) {
1058 		free_part->index += size * NVRAM_BLOCK_LEN;
1059 		free_part->header.length -= size;
1060 		free_part->header.checksum = nvram_checksum(&free_part->header);
1061 		rc = nvram_write_header(free_part);
1062 		if (rc <= 0) {
1063 			pr_err("%s: nvram_write_header failed (%d)\n",
1064 			       __func__, rc);
1065 			return rc;
1066 		}
1067 	} else {
1068 		list_del(&free_part->partition);
1069 		kfree(free_part);
1070 	}
1071 
1072 	/* Clear the new partition */
1073 	for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1074 	     tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1075 	     tmp_index += NVRAM_BLOCK_LEN) {
1076 		rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1077 		if (rc <= 0) {
1078 			pr_err("%s: nvram_write failed (%d)\n",
1079 			       __func__, rc);
1080 			return rc;
1081 		}
1082 	}
1083 
1084 	return new_part->index + NVRAM_HEADER_LEN;
1085 }
1086 
1087 /**
1088  * nvram_get_partition_size - Get the data size of an nvram partition
1089  * @data_index: This is the offset of the start of the data of
1090  *              the partition. The same value that is returned by
1091  *              nvram_create_partition().
1092  */
1093 int nvram_get_partition_size(loff_t data_index)
1094 {
1095 	struct nvram_partition *part;
1096 
1097 	list_for_each_entry(part, &nvram_partitions, partition) {
1098 		if (part->index + NVRAM_HEADER_LEN == data_index)
1099 			return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1100 	}
1101 	return -1;
1102 }
1103 
1104 
1105 /**
1106  * nvram_find_partition - Find an nvram partition by signature and name
1107  * @name: Name of the partition or NULL for any name
1108  * @sig: Signature to test against
1109  * @out_size: if non-NULL, returns the size of the data part of the partition
1110  */
1111 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1112 {
1113 	struct nvram_partition *p;
1114 
1115 	list_for_each_entry(p, &nvram_partitions, partition) {
1116 		if (p->header.signature == sig &&
1117 		    (!name || !strncmp(p->header.name, name, 12))) {
1118 			if (out_size)
1119 				*out_size = (p->header.length - 1) *
1120 					NVRAM_BLOCK_LEN;
1121 			return p->index + NVRAM_HEADER_LEN;
1122 		}
1123 	}
1124 	return 0;
1125 }
1126 
1127 int __init nvram_scan_partitions(void)
1128 {
1129 	loff_t cur_index = 0;
1130 	struct nvram_header phead;
1131 	struct nvram_partition * tmp_part;
1132 	unsigned char c_sum;
1133 	char * header;
1134 	int total_size;
1135 	int err;
1136 
1137 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1138 		return -ENODEV;
1139 	total_size = ppc_md.nvram_size();
1140 
1141 	header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1142 	if (!header) {
1143 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1144 		return -ENOMEM;
1145 	}
1146 
1147 	while (cur_index < total_size) {
1148 
1149 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1150 		if (err != NVRAM_HEADER_LEN) {
1151 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1152 			       "nvram partitions\n");
1153 			goto out;
1154 		}
1155 
1156 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1157 
1158 		memcpy(&phead, header, NVRAM_HEADER_LEN);
1159 
1160 		phead.length = be16_to_cpu(phead.length);
1161 
1162 		err = 0;
1163 		c_sum = nvram_checksum(&phead);
1164 		if (c_sum != phead.checksum) {
1165 			printk(KERN_WARNING "WARNING: nvram partition checksum"
1166 			       " was %02x, should be %02x!\n",
1167 			       phead.checksum, c_sum);
1168 			printk(KERN_WARNING "Terminating nvram partition scan\n");
1169 			goto out;
1170 		}
1171 		if (!phead.length) {
1172 			printk(KERN_WARNING "WARNING: nvram corruption "
1173 			       "detected: 0-length partition\n");
1174 			goto out;
1175 		}
1176 		tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1177 		err = -ENOMEM;
1178 		if (!tmp_part) {
1179 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1180 			goto out;
1181 		}
1182 
1183 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1184 		tmp_part->index = cur_index;
1185 		list_add_tail(&tmp_part->partition, &nvram_partitions);
1186 
1187 		cur_index += phead.length * NVRAM_BLOCK_LEN;
1188 	}
1189 	err = 0;
1190 
1191 #ifdef DEBUG_NVRAM
1192 	nvram_print_partitions("NVRAM Partitions");
1193 #endif
1194 
1195  out:
1196 	kfree(header);
1197 	return err;
1198 }
1199 
1200 static int __init nvram_init(void)
1201 {
1202 	int rc;
1203 
1204 	BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1205 
1206 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1207 		return  -ENODEV;
1208 
1209   	rc = misc_register(&nvram_dev);
1210 	if (rc != 0) {
1211 		printk(KERN_ERR "nvram_init: failed to register device\n");
1212 		return rc;
1213 	}
1214 
1215   	return rc;
1216 }
1217 device_initcall(nvram_init);
1218