xref: /openbmc/linux/arch/powerpc/kernel/nvram_64.c (revision 87c2ce3b)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/module.h>
19 
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <asm/uaccess.h>
30 #include <asm/nvram.h>
31 #include <asm/rtas.h>
32 #include <asm/prom.h>
33 #include <asm/machdep.h>
34 
35 #undef DEBUG_NVRAM
36 
37 static int nvram_scan_partitions(void);
38 static int nvram_setup_partition(void);
39 static int nvram_create_os_partition(void);
40 static int nvram_remove_os_partition(void);
41 
42 static struct nvram_partition * nvram_part;
43 static long nvram_error_log_index = -1;
44 static long nvram_error_log_size = 0;
45 
46 int no_logging = 1; 	/* Until we initialize everything,
47 			 * make sure we don't try logging
48 			 * anything */
49 
50 extern volatile int error_log_cnt;
51 
52 struct err_log_info {
53 	int error_type;
54 	unsigned int seq_num;
55 };
56 
57 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
58 {
59 	int size;
60 
61 	if (ppc_md.nvram_size == NULL)
62 		return -ENODEV;
63 	size = ppc_md.nvram_size();
64 
65 	switch (origin) {
66 	case 1:
67 		offset += file->f_pos;
68 		break;
69 	case 2:
70 		offset += size;
71 		break;
72 	}
73 	if (offset < 0)
74 		return -EINVAL;
75 	file->f_pos = offset;
76 	return file->f_pos;
77 }
78 
79 
80 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
81 			  size_t count, loff_t *ppos)
82 {
83 	ssize_t ret;
84 	char *tmp = NULL;
85 	ssize_t size;
86 
87 	ret = -ENODEV;
88 	if (!ppc_md.nvram_size)
89 		goto out;
90 
91 	ret = 0;
92 	size = ppc_md.nvram_size();
93 	if (*ppos >= size || size < 0)
94 		goto out;
95 
96 	count = min_t(size_t, count, size - *ppos);
97 	count = min(count, PAGE_SIZE);
98 
99 	ret = -ENOMEM;
100 	tmp = kmalloc(count, GFP_KERNEL);
101 	if (!tmp)
102 		goto out;
103 
104 	ret = ppc_md.nvram_read(tmp, count, ppos);
105 	if (ret <= 0)
106 		goto out;
107 
108 	if (copy_to_user(buf, tmp, ret))
109 		ret = -EFAULT;
110 
111 out:
112 	kfree(tmp);
113 	return ret;
114 
115 }
116 
117 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
118 			  size_t count, loff_t *ppos)
119 {
120 	ssize_t ret;
121 	char *tmp = NULL;
122 	ssize_t size;
123 
124 	ret = -ENODEV;
125 	if (!ppc_md.nvram_size)
126 		goto out;
127 
128 	ret = 0;
129 	size = ppc_md.nvram_size();
130 	if (*ppos >= size || size < 0)
131 		goto out;
132 
133 	count = min_t(size_t, count, size - *ppos);
134 	count = min(count, PAGE_SIZE);
135 
136 	ret = -ENOMEM;
137 	tmp = kmalloc(count, GFP_KERNEL);
138 	if (!tmp)
139 		goto out;
140 
141 	ret = -EFAULT;
142 	if (copy_from_user(tmp, buf, count))
143 		goto out;
144 
145 	ret = ppc_md.nvram_write(tmp, count, ppos);
146 
147 out:
148 	kfree(tmp);
149 	return ret;
150 
151 }
152 
153 static int dev_nvram_ioctl(struct inode *inode, struct file *file,
154 	unsigned int cmd, unsigned long arg)
155 {
156 	switch(cmd) {
157 #ifdef CONFIG_PPC_PMAC
158 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
159 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
160 	case IOC_NVRAM_GET_OFFSET: {
161 		int part, offset;
162 
163 		if (_machine != PLATFORM_POWERMAC)
164 			return -EINVAL;
165 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
166 			return -EFAULT;
167 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
168 			return -EINVAL;
169 		offset = pmac_get_partition(part);
170 		if (offset < 0)
171 			return offset;
172 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
173 			return -EFAULT;
174 		return 0;
175 	}
176 #endif /* CONFIG_PPC_PMAC */
177 	}
178 	return -EINVAL;
179 }
180 
181 struct file_operations nvram_fops = {
182 	.owner =	THIS_MODULE,
183 	.llseek =	dev_nvram_llseek,
184 	.read =		dev_nvram_read,
185 	.write =	dev_nvram_write,
186 	.ioctl =	dev_nvram_ioctl,
187 };
188 
189 static struct miscdevice nvram_dev = {
190 	NVRAM_MINOR,
191 	"nvram",
192 	&nvram_fops
193 };
194 
195 
196 #ifdef DEBUG_NVRAM
197 static void nvram_print_partitions(char * label)
198 {
199 	struct list_head * p;
200 	struct nvram_partition * tmp_part;
201 
202 	printk(KERN_WARNING "--------%s---------\n", label);
203 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
204 	list_for_each(p, &nvram_part->partition) {
205 		tmp_part = list_entry(p, struct nvram_partition, partition);
206 		printk(KERN_WARNING "%d    \t%02x\t%02x\t%d\t%s\n",
207 		       tmp_part->index, tmp_part->header.signature,
208 		       tmp_part->header.checksum, tmp_part->header.length,
209 		       tmp_part->header.name);
210 	}
211 }
212 #endif
213 
214 
215 static int nvram_write_header(struct nvram_partition * part)
216 {
217 	loff_t tmp_index;
218 	int rc;
219 
220 	tmp_index = part->index;
221 	rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
222 
223 	return rc;
224 }
225 
226 
227 static unsigned char nvram_checksum(struct nvram_header *p)
228 {
229 	unsigned int c_sum, c_sum2;
230 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
231 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
232 
233 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
234 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
235 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
236 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
237 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
238 	return c_sum;
239 }
240 
241 
242 /*
243  * Find an nvram partition, sig can be 0 for any
244  * partition or name can be NULL for any name, else
245  * tries to match both
246  */
247 struct nvram_partition *nvram_find_partition(int sig, const char *name)
248 {
249 	struct nvram_partition * part;
250 	struct list_head * p;
251 
252 	list_for_each(p, &nvram_part->partition) {
253 		part = list_entry(p, struct nvram_partition, partition);
254 
255 		if (sig && part->header.signature != sig)
256 			continue;
257 		if (name && 0 != strncmp(name, part->header.name, 12))
258 			continue;
259 		return part;
260 	}
261 	return NULL;
262 }
263 EXPORT_SYMBOL(nvram_find_partition);
264 
265 
266 static int nvram_remove_os_partition(void)
267 {
268 	struct list_head *i;
269 	struct list_head *j;
270 	struct nvram_partition * part;
271 	struct nvram_partition * cur_part;
272 	int rc;
273 
274 	list_for_each(i, &nvram_part->partition) {
275 		part = list_entry(i, struct nvram_partition, partition);
276 		if (part->header.signature != NVRAM_SIG_OS)
277 			continue;
278 
279 		/* Make os partition a free partition */
280 		part->header.signature = NVRAM_SIG_FREE;
281 		sprintf(part->header.name, "wwwwwwwwwwww");
282 		part->header.checksum = nvram_checksum(&part->header);
283 
284 		/* Merge contiguous free partitions backwards */
285 		list_for_each_prev(j, &part->partition) {
286 			cur_part = list_entry(j, struct nvram_partition, partition);
287 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
288 				break;
289 			}
290 
291 			part->header.length += cur_part->header.length;
292 			part->header.checksum = nvram_checksum(&part->header);
293 			part->index = cur_part->index;
294 
295 			list_del(&cur_part->partition);
296 			kfree(cur_part);
297 			j = &part->partition; /* fixup our loop */
298 		}
299 
300 		/* Merge contiguous free partitions forwards */
301 		list_for_each(j, &part->partition) {
302 			cur_part = list_entry(j, struct nvram_partition, partition);
303 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
304 				break;
305 			}
306 
307 			part->header.length += cur_part->header.length;
308 			part->header.checksum = nvram_checksum(&part->header);
309 
310 			list_del(&cur_part->partition);
311 			kfree(cur_part);
312 			j = &part->partition; /* fixup our loop */
313 		}
314 
315 		rc = nvram_write_header(part);
316 		if (rc <= 0) {
317 			printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
318 			return rc;
319 		}
320 
321 	}
322 
323 	return 0;
324 }
325 
326 /* nvram_create_os_partition
327  *
328  * Create a OS linux partition to buffer error logs.
329  * Will create a partition starting at the first free
330  * space found if space has enough room.
331  */
332 static int nvram_create_os_partition(void)
333 {
334 	struct nvram_partition *part;
335 	struct nvram_partition *new_part;
336 	struct nvram_partition *free_part = NULL;
337 	int seq_init[2] = { 0, 0 };
338 	loff_t tmp_index;
339 	long size = 0;
340 	int rc;
341 
342 	/* Find a free partition that will give us the maximum needed size
343 	   If can't find one that will give us the minimum size needed */
344 	list_for_each_entry(part, &nvram_part->partition, partition) {
345 		if (part->header.signature != NVRAM_SIG_FREE)
346 			continue;
347 
348 		if (part->header.length >= NVRAM_MAX_REQ) {
349 			size = NVRAM_MAX_REQ;
350 			free_part = part;
351 			break;
352 		}
353 		if (!size && part->header.length >= NVRAM_MIN_REQ) {
354 			size = NVRAM_MIN_REQ;
355 			free_part = part;
356 		}
357 	}
358 	if (!size)
359 		return -ENOSPC;
360 
361 	/* Create our OS partition */
362 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
363 	if (!new_part) {
364 		printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
365 		return -ENOMEM;
366 	}
367 
368 	new_part->index = free_part->index;
369 	new_part->header.signature = NVRAM_SIG_OS;
370 	new_part->header.length = size;
371 	strcpy(new_part->header.name, "ppc64,linux");
372 	new_part->header.checksum = nvram_checksum(&new_part->header);
373 
374 	rc = nvram_write_header(new_part);
375 	if (rc <= 0) {
376 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
377 				failed (%d)\n", rc);
378 		return rc;
379 	}
380 
381 	/* make sure and initialize to zero the sequence number and the error
382 	   type logged */
383 	tmp_index = new_part->index + NVRAM_HEADER_LEN;
384 	rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
385 	if (rc <= 0) {
386 		printk(KERN_ERR "nvram_create_os_partition: nvram_write "
387 				"failed (%d)\n", rc);
388 		return rc;
389 	}
390 
391 	nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
392 	nvram_error_log_size = ((part->header.length - 1) *
393 				NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
394 
395 	list_add_tail(&new_part->partition, &free_part->partition);
396 
397 	if (free_part->header.length <= size) {
398 		list_del(&free_part->partition);
399 		kfree(free_part);
400 		return 0;
401 	}
402 
403 	/* Adjust the partition we stole the space from */
404 	free_part->index += size * NVRAM_BLOCK_LEN;
405 	free_part->header.length -= size;
406 	free_part->header.checksum = nvram_checksum(&free_part->header);
407 
408 	rc = nvram_write_header(free_part);
409 	if (rc <= 0) {
410 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
411 		       "failed (%d)\n", rc);
412 		return rc;
413 	}
414 
415 	return 0;
416 }
417 
418 
419 /* nvram_setup_partition
420  *
421  * This will setup the partition we need for buffering the
422  * error logs and cleanup partitions if needed.
423  *
424  * The general strategy is the following:
425  * 1.) If there is ppc64,linux partition large enough then use it.
426  * 2.) If there is not a ppc64,linux partition large enough, search
427  * for a free partition that is large enough.
428  * 3.) If there is not a free partition large enough remove
429  * _all_ OS partitions and consolidate the space.
430  * 4.) Will first try getting a chunk that will satisfy the maximum
431  * error log size (NVRAM_MAX_REQ).
432  * 5.) If the max chunk cannot be allocated then try finding a chunk
433  * that will satisfy the minum needed (NVRAM_MIN_REQ).
434  */
435 static int nvram_setup_partition(void)
436 {
437 	struct list_head * p;
438 	struct nvram_partition * part;
439 	int rc;
440 
441 	/* For now, we don't do any of this on pmac, until I
442 	 * have figured out if it's worth killing some unused stuffs
443 	 * in our nvram, as Apple defined partitions use pretty much
444 	 * all of the space
445 	 */
446 	if (_machine == PLATFORM_POWERMAC)
447 		return -ENOSPC;
448 
449 	/* see if we have an OS partition that meets our needs.
450 	   will try getting the max we need.  If not we'll delete
451 	   partitions and try again. */
452 	list_for_each(p, &nvram_part->partition) {
453 		part = list_entry(p, struct nvram_partition, partition);
454 		if (part->header.signature != NVRAM_SIG_OS)
455 			continue;
456 
457 		if (strcmp(part->header.name, "ppc64,linux"))
458 			continue;
459 
460 		if (part->header.length >= NVRAM_MIN_REQ) {
461 			/* found our partition */
462 			nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
463 			nvram_error_log_size = ((part->header.length - 1) *
464 						NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
465 			return 0;
466 		}
467 	}
468 
469 	/* try creating a partition with the free space we have */
470 	rc = nvram_create_os_partition();
471 	if (!rc) {
472 		return 0;
473 	}
474 
475 	/* need to free up some space */
476 	rc = nvram_remove_os_partition();
477 	if (rc) {
478 		return rc;
479 	}
480 
481 	/* create a partition in this new space */
482 	rc = nvram_create_os_partition();
483 	if (rc) {
484 		printk(KERN_ERR "nvram_create_os_partition: Could not find a "
485 		       "NVRAM partition large enough\n");
486 		return rc;
487 	}
488 
489 	return 0;
490 }
491 
492 
493 static int nvram_scan_partitions(void)
494 {
495 	loff_t cur_index = 0;
496 	struct nvram_header phead;
497 	struct nvram_partition * tmp_part;
498 	unsigned char c_sum;
499 	char * header;
500 	int total_size;
501 	int err;
502 
503 	if (ppc_md.nvram_size == NULL)
504 		return -ENODEV;
505 	total_size = ppc_md.nvram_size();
506 
507 	header = (char *) kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
508 	if (!header) {
509 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
510 		return -ENOMEM;
511 	}
512 
513 	while (cur_index < total_size) {
514 
515 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
516 		if (err != NVRAM_HEADER_LEN) {
517 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
518 			       "nvram partitions\n");
519 			goto out;
520 		}
521 
522 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
523 
524 		memcpy(&phead, header, NVRAM_HEADER_LEN);
525 
526 		err = 0;
527 		c_sum = nvram_checksum(&phead);
528 		if (c_sum != phead.checksum) {
529 			printk(KERN_WARNING "WARNING: nvram partition checksum"
530 			       " was %02x, should be %02x!\n",
531 			       phead.checksum, c_sum);
532 			printk(KERN_WARNING "Terminating nvram partition scan\n");
533 			goto out;
534 		}
535 		if (!phead.length) {
536 			printk(KERN_WARNING "WARNING: nvram corruption "
537 			       "detected: 0-length partition\n");
538 			goto out;
539 		}
540 		tmp_part = (struct nvram_partition *)
541 			kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
542 		err = -ENOMEM;
543 		if (!tmp_part) {
544 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
545 			goto out;
546 		}
547 
548 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
549 		tmp_part->index = cur_index;
550 		list_add_tail(&tmp_part->partition, &nvram_part->partition);
551 
552 		cur_index += phead.length * NVRAM_BLOCK_LEN;
553 	}
554 	err = 0;
555 
556  out:
557 	kfree(header);
558 	return err;
559 }
560 
561 static int __init nvram_init(void)
562 {
563 	int error;
564 	int rc;
565 
566 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
567 		return  -ENODEV;
568 
569   	rc = misc_register(&nvram_dev);
570 	if (rc != 0) {
571 		printk(KERN_ERR "nvram_init: failed to register device\n");
572 		return rc;
573 	}
574 
575   	/* initialize our anchor for the nvram partition list */
576   	nvram_part = (struct nvram_partition *) kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
577   	if (!nvram_part) {
578   		printk(KERN_ERR "nvram_init: Failed kmalloc\n");
579   		return -ENOMEM;
580   	}
581   	INIT_LIST_HEAD(&nvram_part->partition);
582 
583   	/* Get all the NVRAM partitions */
584   	error = nvram_scan_partitions();
585   	if (error) {
586   		printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
587   		return error;
588   	}
589 
590   	if(nvram_setup_partition())
591   		printk(KERN_WARNING "nvram_init: Could not find nvram partition"
592   		       " for nvram buffered error logging.\n");
593 
594 #ifdef DEBUG_NVRAM
595 	nvram_print_partitions("NVRAM Partitions");
596 #endif
597 
598   	return rc;
599 }
600 
601 void __exit nvram_cleanup(void)
602 {
603         misc_deregister( &nvram_dev );
604 }
605 
606 
607 #ifdef CONFIG_PPC_PSERIES
608 
609 /* nvram_write_error_log
610  *
611  * We need to buffer the error logs into nvram to ensure that we have
612  * the failure information to decode.  If we have a severe error there
613  * is no way to guarantee that the OS or the machine is in a state to
614  * get back to user land and write the error to disk.  For example if
615  * the SCSI device driver causes a Machine Check by writing to a bad
616  * IO address, there is no way of guaranteeing that the device driver
617  * is in any state that is would also be able to write the error data
618  * captured to disk, thus we buffer it in NVRAM for analysis on the
619  * next boot.
620  *
621  * In NVRAM the partition containing the error log buffer will looks like:
622  * Header (in bytes):
623  * +-----------+----------+--------+------------+------------------+
624  * | signature | checksum | length | name       | data             |
625  * |0          |1         |2      3|4         15|16        length-1|
626  * +-----------+----------+--------+------------+------------------+
627  *
628  * The 'data' section would look like (in bytes):
629  * +--------------+------------+-----------------------------------+
630  * | event_logged | sequence # | error log                         |
631  * |0            3|4          7|8            nvram_error_log_size-1|
632  * +--------------+------------+-----------------------------------+
633  *
634  * event_logged: 0 if event has not been logged to syslog, 1 if it has
635  * sequence #: The unique sequence # for each event. (until it wraps)
636  * error log: The error log from event_scan
637  */
638 int nvram_write_error_log(char * buff, int length, unsigned int err_type)
639 {
640 	int rc;
641 	loff_t tmp_index;
642 	struct err_log_info info;
643 
644 	if (no_logging) {
645 		return -EPERM;
646 	}
647 
648 	if (nvram_error_log_index == -1) {
649 		return -ESPIPE;
650 	}
651 
652 	if (length > nvram_error_log_size) {
653 		length = nvram_error_log_size;
654 	}
655 
656 	info.error_type = err_type;
657 	info.seq_num = error_log_cnt;
658 
659 	tmp_index = nvram_error_log_index;
660 
661 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
662 	if (rc <= 0) {
663 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
664 		return rc;
665 	}
666 
667 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
668 	if (rc <= 0) {
669 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
670 		return rc;
671 	}
672 
673 	return 0;
674 }
675 
676 /* nvram_read_error_log
677  *
678  * Reads nvram for error log for at most 'length'
679  */
680 int nvram_read_error_log(char * buff, int length, unsigned int * err_type)
681 {
682 	int rc;
683 	loff_t tmp_index;
684 	struct err_log_info info;
685 
686 	if (nvram_error_log_index == -1)
687 		return -1;
688 
689 	if (length > nvram_error_log_size)
690 		length = nvram_error_log_size;
691 
692 	tmp_index = nvram_error_log_index;
693 
694 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
695 	if (rc <= 0) {
696 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
697 		return rc;
698 	}
699 
700 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
701 	if (rc <= 0) {
702 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
703 		return rc;
704 	}
705 
706 	error_log_cnt = info.seq_num;
707 	*err_type = info.error_type;
708 
709 	return 0;
710 }
711 
712 /* This doesn't actually zero anything, but it sets the event_logged
713  * word to tell that this event is safely in syslog.
714  */
715 int nvram_clear_error_log(void)
716 {
717 	loff_t tmp_index;
718 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
719 	int rc;
720 
721 	tmp_index = nvram_error_log_index;
722 
723 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
724 	if (rc <= 0) {
725 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
726 		return rc;
727 	}
728 
729 	return 0;
730 }
731 
732 #endif /* CONFIG_PPC_PSERIES */
733 
734 module_init(nvram_init);
735 module_exit(nvram_cleanup);
736 MODULE_LICENSE("GPL");
737