xref: /openbmc/linux/arch/powerpc/kernel/nvram_64.c (revision 64c70b1c)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/module.h>
19 
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <asm/uaccess.h>
30 #include <asm/nvram.h>
31 #include <asm/rtas.h>
32 #include <asm/prom.h>
33 #include <asm/machdep.h>
34 
35 #undef DEBUG_NVRAM
36 
37 static int nvram_scan_partitions(void);
38 static int nvram_setup_partition(void);
39 static int nvram_create_os_partition(void);
40 static int nvram_remove_os_partition(void);
41 
42 static struct nvram_partition * nvram_part;
43 static long nvram_error_log_index = -1;
44 static long nvram_error_log_size = 0;
45 
46 int no_logging = 1; 	/* Until we initialize everything,
47 			 * make sure we don't try logging
48 			 * anything */
49 
50 extern volatile int error_log_cnt;
51 
52 struct err_log_info {
53 	int error_type;
54 	unsigned int seq_num;
55 };
56 
57 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
58 {
59 	int size;
60 
61 	if (ppc_md.nvram_size == NULL)
62 		return -ENODEV;
63 	size = ppc_md.nvram_size();
64 
65 	switch (origin) {
66 	case 1:
67 		offset += file->f_pos;
68 		break;
69 	case 2:
70 		offset += size;
71 		break;
72 	}
73 	if (offset < 0)
74 		return -EINVAL;
75 	file->f_pos = offset;
76 	return file->f_pos;
77 }
78 
79 
80 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
81 			  size_t count, loff_t *ppos)
82 {
83 	ssize_t ret;
84 	char *tmp = NULL;
85 	ssize_t size;
86 
87 	ret = -ENODEV;
88 	if (!ppc_md.nvram_size)
89 		goto out;
90 
91 	ret = 0;
92 	size = ppc_md.nvram_size();
93 	if (*ppos >= size || size < 0)
94 		goto out;
95 
96 	count = min_t(size_t, count, size - *ppos);
97 	count = min(count, PAGE_SIZE);
98 
99 	ret = -ENOMEM;
100 	tmp = kmalloc(count, GFP_KERNEL);
101 	if (!tmp)
102 		goto out;
103 
104 	ret = ppc_md.nvram_read(tmp, count, ppos);
105 	if (ret <= 0)
106 		goto out;
107 
108 	if (copy_to_user(buf, tmp, ret))
109 		ret = -EFAULT;
110 
111 out:
112 	kfree(tmp);
113 	return ret;
114 
115 }
116 
117 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
118 			  size_t count, loff_t *ppos)
119 {
120 	ssize_t ret;
121 	char *tmp = NULL;
122 	ssize_t size;
123 
124 	ret = -ENODEV;
125 	if (!ppc_md.nvram_size)
126 		goto out;
127 
128 	ret = 0;
129 	size = ppc_md.nvram_size();
130 	if (*ppos >= size || size < 0)
131 		goto out;
132 
133 	count = min_t(size_t, count, size - *ppos);
134 	count = min(count, PAGE_SIZE);
135 
136 	ret = -ENOMEM;
137 	tmp = kmalloc(count, GFP_KERNEL);
138 	if (!tmp)
139 		goto out;
140 
141 	ret = -EFAULT;
142 	if (copy_from_user(tmp, buf, count))
143 		goto out;
144 
145 	ret = ppc_md.nvram_write(tmp, count, ppos);
146 
147 out:
148 	kfree(tmp);
149 	return ret;
150 
151 }
152 
153 static int dev_nvram_ioctl(struct inode *inode, struct file *file,
154 	unsigned int cmd, unsigned long arg)
155 {
156 	switch(cmd) {
157 #ifdef CONFIG_PPC_PMAC
158 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
159 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
160 	case IOC_NVRAM_GET_OFFSET: {
161 		int part, offset;
162 
163 		if (!machine_is(powermac))
164 			return -EINVAL;
165 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
166 			return -EFAULT;
167 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
168 			return -EINVAL;
169 		offset = pmac_get_partition(part);
170 		if (offset < 0)
171 			return offset;
172 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
173 			return -EFAULT;
174 		return 0;
175 	}
176 #endif /* CONFIG_PPC_PMAC */
177 	default:
178 		return -EINVAL;
179 	}
180 }
181 
182 const struct file_operations nvram_fops = {
183 	.owner =	THIS_MODULE,
184 	.llseek =	dev_nvram_llseek,
185 	.read =		dev_nvram_read,
186 	.write =	dev_nvram_write,
187 	.ioctl =	dev_nvram_ioctl,
188 };
189 
190 static struct miscdevice nvram_dev = {
191 	NVRAM_MINOR,
192 	"nvram",
193 	&nvram_fops
194 };
195 
196 
197 #ifdef DEBUG_NVRAM
198 static void nvram_print_partitions(char * label)
199 {
200 	struct list_head * p;
201 	struct nvram_partition * tmp_part;
202 
203 	printk(KERN_WARNING "--------%s---------\n", label);
204 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
205 	list_for_each(p, &nvram_part->partition) {
206 		tmp_part = list_entry(p, struct nvram_partition, partition);
207 		printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%s\n",
208 		       tmp_part->index, tmp_part->header.signature,
209 		       tmp_part->header.checksum, tmp_part->header.length,
210 		       tmp_part->header.name);
211 	}
212 }
213 #endif
214 
215 
216 static int nvram_write_header(struct nvram_partition * part)
217 {
218 	loff_t tmp_index;
219 	int rc;
220 
221 	tmp_index = part->index;
222 	rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
223 
224 	return rc;
225 }
226 
227 
228 static unsigned char nvram_checksum(struct nvram_header *p)
229 {
230 	unsigned int c_sum, c_sum2;
231 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
232 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
233 
234 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
235 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
236 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
237 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
238 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
239 	return c_sum;
240 }
241 
242 
243 /*
244  * Find an nvram partition, sig can be 0 for any
245  * partition or name can be NULL for any name, else
246  * tries to match both
247  */
248 struct nvram_partition *nvram_find_partition(int sig, const char *name)
249 {
250 	struct nvram_partition * part;
251 	struct list_head * p;
252 
253 	list_for_each(p, &nvram_part->partition) {
254 		part = list_entry(p, struct nvram_partition, partition);
255 
256 		if (sig && part->header.signature != sig)
257 			continue;
258 		if (name && 0 != strncmp(name, part->header.name, 12))
259 			continue;
260 		return part;
261 	}
262 	return NULL;
263 }
264 EXPORT_SYMBOL(nvram_find_partition);
265 
266 
267 static int nvram_remove_os_partition(void)
268 {
269 	struct list_head *i;
270 	struct list_head *j;
271 	struct nvram_partition * part;
272 	struct nvram_partition * cur_part;
273 	int rc;
274 
275 	list_for_each(i, &nvram_part->partition) {
276 		part = list_entry(i, struct nvram_partition, partition);
277 		if (part->header.signature != NVRAM_SIG_OS)
278 			continue;
279 
280 		/* Make os partition a free partition */
281 		part->header.signature = NVRAM_SIG_FREE;
282 		sprintf(part->header.name, "wwwwwwwwwwww");
283 		part->header.checksum = nvram_checksum(&part->header);
284 
285 		/* Merge contiguous free partitions backwards */
286 		list_for_each_prev(j, &part->partition) {
287 			cur_part = list_entry(j, struct nvram_partition, partition);
288 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
289 				break;
290 			}
291 
292 			part->header.length += cur_part->header.length;
293 			part->header.checksum = nvram_checksum(&part->header);
294 			part->index = cur_part->index;
295 
296 			list_del(&cur_part->partition);
297 			kfree(cur_part);
298 			j = &part->partition; /* fixup our loop */
299 		}
300 
301 		/* Merge contiguous free partitions forwards */
302 		list_for_each(j, &part->partition) {
303 			cur_part = list_entry(j, struct nvram_partition, partition);
304 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
305 				break;
306 			}
307 
308 			part->header.length += cur_part->header.length;
309 			part->header.checksum = nvram_checksum(&part->header);
310 
311 			list_del(&cur_part->partition);
312 			kfree(cur_part);
313 			j = &part->partition; /* fixup our loop */
314 		}
315 
316 		rc = nvram_write_header(part);
317 		if (rc <= 0) {
318 			printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
319 			return rc;
320 		}
321 
322 	}
323 
324 	return 0;
325 }
326 
327 /* nvram_create_os_partition
328  *
329  * Create a OS linux partition to buffer error logs.
330  * Will create a partition starting at the first free
331  * space found if space has enough room.
332  */
333 static int nvram_create_os_partition(void)
334 {
335 	struct nvram_partition *part;
336 	struct nvram_partition *new_part;
337 	struct nvram_partition *free_part = NULL;
338 	int seq_init[2] = { 0, 0 };
339 	loff_t tmp_index;
340 	long size = 0;
341 	int rc;
342 
343 	/* Find a free partition that will give us the maximum needed size
344 	   If can't find one that will give us the minimum size needed */
345 	list_for_each_entry(part, &nvram_part->partition, partition) {
346 		if (part->header.signature != NVRAM_SIG_FREE)
347 			continue;
348 
349 		if (part->header.length >= NVRAM_MAX_REQ) {
350 			size = NVRAM_MAX_REQ;
351 			free_part = part;
352 			break;
353 		}
354 		if (!size && part->header.length >= NVRAM_MIN_REQ) {
355 			size = NVRAM_MIN_REQ;
356 			free_part = part;
357 		}
358 	}
359 	if (!size)
360 		return -ENOSPC;
361 
362 	/* Create our OS partition */
363 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
364 	if (!new_part) {
365 		printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
366 		return -ENOMEM;
367 	}
368 
369 	new_part->index = free_part->index;
370 	new_part->header.signature = NVRAM_SIG_OS;
371 	new_part->header.length = size;
372 	strcpy(new_part->header.name, "ppc64,linux");
373 	new_part->header.checksum = nvram_checksum(&new_part->header);
374 
375 	rc = nvram_write_header(new_part);
376 	if (rc <= 0) {
377 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
378 				failed (%d)\n", rc);
379 		return rc;
380 	}
381 
382 	/* make sure and initialize to zero the sequence number and the error
383 	   type logged */
384 	tmp_index = new_part->index + NVRAM_HEADER_LEN;
385 	rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
386 	if (rc <= 0) {
387 		printk(KERN_ERR "nvram_create_os_partition: nvram_write "
388 				"failed (%d)\n", rc);
389 		return rc;
390 	}
391 
392 	nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
393 	nvram_error_log_size = ((part->header.length - 1) *
394 				NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
395 
396 	list_add_tail(&new_part->partition, &free_part->partition);
397 
398 	if (free_part->header.length <= size) {
399 		list_del(&free_part->partition);
400 		kfree(free_part);
401 		return 0;
402 	}
403 
404 	/* Adjust the partition we stole the space from */
405 	free_part->index += size * NVRAM_BLOCK_LEN;
406 	free_part->header.length -= size;
407 	free_part->header.checksum = nvram_checksum(&free_part->header);
408 
409 	rc = nvram_write_header(free_part);
410 	if (rc <= 0) {
411 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
412 		       "failed (%d)\n", rc);
413 		return rc;
414 	}
415 
416 	return 0;
417 }
418 
419 
420 /* nvram_setup_partition
421  *
422  * This will setup the partition we need for buffering the
423  * error logs and cleanup partitions if needed.
424  *
425  * The general strategy is the following:
426  * 1.) If there is ppc64,linux partition large enough then use it.
427  * 2.) If there is not a ppc64,linux partition large enough, search
428  * for a free partition that is large enough.
429  * 3.) If there is not a free partition large enough remove
430  * _all_ OS partitions and consolidate the space.
431  * 4.) Will first try getting a chunk that will satisfy the maximum
432  * error log size (NVRAM_MAX_REQ).
433  * 5.) If the max chunk cannot be allocated then try finding a chunk
434  * that will satisfy the minum needed (NVRAM_MIN_REQ).
435  */
436 static int nvram_setup_partition(void)
437 {
438 	struct list_head * p;
439 	struct nvram_partition * part;
440 	int rc;
441 
442 	/* For now, we don't do any of this on pmac, until I
443 	 * have figured out if it's worth killing some unused stuffs
444 	 * in our nvram, as Apple defined partitions use pretty much
445 	 * all of the space
446 	 */
447 	if (machine_is(powermac))
448 		return -ENOSPC;
449 
450 	/* see if we have an OS partition that meets our needs.
451 	   will try getting the max we need.  If not we'll delete
452 	   partitions and try again. */
453 	list_for_each(p, &nvram_part->partition) {
454 		part = list_entry(p, struct nvram_partition, partition);
455 		if (part->header.signature != NVRAM_SIG_OS)
456 			continue;
457 
458 		if (strcmp(part->header.name, "ppc64,linux"))
459 			continue;
460 
461 		if (part->header.length >= NVRAM_MIN_REQ) {
462 			/* found our partition */
463 			nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
464 			nvram_error_log_size = ((part->header.length - 1) *
465 						NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
466 			return 0;
467 		}
468 	}
469 
470 	/* try creating a partition with the free space we have */
471 	rc = nvram_create_os_partition();
472 	if (!rc) {
473 		return 0;
474 	}
475 
476 	/* need to free up some space */
477 	rc = nvram_remove_os_partition();
478 	if (rc) {
479 		return rc;
480 	}
481 
482 	/* create a partition in this new space */
483 	rc = nvram_create_os_partition();
484 	if (rc) {
485 		printk(KERN_ERR "nvram_create_os_partition: Could not find a "
486 		       "NVRAM partition large enough\n");
487 		return rc;
488 	}
489 
490 	return 0;
491 }
492 
493 
494 static int nvram_scan_partitions(void)
495 {
496 	loff_t cur_index = 0;
497 	struct nvram_header phead;
498 	struct nvram_partition * tmp_part;
499 	unsigned char c_sum;
500 	char * header;
501 	int total_size;
502 	int err;
503 
504 	if (ppc_md.nvram_size == NULL)
505 		return -ENODEV;
506 	total_size = ppc_md.nvram_size();
507 
508 	header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
509 	if (!header) {
510 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
511 		return -ENOMEM;
512 	}
513 
514 	while (cur_index < total_size) {
515 
516 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
517 		if (err != NVRAM_HEADER_LEN) {
518 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
519 			       "nvram partitions\n");
520 			goto out;
521 		}
522 
523 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
524 
525 		memcpy(&phead, header, NVRAM_HEADER_LEN);
526 
527 		err = 0;
528 		c_sum = nvram_checksum(&phead);
529 		if (c_sum != phead.checksum) {
530 			printk(KERN_WARNING "WARNING: nvram partition checksum"
531 			       " was %02x, should be %02x!\n",
532 			       phead.checksum, c_sum);
533 			printk(KERN_WARNING "Terminating nvram partition scan\n");
534 			goto out;
535 		}
536 		if (!phead.length) {
537 			printk(KERN_WARNING "WARNING: nvram corruption "
538 			       "detected: 0-length partition\n");
539 			goto out;
540 		}
541 		tmp_part = (struct nvram_partition *)
542 			kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
543 		err = -ENOMEM;
544 		if (!tmp_part) {
545 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
546 			goto out;
547 		}
548 
549 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
550 		tmp_part->index = cur_index;
551 		list_add_tail(&tmp_part->partition, &nvram_part->partition);
552 
553 		cur_index += phead.length * NVRAM_BLOCK_LEN;
554 	}
555 	err = 0;
556 
557  out:
558 	kfree(header);
559 	return err;
560 }
561 
562 static int __init nvram_init(void)
563 {
564 	int error;
565 	int rc;
566 
567 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
568 		return  -ENODEV;
569 
570   	rc = misc_register(&nvram_dev);
571 	if (rc != 0) {
572 		printk(KERN_ERR "nvram_init: failed to register device\n");
573 		return rc;
574 	}
575 
576   	/* initialize our anchor for the nvram partition list */
577   	nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
578   	if (!nvram_part) {
579   		printk(KERN_ERR "nvram_init: Failed kmalloc\n");
580   		return -ENOMEM;
581   	}
582   	INIT_LIST_HEAD(&nvram_part->partition);
583 
584   	/* Get all the NVRAM partitions */
585   	error = nvram_scan_partitions();
586   	if (error) {
587   		printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
588   		return error;
589   	}
590 
591   	if(nvram_setup_partition())
592   		printk(KERN_WARNING "nvram_init: Could not find nvram partition"
593   		       " for nvram buffered error logging.\n");
594 
595 #ifdef DEBUG_NVRAM
596 	nvram_print_partitions("NVRAM Partitions");
597 #endif
598 
599   	return rc;
600 }
601 
602 void __exit nvram_cleanup(void)
603 {
604         misc_deregister( &nvram_dev );
605 }
606 
607 
608 #ifdef CONFIG_PPC_PSERIES
609 
610 /* nvram_write_error_log
611  *
612  * We need to buffer the error logs into nvram to ensure that we have
613  * the failure information to decode.  If we have a severe error there
614  * is no way to guarantee that the OS or the machine is in a state to
615  * get back to user land and write the error to disk.  For example if
616  * the SCSI device driver causes a Machine Check by writing to a bad
617  * IO address, there is no way of guaranteeing that the device driver
618  * is in any state that is would also be able to write the error data
619  * captured to disk, thus we buffer it in NVRAM for analysis on the
620  * next boot.
621  *
622  * In NVRAM the partition containing the error log buffer will looks like:
623  * Header (in bytes):
624  * +-----------+----------+--------+------------+------------------+
625  * | signature | checksum | length | name       | data             |
626  * |0          |1         |2      3|4         15|16        length-1|
627  * +-----------+----------+--------+------------+------------------+
628  *
629  * The 'data' section would look like (in bytes):
630  * +--------------+------------+-----------------------------------+
631  * | event_logged | sequence # | error log                         |
632  * |0            3|4          7|8            nvram_error_log_size-1|
633  * +--------------+------------+-----------------------------------+
634  *
635  * event_logged: 0 if event has not been logged to syslog, 1 if it has
636  * sequence #: The unique sequence # for each event. (until it wraps)
637  * error log: The error log from event_scan
638  */
639 int nvram_write_error_log(char * buff, int length, unsigned int err_type)
640 {
641 	int rc;
642 	loff_t tmp_index;
643 	struct err_log_info info;
644 
645 	if (no_logging) {
646 		return -EPERM;
647 	}
648 
649 	if (nvram_error_log_index == -1) {
650 		return -ESPIPE;
651 	}
652 
653 	if (length > nvram_error_log_size) {
654 		length = nvram_error_log_size;
655 	}
656 
657 	info.error_type = err_type;
658 	info.seq_num = error_log_cnt;
659 
660 	tmp_index = nvram_error_log_index;
661 
662 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
663 	if (rc <= 0) {
664 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
665 		return rc;
666 	}
667 
668 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
669 	if (rc <= 0) {
670 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
671 		return rc;
672 	}
673 
674 	return 0;
675 }
676 
677 /* nvram_read_error_log
678  *
679  * Reads nvram for error log for at most 'length'
680  */
681 int nvram_read_error_log(char * buff, int length, unsigned int * err_type)
682 {
683 	int rc;
684 	loff_t tmp_index;
685 	struct err_log_info info;
686 
687 	if (nvram_error_log_index == -1)
688 		return -1;
689 
690 	if (length > nvram_error_log_size)
691 		length = nvram_error_log_size;
692 
693 	tmp_index = nvram_error_log_index;
694 
695 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
696 	if (rc <= 0) {
697 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
698 		return rc;
699 	}
700 
701 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
702 	if (rc <= 0) {
703 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
704 		return rc;
705 	}
706 
707 	error_log_cnt = info.seq_num;
708 	*err_type = info.error_type;
709 
710 	return 0;
711 }
712 
713 /* This doesn't actually zero anything, but it sets the event_logged
714  * word to tell that this event is safely in syslog.
715  */
716 int nvram_clear_error_log(void)
717 {
718 	loff_t tmp_index;
719 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
720 	int rc;
721 
722 	tmp_index = nvram_error_log_index;
723 
724 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
725 	if (rc <= 0) {
726 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
727 		return rc;
728 	}
729 
730 	return 0;
731 }
732 
733 #endif /* CONFIG_PPC_PSERIES */
734 
735 module_init(nvram_init);
736 module_exit(nvram_cleanup);
737 MODULE_LICENSE("GPL");
738