1 /* 2 * c 2001 PPC 64 Team, IBM Corp 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * /dev/nvram driver for PPC64 10 * 11 * This perhaps should live in drivers/char 12 * 13 * TODO: Split the /dev/nvram part (that one can use 14 * drivers/char/generic_nvram.c) from the arch & partition 15 * parsing code. 16 */ 17 18 #include <linux/module.h> 19 20 #include <linux/types.h> 21 #include <linux/errno.h> 22 #include <linux/fs.h> 23 #include <linux/miscdevice.h> 24 #include <linux/fcntl.h> 25 #include <linux/nvram.h> 26 #include <linux/init.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <asm/uaccess.h> 30 #include <asm/nvram.h> 31 #include <asm/rtas.h> 32 #include <asm/prom.h> 33 #include <asm/machdep.h> 34 35 #undef DEBUG_NVRAM 36 37 static int nvram_scan_partitions(void); 38 static int nvram_setup_partition(void); 39 static int nvram_create_os_partition(void); 40 static int nvram_remove_os_partition(void); 41 42 static struct nvram_partition * nvram_part; 43 static long nvram_error_log_index = -1; 44 static long nvram_error_log_size = 0; 45 46 int no_logging = 1; /* Until we initialize everything, 47 * make sure we don't try logging 48 * anything */ 49 50 extern volatile int error_log_cnt; 51 52 struct err_log_info { 53 int error_type; 54 unsigned int seq_num; 55 }; 56 57 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin) 58 { 59 int size; 60 61 if (ppc_md.nvram_size == NULL) 62 return -ENODEV; 63 size = ppc_md.nvram_size(); 64 65 switch (origin) { 66 case 1: 67 offset += file->f_pos; 68 break; 69 case 2: 70 offset += size; 71 break; 72 } 73 if (offset < 0) 74 return -EINVAL; 75 file->f_pos = offset; 76 return file->f_pos; 77 } 78 79 80 static ssize_t dev_nvram_read(struct file *file, char __user *buf, 81 size_t count, loff_t *ppos) 82 { 83 ssize_t ret; 84 char *tmp = NULL; 85 ssize_t size; 86 87 ret = -ENODEV; 88 if (!ppc_md.nvram_size) 89 goto out; 90 91 ret = 0; 92 size = ppc_md.nvram_size(); 93 if (*ppos >= size || size < 0) 94 goto out; 95 96 count = min_t(size_t, count, size - *ppos); 97 count = min(count, PAGE_SIZE); 98 99 ret = -ENOMEM; 100 tmp = kmalloc(count, GFP_KERNEL); 101 if (!tmp) 102 goto out; 103 104 ret = ppc_md.nvram_read(tmp, count, ppos); 105 if (ret <= 0) 106 goto out; 107 108 if (copy_to_user(buf, tmp, ret)) 109 ret = -EFAULT; 110 111 out: 112 kfree(tmp); 113 return ret; 114 115 } 116 117 static ssize_t dev_nvram_write(struct file *file, const char __user *buf, 118 size_t count, loff_t *ppos) 119 { 120 ssize_t ret; 121 char *tmp = NULL; 122 ssize_t size; 123 124 ret = -ENODEV; 125 if (!ppc_md.nvram_size) 126 goto out; 127 128 ret = 0; 129 size = ppc_md.nvram_size(); 130 if (*ppos >= size || size < 0) 131 goto out; 132 133 count = min_t(size_t, count, size - *ppos); 134 count = min(count, PAGE_SIZE); 135 136 ret = -ENOMEM; 137 tmp = kmalloc(count, GFP_KERNEL); 138 if (!tmp) 139 goto out; 140 141 ret = -EFAULT; 142 if (copy_from_user(tmp, buf, count)) 143 goto out; 144 145 ret = ppc_md.nvram_write(tmp, count, ppos); 146 147 out: 148 kfree(tmp); 149 return ret; 150 151 } 152 153 static int dev_nvram_ioctl(struct inode *inode, struct file *file, 154 unsigned int cmd, unsigned long arg) 155 { 156 switch(cmd) { 157 #ifdef CONFIG_PPC_PMAC 158 case OBSOLETE_PMAC_NVRAM_GET_OFFSET: 159 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n"); 160 case IOC_NVRAM_GET_OFFSET: { 161 int part, offset; 162 163 if (!machine_is(powermac)) 164 return -EINVAL; 165 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0) 166 return -EFAULT; 167 if (part < pmac_nvram_OF || part > pmac_nvram_NR) 168 return -EINVAL; 169 offset = pmac_get_partition(part); 170 if (offset < 0) 171 return offset; 172 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0) 173 return -EFAULT; 174 return 0; 175 } 176 #endif /* CONFIG_PPC_PMAC */ 177 default: 178 return -EINVAL; 179 } 180 } 181 182 const struct file_operations nvram_fops = { 183 .owner = THIS_MODULE, 184 .llseek = dev_nvram_llseek, 185 .read = dev_nvram_read, 186 .write = dev_nvram_write, 187 .ioctl = dev_nvram_ioctl, 188 }; 189 190 static struct miscdevice nvram_dev = { 191 NVRAM_MINOR, 192 "nvram", 193 &nvram_fops 194 }; 195 196 197 #ifdef DEBUG_NVRAM 198 static void nvram_print_partitions(char * label) 199 { 200 struct list_head * p; 201 struct nvram_partition * tmp_part; 202 203 printk(KERN_WARNING "--------%s---------\n", label); 204 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); 205 list_for_each(p, &nvram_part->partition) { 206 tmp_part = list_entry(p, struct nvram_partition, partition); 207 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%s\n", 208 tmp_part->index, tmp_part->header.signature, 209 tmp_part->header.checksum, tmp_part->header.length, 210 tmp_part->header.name); 211 } 212 } 213 #endif 214 215 216 static int nvram_write_header(struct nvram_partition * part) 217 { 218 loff_t tmp_index; 219 int rc; 220 221 tmp_index = part->index; 222 rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index); 223 224 return rc; 225 } 226 227 228 static unsigned char nvram_checksum(struct nvram_header *p) 229 { 230 unsigned int c_sum, c_sum2; 231 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ 232 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; 233 234 /* The sum may have spilled into the 3rd byte. Fold it back. */ 235 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; 236 /* The sum cannot exceed 2 bytes. Fold it into a checksum */ 237 c_sum2 = (c_sum >> 8) + (c_sum << 8); 238 c_sum = ((c_sum + c_sum2) >> 8) & 0xff; 239 return c_sum; 240 } 241 242 243 /* 244 * Find an nvram partition, sig can be 0 for any 245 * partition or name can be NULL for any name, else 246 * tries to match both 247 */ 248 struct nvram_partition *nvram_find_partition(int sig, const char *name) 249 { 250 struct nvram_partition * part; 251 struct list_head * p; 252 253 list_for_each(p, &nvram_part->partition) { 254 part = list_entry(p, struct nvram_partition, partition); 255 256 if (sig && part->header.signature != sig) 257 continue; 258 if (name && 0 != strncmp(name, part->header.name, 12)) 259 continue; 260 return part; 261 } 262 return NULL; 263 } 264 EXPORT_SYMBOL(nvram_find_partition); 265 266 267 static int nvram_remove_os_partition(void) 268 { 269 struct list_head *i; 270 struct list_head *j; 271 struct nvram_partition * part; 272 struct nvram_partition * cur_part; 273 int rc; 274 275 list_for_each(i, &nvram_part->partition) { 276 part = list_entry(i, struct nvram_partition, partition); 277 if (part->header.signature != NVRAM_SIG_OS) 278 continue; 279 280 /* Make os partition a free partition */ 281 part->header.signature = NVRAM_SIG_FREE; 282 sprintf(part->header.name, "wwwwwwwwwwww"); 283 part->header.checksum = nvram_checksum(&part->header); 284 285 /* Merge contiguous free partitions backwards */ 286 list_for_each_prev(j, &part->partition) { 287 cur_part = list_entry(j, struct nvram_partition, partition); 288 if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) { 289 break; 290 } 291 292 part->header.length += cur_part->header.length; 293 part->header.checksum = nvram_checksum(&part->header); 294 part->index = cur_part->index; 295 296 list_del(&cur_part->partition); 297 kfree(cur_part); 298 j = &part->partition; /* fixup our loop */ 299 } 300 301 /* Merge contiguous free partitions forwards */ 302 list_for_each(j, &part->partition) { 303 cur_part = list_entry(j, struct nvram_partition, partition); 304 if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) { 305 break; 306 } 307 308 part->header.length += cur_part->header.length; 309 part->header.checksum = nvram_checksum(&part->header); 310 311 list_del(&cur_part->partition); 312 kfree(cur_part); 313 j = &part->partition; /* fixup our loop */ 314 } 315 316 rc = nvram_write_header(part); 317 if (rc <= 0) { 318 printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc); 319 return rc; 320 } 321 322 } 323 324 return 0; 325 } 326 327 /* nvram_create_os_partition 328 * 329 * Create a OS linux partition to buffer error logs. 330 * Will create a partition starting at the first free 331 * space found if space has enough room. 332 */ 333 static int nvram_create_os_partition(void) 334 { 335 struct nvram_partition *part; 336 struct nvram_partition *new_part; 337 struct nvram_partition *free_part = NULL; 338 int seq_init[2] = { 0, 0 }; 339 loff_t tmp_index; 340 long size = 0; 341 int rc; 342 343 /* Find a free partition that will give us the maximum needed size 344 If can't find one that will give us the minimum size needed */ 345 list_for_each_entry(part, &nvram_part->partition, partition) { 346 if (part->header.signature != NVRAM_SIG_FREE) 347 continue; 348 349 if (part->header.length >= NVRAM_MAX_REQ) { 350 size = NVRAM_MAX_REQ; 351 free_part = part; 352 break; 353 } 354 if (!size && part->header.length >= NVRAM_MIN_REQ) { 355 size = NVRAM_MIN_REQ; 356 free_part = part; 357 } 358 } 359 if (!size) 360 return -ENOSPC; 361 362 /* Create our OS partition */ 363 new_part = kmalloc(sizeof(*new_part), GFP_KERNEL); 364 if (!new_part) { 365 printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n"); 366 return -ENOMEM; 367 } 368 369 new_part->index = free_part->index; 370 new_part->header.signature = NVRAM_SIG_OS; 371 new_part->header.length = size; 372 strcpy(new_part->header.name, "ppc64,linux"); 373 new_part->header.checksum = nvram_checksum(&new_part->header); 374 375 rc = nvram_write_header(new_part); 376 if (rc <= 0) { 377 printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \ 378 failed (%d)\n", rc); 379 return rc; 380 } 381 382 /* make sure and initialize to zero the sequence number and the error 383 type logged */ 384 tmp_index = new_part->index + NVRAM_HEADER_LEN; 385 rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index); 386 if (rc <= 0) { 387 printk(KERN_ERR "nvram_create_os_partition: nvram_write " 388 "failed (%d)\n", rc); 389 return rc; 390 } 391 392 nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN; 393 nvram_error_log_size = ((part->header.length - 1) * 394 NVRAM_BLOCK_LEN) - sizeof(struct err_log_info); 395 396 list_add_tail(&new_part->partition, &free_part->partition); 397 398 if (free_part->header.length <= size) { 399 list_del(&free_part->partition); 400 kfree(free_part); 401 return 0; 402 } 403 404 /* Adjust the partition we stole the space from */ 405 free_part->index += size * NVRAM_BLOCK_LEN; 406 free_part->header.length -= size; 407 free_part->header.checksum = nvram_checksum(&free_part->header); 408 409 rc = nvram_write_header(free_part); 410 if (rc <= 0) { 411 printk(KERN_ERR "nvram_create_os_partition: nvram_write_header " 412 "failed (%d)\n", rc); 413 return rc; 414 } 415 416 return 0; 417 } 418 419 420 /* nvram_setup_partition 421 * 422 * This will setup the partition we need for buffering the 423 * error logs and cleanup partitions if needed. 424 * 425 * The general strategy is the following: 426 * 1.) If there is ppc64,linux partition large enough then use it. 427 * 2.) If there is not a ppc64,linux partition large enough, search 428 * for a free partition that is large enough. 429 * 3.) If there is not a free partition large enough remove 430 * _all_ OS partitions and consolidate the space. 431 * 4.) Will first try getting a chunk that will satisfy the maximum 432 * error log size (NVRAM_MAX_REQ). 433 * 5.) If the max chunk cannot be allocated then try finding a chunk 434 * that will satisfy the minum needed (NVRAM_MIN_REQ). 435 */ 436 static int nvram_setup_partition(void) 437 { 438 struct list_head * p; 439 struct nvram_partition * part; 440 int rc; 441 442 /* For now, we don't do any of this on pmac, until I 443 * have figured out if it's worth killing some unused stuffs 444 * in our nvram, as Apple defined partitions use pretty much 445 * all of the space 446 */ 447 if (machine_is(powermac)) 448 return -ENOSPC; 449 450 /* see if we have an OS partition that meets our needs. 451 will try getting the max we need. If not we'll delete 452 partitions and try again. */ 453 list_for_each(p, &nvram_part->partition) { 454 part = list_entry(p, struct nvram_partition, partition); 455 if (part->header.signature != NVRAM_SIG_OS) 456 continue; 457 458 if (strcmp(part->header.name, "ppc64,linux")) 459 continue; 460 461 if (part->header.length >= NVRAM_MIN_REQ) { 462 /* found our partition */ 463 nvram_error_log_index = part->index + NVRAM_HEADER_LEN; 464 nvram_error_log_size = ((part->header.length - 1) * 465 NVRAM_BLOCK_LEN) - sizeof(struct err_log_info); 466 return 0; 467 } 468 } 469 470 /* try creating a partition with the free space we have */ 471 rc = nvram_create_os_partition(); 472 if (!rc) { 473 return 0; 474 } 475 476 /* need to free up some space */ 477 rc = nvram_remove_os_partition(); 478 if (rc) { 479 return rc; 480 } 481 482 /* create a partition in this new space */ 483 rc = nvram_create_os_partition(); 484 if (rc) { 485 printk(KERN_ERR "nvram_create_os_partition: Could not find a " 486 "NVRAM partition large enough\n"); 487 return rc; 488 } 489 490 return 0; 491 } 492 493 494 static int nvram_scan_partitions(void) 495 { 496 loff_t cur_index = 0; 497 struct nvram_header phead; 498 struct nvram_partition * tmp_part; 499 unsigned char c_sum; 500 char * header; 501 int total_size; 502 int err; 503 504 if (ppc_md.nvram_size == NULL) 505 return -ENODEV; 506 total_size = ppc_md.nvram_size(); 507 508 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); 509 if (!header) { 510 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); 511 return -ENOMEM; 512 } 513 514 while (cur_index < total_size) { 515 516 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); 517 if (err != NVRAM_HEADER_LEN) { 518 printk(KERN_ERR "nvram_scan_partitions: Error parsing " 519 "nvram partitions\n"); 520 goto out; 521 } 522 523 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ 524 525 memcpy(&phead, header, NVRAM_HEADER_LEN); 526 527 err = 0; 528 c_sum = nvram_checksum(&phead); 529 if (c_sum != phead.checksum) { 530 printk(KERN_WARNING "WARNING: nvram partition checksum" 531 " was %02x, should be %02x!\n", 532 phead.checksum, c_sum); 533 printk(KERN_WARNING "Terminating nvram partition scan\n"); 534 goto out; 535 } 536 if (!phead.length) { 537 printk(KERN_WARNING "WARNING: nvram corruption " 538 "detected: 0-length partition\n"); 539 goto out; 540 } 541 tmp_part = (struct nvram_partition *) 542 kmalloc(sizeof(struct nvram_partition), GFP_KERNEL); 543 err = -ENOMEM; 544 if (!tmp_part) { 545 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); 546 goto out; 547 } 548 549 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); 550 tmp_part->index = cur_index; 551 list_add_tail(&tmp_part->partition, &nvram_part->partition); 552 553 cur_index += phead.length * NVRAM_BLOCK_LEN; 554 } 555 err = 0; 556 557 out: 558 kfree(header); 559 return err; 560 } 561 562 static int __init nvram_init(void) 563 { 564 int error; 565 int rc; 566 567 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 568 return -ENODEV; 569 570 rc = misc_register(&nvram_dev); 571 if (rc != 0) { 572 printk(KERN_ERR "nvram_init: failed to register device\n"); 573 return rc; 574 } 575 576 /* initialize our anchor for the nvram partition list */ 577 nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL); 578 if (!nvram_part) { 579 printk(KERN_ERR "nvram_init: Failed kmalloc\n"); 580 return -ENOMEM; 581 } 582 INIT_LIST_HEAD(&nvram_part->partition); 583 584 /* Get all the NVRAM partitions */ 585 error = nvram_scan_partitions(); 586 if (error) { 587 printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n"); 588 return error; 589 } 590 591 if(nvram_setup_partition()) 592 printk(KERN_WARNING "nvram_init: Could not find nvram partition" 593 " for nvram buffered error logging.\n"); 594 595 #ifdef DEBUG_NVRAM 596 nvram_print_partitions("NVRAM Partitions"); 597 #endif 598 599 return rc; 600 } 601 602 void __exit nvram_cleanup(void) 603 { 604 misc_deregister( &nvram_dev ); 605 } 606 607 608 #ifdef CONFIG_PPC_PSERIES 609 610 /* nvram_write_error_log 611 * 612 * We need to buffer the error logs into nvram to ensure that we have 613 * the failure information to decode. If we have a severe error there 614 * is no way to guarantee that the OS or the machine is in a state to 615 * get back to user land and write the error to disk. For example if 616 * the SCSI device driver causes a Machine Check by writing to a bad 617 * IO address, there is no way of guaranteeing that the device driver 618 * is in any state that is would also be able to write the error data 619 * captured to disk, thus we buffer it in NVRAM for analysis on the 620 * next boot. 621 * 622 * In NVRAM the partition containing the error log buffer will looks like: 623 * Header (in bytes): 624 * +-----------+----------+--------+------------+------------------+ 625 * | signature | checksum | length | name | data | 626 * |0 |1 |2 3|4 15|16 length-1| 627 * +-----------+----------+--------+------------+------------------+ 628 * 629 * The 'data' section would look like (in bytes): 630 * +--------------+------------+-----------------------------------+ 631 * | event_logged | sequence # | error log | 632 * |0 3|4 7|8 nvram_error_log_size-1| 633 * +--------------+------------+-----------------------------------+ 634 * 635 * event_logged: 0 if event has not been logged to syslog, 1 if it has 636 * sequence #: The unique sequence # for each event. (until it wraps) 637 * error log: The error log from event_scan 638 */ 639 int nvram_write_error_log(char * buff, int length, unsigned int err_type) 640 { 641 int rc; 642 loff_t tmp_index; 643 struct err_log_info info; 644 645 if (no_logging) { 646 return -EPERM; 647 } 648 649 if (nvram_error_log_index == -1) { 650 return -ESPIPE; 651 } 652 653 if (length > nvram_error_log_size) { 654 length = nvram_error_log_size; 655 } 656 657 info.error_type = err_type; 658 info.seq_num = error_log_cnt; 659 660 tmp_index = nvram_error_log_index; 661 662 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index); 663 if (rc <= 0) { 664 printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc); 665 return rc; 666 } 667 668 rc = ppc_md.nvram_write(buff, length, &tmp_index); 669 if (rc <= 0) { 670 printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc); 671 return rc; 672 } 673 674 return 0; 675 } 676 677 /* nvram_read_error_log 678 * 679 * Reads nvram for error log for at most 'length' 680 */ 681 int nvram_read_error_log(char * buff, int length, unsigned int * err_type) 682 { 683 int rc; 684 loff_t tmp_index; 685 struct err_log_info info; 686 687 if (nvram_error_log_index == -1) 688 return -1; 689 690 if (length > nvram_error_log_size) 691 length = nvram_error_log_size; 692 693 tmp_index = nvram_error_log_index; 694 695 rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index); 696 if (rc <= 0) { 697 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc); 698 return rc; 699 } 700 701 rc = ppc_md.nvram_read(buff, length, &tmp_index); 702 if (rc <= 0) { 703 printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc); 704 return rc; 705 } 706 707 error_log_cnt = info.seq_num; 708 *err_type = info.error_type; 709 710 return 0; 711 } 712 713 /* This doesn't actually zero anything, but it sets the event_logged 714 * word to tell that this event is safely in syslog. 715 */ 716 int nvram_clear_error_log(void) 717 { 718 loff_t tmp_index; 719 int clear_word = ERR_FLAG_ALREADY_LOGGED; 720 int rc; 721 722 tmp_index = nvram_error_log_index; 723 724 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index); 725 if (rc <= 0) { 726 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc); 727 return rc; 728 } 729 730 return 0; 731 } 732 733 #endif /* CONFIG_PPC_PSERIES */ 734 735 module_init(nvram_init); 736 module_exit(nvram_cleanup); 737 MODULE_LICENSE("GPL"); 738