1 /* 2 * c 2001 PPC 64 Team, IBM Corp 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * /dev/nvram driver for PPC64 10 */ 11 12 #include <linux/types.h> 13 #include <linux/errno.h> 14 #include <linux/fs.h> 15 #include <linux/miscdevice.h> 16 #include <linux/fcntl.h> 17 #include <linux/nvram.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/spinlock.h> 21 #include <linux/kmsg_dump.h> 22 #include <linux/pagemap.h> 23 #include <linux/pstore.h> 24 #include <linux/zlib.h> 25 #include <linux/uaccess.h> 26 #include <asm/nvram.h> 27 #include <asm/rtas.h> 28 #include <asm/prom.h> 29 #include <asm/machdep.h> 30 31 #undef DEBUG_NVRAM 32 33 #define NVRAM_HEADER_LEN sizeof(struct nvram_header) 34 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN 35 36 /* If change this size, then change the size of NVNAME_LEN */ 37 struct nvram_header { 38 unsigned char signature; 39 unsigned char checksum; 40 unsigned short length; 41 /* Terminating null required only for names < 12 chars. */ 42 char name[12]; 43 }; 44 45 struct nvram_partition { 46 struct list_head partition; 47 struct nvram_header header; 48 unsigned int index; 49 }; 50 51 static LIST_HEAD(nvram_partitions); 52 53 #ifdef CONFIG_PPC_PSERIES 54 struct nvram_os_partition rtas_log_partition = { 55 .name = "ibm,rtas-log", 56 .req_size = 2079, 57 .min_size = 1055, 58 .index = -1, 59 .os_partition = true 60 }; 61 #endif 62 63 struct nvram_os_partition oops_log_partition = { 64 .name = "lnx,oops-log", 65 .req_size = 4000, 66 .min_size = 2000, 67 .index = -1, 68 .os_partition = true 69 }; 70 71 static const char *nvram_os_partitions[] = { 72 #ifdef CONFIG_PPC_PSERIES 73 "ibm,rtas-log", 74 #endif 75 "lnx,oops-log", 76 NULL 77 }; 78 79 static void oops_to_nvram(struct kmsg_dumper *dumper, 80 enum kmsg_dump_reason reason); 81 82 static struct kmsg_dumper nvram_kmsg_dumper = { 83 .dump = oops_to_nvram 84 }; 85 86 /* 87 * For capturing and compressing an oops or panic report... 88 89 * big_oops_buf[] holds the uncompressed text we're capturing. 90 * 91 * oops_buf[] holds the compressed text, preceded by a oops header. 92 * oops header has u16 holding the version of oops header (to differentiate 93 * between old and new format header) followed by u16 holding the length of 94 * the compressed* text (*Or uncompressed, if compression fails.) and u64 95 * holding the timestamp. oops_buf[] gets written to NVRAM. 96 * 97 * oops_log_info points to the header. oops_data points to the compressed text. 98 * 99 * +- oops_buf 100 * | +- oops_data 101 * v v 102 * +-----------+-----------+-----------+------------------------+ 103 * | version | length | timestamp | text | 104 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) | 105 * +-----------+-----------+-----------+------------------------+ 106 * ^ 107 * +- oops_log_info 108 * 109 * We preallocate these buffers during init to avoid kmalloc during oops/panic. 110 */ 111 static size_t big_oops_buf_sz; 112 static char *big_oops_buf, *oops_buf; 113 static char *oops_data; 114 static size_t oops_data_sz; 115 116 /* Compression parameters */ 117 #define COMPR_LEVEL 6 118 #define WINDOW_BITS 12 119 #define MEM_LEVEL 4 120 static struct z_stream_s stream; 121 122 #ifdef CONFIG_PSTORE 123 #ifdef CONFIG_PPC_POWERNV 124 static struct nvram_os_partition skiboot_partition = { 125 .name = "ibm,skiboot", 126 .index = -1, 127 .os_partition = false 128 }; 129 #endif 130 131 #ifdef CONFIG_PPC_PSERIES 132 static struct nvram_os_partition of_config_partition = { 133 .name = "of-config", 134 .index = -1, 135 .os_partition = false 136 }; 137 #endif 138 139 static struct nvram_os_partition common_partition = { 140 .name = "common", 141 .index = -1, 142 .os_partition = false 143 }; 144 145 static enum pstore_type_id nvram_type_ids[] = { 146 PSTORE_TYPE_DMESG, 147 PSTORE_TYPE_PPC_COMMON, 148 -1, 149 -1, 150 -1 151 }; 152 static int read_type; 153 #endif 154 155 /* nvram_write_os_partition 156 * 157 * We need to buffer the error logs into nvram to ensure that we have 158 * the failure information to decode. If we have a severe error there 159 * is no way to guarantee that the OS or the machine is in a state to 160 * get back to user land and write the error to disk. For example if 161 * the SCSI device driver causes a Machine Check by writing to a bad 162 * IO address, there is no way of guaranteeing that the device driver 163 * is in any state that is would also be able to write the error data 164 * captured to disk, thus we buffer it in NVRAM for analysis on the 165 * next boot. 166 * 167 * In NVRAM the partition containing the error log buffer will looks like: 168 * Header (in bytes): 169 * +-----------+----------+--------+------------+------------------+ 170 * | signature | checksum | length | name | data | 171 * |0 |1 |2 3|4 15|16 length-1| 172 * +-----------+----------+--------+------------+------------------+ 173 * 174 * The 'data' section would look like (in bytes): 175 * +--------------+------------+-----------------------------------+ 176 * | event_logged | sequence # | error log | 177 * |0 3|4 7|8 error_log_size-1| 178 * +--------------+------------+-----------------------------------+ 179 * 180 * event_logged: 0 if event has not been logged to syslog, 1 if it has 181 * sequence #: The unique sequence # for each event. (until it wraps) 182 * error log: The error log from event_scan 183 */ 184 int nvram_write_os_partition(struct nvram_os_partition *part, 185 char *buff, int length, 186 unsigned int err_type, 187 unsigned int error_log_cnt) 188 { 189 int rc; 190 loff_t tmp_index; 191 struct err_log_info info; 192 193 if (part->index == -1) 194 return -ESPIPE; 195 196 if (length > part->size) 197 length = part->size; 198 199 info.error_type = cpu_to_be32(err_type); 200 info.seq_num = cpu_to_be32(error_log_cnt); 201 202 tmp_index = part->index; 203 204 rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index); 205 if (rc <= 0) { 206 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 207 return rc; 208 } 209 210 rc = ppc_md.nvram_write(buff, length, &tmp_index); 211 if (rc <= 0) { 212 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 213 return rc; 214 } 215 216 return 0; 217 } 218 219 /* nvram_read_partition 220 * 221 * Reads nvram partition for at most 'length' 222 */ 223 int nvram_read_partition(struct nvram_os_partition *part, char *buff, 224 int length, unsigned int *err_type, 225 unsigned int *error_log_cnt) 226 { 227 int rc; 228 loff_t tmp_index; 229 struct err_log_info info; 230 231 if (part->index == -1) 232 return -1; 233 234 if (length > part->size) 235 length = part->size; 236 237 tmp_index = part->index; 238 239 if (part->os_partition) { 240 rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index); 241 if (rc <= 0) { 242 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 243 return rc; 244 } 245 } 246 247 rc = ppc_md.nvram_read(buff, length, &tmp_index); 248 if (rc <= 0) { 249 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 250 return rc; 251 } 252 253 if (part->os_partition) { 254 *error_log_cnt = be32_to_cpu(info.seq_num); 255 *err_type = be32_to_cpu(info.error_type); 256 } 257 258 return 0; 259 } 260 261 /* nvram_init_os_partition 262 * 263 * This sets up a partition with an "OS" signature. 264 * 265 * The general strategy is the following: 266 * 1.) If a partition with the indicated name already exists... 267 * - If it's large enough, use it. 268 * - Otherwise, recycle it and keep going. 269 * 2.) Search for a free partition that is large enough. 270 * 3.) If there's not a free partition large enough, recycle any obsolete 271 * OS partitions and try again. 272 * 4.) Will first try getting a chunk that will satisfy the requested size. 273 * 5.) If a chunk of the requested size cannot be allocated, then try finding 274 * a chunk that will satisfy the minum needed. 275 * 276 * Returns 0 on success, else -1. 277 */ 278 int __init nvram_init_os_partition(struct nvram_os_partition *part) 279 { 280 loff_t p; 281 int size; 282 283 /* Look for ours */ 284 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size); 285 286 /* Found one but too small, remove it */ 287 if (p && size < part->min_size) { 288 pr_info("nvram: Found too small %s partition," 289 " removing it...\n", part->name); 290 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL); 291 p = 0; 292 } 293 294 /* Create one if we didn't find */ 295 if (!p) { 296 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 297 part->req_size, part->min_size); 298 if (p == -ENOSPC) { 299 pr_info("nvram: No room to create %s partition, " 300 "deleting any obsolete OS partitions...\n", 301 part->name); 302 nvram_remove_partition(NULL, NVRAM_SIG_OS, 303 nvram_os_partitions); 304 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 305 part->req_size, part->min_size); 306 } 307 } 308 309 if (p <= 0) { 310 pr_err("nvram: Failed to find or create %s" 311 " partition, err %d\n", part->name, (int)p); 312 return -1; 313 } 314 315 part->index = p; 316 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info); 317 318 return 0; 319 } 320 321 /* Derived from logfs_compress() */ 322 static int nvram_compress(const void *in, void *out, size_t inlen, 323 size_t outlen) 324 { 325 int err, ret; 326 327 ret = -EIO; 328 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS, 329 MEM_LEVEL, Z_DEFAULT_STRATEGY); 330 if (err != Z_OK) 331 goto error; 332 333 stream.next_in = in; 334 stream.avail_in = inlen; 335 stream.total_in = 0; 336 stream.next_out = out; 337 stream.avail_out = outlen; 338 stream.total_out = 0; 339 340 err = zlib_deflate(&stream, Z_FINISH); 341 if (err != Z_STREAM_END) 342 goto error; 343 344 err = zlib_deflateEnd(&stream); 345 if (err != Z_OK) 346 goto error; 347 348 if (stream.total_out >= stream.total_in) 349 goto error; 350 351 ret = stream.total_out; 352 error: 353 return ret; 354 } 355 356 /* Compress the text from big_oops_buf into oops_buf. */ 357 static int zip_oops(size_t text_len) 358 { 359 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 360 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len, 361 oops_data_sz); 362 if (zipped_len < 0) { 363 pr_err("nvram: compression failed; returned %d\n", zipped_len); 364 pr_err("nvram: logging uncompressed oops/panic report\n"); 365 return -1; 366 } 367 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 368 oops_hdr->report_length = cpu_to_be16(zipped_len); 369 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 370 return 0; 371 } 372 373 #ifdef CONFIG_PSTORE 374 static int nvram_pstore_open(struct pstore_info *psi) 375 { 376 /* Reset the iterator to start reading partitions again */ 377 read_type = -1; 378 return 0; 379 } 380 381 /** 382 * nvram_pstore_write - pstore write callback for nvram 383 * @record: pstore record to write, with @id to be set 384 * 385 * Called by pstore_dump() when an oops or panic report is logged in the 386 * printk buffer. 387 * Returns 0 on successful write. 388 */ 389 static int nvram_pstore_write(struct pstore_record *record) 390 { 391 int rc; 392 unsigned int err_type = ERR_TYPE_KERNEL_PANIC; 393 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf; 394 395 /* part 1 has the recent messages from printk buffer */ 396 if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG)) 397 return -1; 398 399 if (clobbering_unread_rtas_event()) 400 return -1; 401 402 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 403 oops_hdr->report_length = cpu_to_be16(record->size); 404 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 405 406 if (record->compressed) 407 err_type = ERR_TYPE_KERNEL_PANIC_GZ; 408 409 rc = nvram_write_os_partition(&oops_log_partition, oops_buf, 410 (int) (sizeof(*oops_hdr) + record->size), err_type, 411 record->count); 412 413 if (rc != 0) 414 return rc; 415 416 record->id = record->part; 417 return 0; 418 } 419 420 /* 421 * Reads the oops/panic report, rtas, of-config and common partition. 422 * Returns the length of the data we read from each partition. 423 * Returns 0 if we've been called before. 424 */ 425 static ssize_t nvram_pstore_read(struct pstore_record *record) 426 { 427 struct oops_log_info *oops_hdr; 428 unsigned int err_type, id_no, size = 0; 429 struct nvram_os_partition *part = NULL; 430 char *buff = NULL; 431 int sig = 0; 432 loff_t p; 433 434 read_type++; 435 436 switch (nvram_type_ids[read_type]) { 437 case PSTORE_TYPE_DMESG: 438 part = &oops_log_partition; 439 record->type = PSTORE_TYPE_DMESG; 440 break; 441 case PSTORE_TYPE_PPC_COMMON: 442 sig = NVRAM_SIG_SYS; 443 part = &common_partition; 444 record->type = PSTORE_TYPE_PPC_COMMON; 445 record->id = PSTORE_TYPE_PPC_COMMON; 446 record->time.tv_sec = 0; 447 record->time.tv_nsec = 0; 448 break; 449 #ifdef CONFIG_PPC_PSERIES 450 case PSTORE_TYPE_PPC_RTAS: 451 part = &rtas_log_partition; 452 record->type = PSTORE_TYPE_PPC_RTAS; 453 record->time.tv_sec = last_rtas_event; 454 record->time.tv_nsec = 0; 455 break; 456 case PSTORE_TYPE_PPC_OF: 457 sig = NVRAM_SIG_OF; 458 part = &of_config_partition; 459 record->type = PSTORE_TYPE_PPC_OF; 460 record->id = PSTORE_TYPE_PPC_OF; 461 record->time.tv_sec = 0; 462 record->time.tv_nsec = 0; 463 break; 464 #endif 465 #ifdef CONFIG_PPC_POWERNV 466 case PSTORE_TYPE_PPC_OPAL: 467 sig = NVRAM_SIG_FW; 468 part = &skiboot_partition; 469 record->type = PSTORE_TYPE_PPC_OPAL; 470 record->id = PSTORE_TYPE_PPC_OPAL; 471 record->time.tv_sec = 0; 472 record->time.tv_nsec = 0; 473 break; 474 #endif 475 default: 476 return 0; 477 } 478 479 if (!part->os_partition) { 480 p = nvram_find_partition(part->name, sig, &size); 481 if (p <= 0) { 482 pr_err("nvram: Failed to find partition %s, " 483 "err %d\n", part->name, (int)p); 484 return 0; 485 } 486 part->index = p; 487 part->size = size; 488 } 489 490 buff = kmalloc(part->size, GFP_KERNEL); 491 492 if (!buff) 493 return -ENOMEM; 494 495 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) { 496 kfree(buff); 497 return 0; 498 } 499 500 record->count = 0; 501 502 if (part->os_partition) 503 record->id = id_no; 504 505 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) { 506 size_t length, hdr_size; 507 508 oops_hdr = (struct oops_log_info *)buff; 509 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) { 510 /* Old format oops header had 2-byte record size */ 511 hdr_size = sizeof(u16); 512 length = be16_to_cpu(oops_hdr->version); 513 record->time.tv_sec = 0; 514 record->time.tv_nsec = 0; 515 } else { 516 hdr_size = sizeof(*oops_hdr); 517 length = be16_to_cpu(oops_hdr->report_length); 518 record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp); 519 record->time.tv_nsec = 0; 520 } 521 record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL); 522 kfree(buff); 523 if (record->buf == NULL) 524 return -ENOMEM; 525 526 record->ecc_notice_size = 0; 527 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) 528 record->compressed = true; 529 else 530 record->compressed = false; 531 return length; 532 } 533 534 record->buf = buff; 535 return part->size; 536 } 537 538 static struct pstore_info nvram_pstore_info = { 539 .owner = THIS_MODULE, 540 .name = "nvram", 541 .flags = PSTORE_FLAGS_DMESG, 542 .open = nvram_pstore_open, 543 .read = nvram_pstore_read, 544 .write = nvram_pstore_write, 545 }; 546 547 static int nvram_pstore_init(void) 548 { 549 int rc = 0; 550 551 if (machine_is(pseries)) { 552 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS; 553 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF; 554 } else 555 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL; 556 557 nvram_pstore_info.buf = oops_data; 558 nvram_pstore_info.bufsize = oops_data_sz; 559 560 rc = pstore_register(&nvram_pstore_info); 561 if (rc && (rc != -EPERM)) 562 /* Print error only when pstore.backend == nvram */ 563 pr_err("nvram: pstore_register() failed, returned %d. " 564 "Defaults to kmsg_dump\n", rc); 565 566 return rc; 567 } 568 #else 569 static int nvram_pstore_init(void) 570 { 571 return -1; 572 } 573 #endif 574 575 void __init nvram_init_oops_partition(int rtas_partition_exists) 576 { 577 int rc; 578 579 rc = nvram_init_os_partition(&oops_log_partition); 580 if (rc != 0) { 581 #ifdef CONFIG_PPC_PSERIES 582 if (!rtas_partition_exists) { 583 pr_err("nvram: Failed to initialize oops partition!"); 584 return; 585 } 586 pr_notice("nvram: Using %s partition to log both" 587 " RTAS errors and oops/panic reports\n", 588 rtas_log_partition.name); 589 memcpy(&oops_log_partition, &rtas_log_partition, 590 sizeof(rtas_log_partition)); 591 #else 592 pr_err("nvram: Failed to initialize oops partition!"); 593 return; 594 #endif 595 } 596 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL); 597 if (!oops_buf) { 598 pr_err("nvram: No memory for %s partition\n", 599 oops_log_partition.name); 600 return; 601 } 602 oops_data = oops_buf + sizeof(struct oops_log_info); 603 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info); 604 605 rc = nvram_pstore_init(); 606 607 if (!rc) 608 return; 609 610 /* 611 * Figure compression (preceded by elimination of each line's <n> 612 * severity prefix) will reduce the oops/panic report to at most 613 * 45% of its original size. 614 */ 615 big_oops_buf_sz = (oops_data_sz * 100) / 45; 616 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL); 617 if (big_oops_buf) { 618 stream.workspace = kmalloc(zlib_deflate_workspacesize( 619 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL); 620 if (!stream.workspace) { 621 pr_err("nvram: No memory for compression workspace; " 622 "skipping compression of %s partition data\n", 623 oops_log_partition.name); 624 kfree(big_oops_buf); 625 big_oops_buf = NULL; 626 } 627 } else { 628 pr_err("No memory for uncompressed %s data; " 629 "skipping compression\n", oops_log_partition.name); 630 stream.workspace = NULL; 631 } 632 633 rc = kmsg_dump_register(&nvram_kmsg_dumper); 634 if (rc != 0) { 635 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc); 636 kfree(oops_buf); 637 kfree(big_oops_buf); 638 kfree(stream.workspace); 639 } 640 } 641 642 /* 643 * This is our kmsg_dump callback, called after an oops or panic report 644 * has been written to the printk buffer. We want to capture as much 645 * of the printk buffer as possible. First, capture as much as we can 646 * that we think will compress sufficiently to fit in the lnx,oops-log 647 * partition. If that's too much, go back and capture uncompressed text. 648 */ 649 static void oops_to_nvram(struct kmsg_dumper *dumper, 650 enum kmsg_dump_reason reason) 651 { 652 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 653 static unsigned int oops_count = 0; 654 static bool panicking = false; 655 static DEFINE_SPINLOCK(lock); 656 unsigned long flags; 657 size_t text_len; 658 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ; 659 int rc = -1; 660 661 switch (reason) { 662 case KMSG_DUMP_RESTART: 663 case KMSG_DUMP_HALT: 664 case KMSG_DUMP_POWEROFF: 665 /* These are almost always orderly shutdowns. */ 666 return; 667 case KMSG_DUMP_OOPS: 668 break; 669 case KMSG_DUMP_PANIC: 670 panicking = true; 671 break; 672 case KMSG_DUMP_EMERG: 673 if (panicking) 674 /* Panic report already captured. */ 675 return; 676 break; 677 default: 678 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n", 679 __func__, (int) reason); 680 return; 681 } 682 683 if (clobbering_unread_rtas_event()) 684 return; 685 686 if (!spin_trylock_irqsave(&lock, flags)) 687 return; 688 689 if (big_oops_buf) { 690 kmsg_dump_get_buffer(dumper, false, 691 big_oops_buf, big_oops_buf_sz, &text_len); 692 rc = zip_oops(text_len); 693 } 694 if (rc != 0) { 695 kmsg_dump_rewind(dumper); 696 kmsg_dump_get_buffer(dumper, false, 697 oops_data, oops_data_sz, &text_len); 698 err_type = ERR_TYPE_KERNEL_PANIC; 699 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 700 oops_hdr->report_length = cpu_to_be16(text_len); 701 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 702 } 703 704 (void) nvram_write_os_partition(&oops_log_partition, oops_buf, 705 (int) (sizeof(*oops_hdr) + text_len), err_type, 706 ++oops_count); 707 708 spin_unlock_irqrestore(&lock, flags); 709 } 710 711 #ifdef DEBUG_NVRAM 712 static void __init nvram_print_partitions(char * label) 713 { 714 struct nvram_partition * tmp_part; 715 716 printk(KERN_WARNING "--------%s---------\n", label); 717 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); 718 list_for_each_entry(tmp_part, &nvram_partitions, partition) { 719 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n", 720 tmp_part->index, tmp_part->header.signature, 721 tmp_part->header.checksum, tmp_part->header.length, 722 tmp_part->header.name); 723 } 724 } 725 #endif 726 727 728 static int __init nvram_write_header(struct nvram_partition * part) 729 { 730 loff_t tmp_index; 731 int rc; 732 struct nvram_header phead; 733 734 memcpy(&phead, &part->header, NVRAM_HEADER_LEN); 735 phead.length = cpu_to_be16(phead.length); 736 737 tmp_index = part->index; 738 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index); 739 740 return rc; 741 } 742 743 744 static unsigned char __init nvram_checksum(struct nvram_header *p) 745 { 746 unsigned int c_sum, c_sum2; 747 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ 748 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; 749 750 /* The sum may have spilled into the 3rd byte. Fold it back. */ 751 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; 752 /* The sum cannot exceed 2 bytes. Fold it into a checksum */ 753 c_sum2 = (c_sum >> 8) + (c_sum << 8); 754 c_sum = ((c_sum + c_sum2) >> 8) & 0xff; 755 return c_sum; 756 } 757 758 /* 759 * Per the criteria passed via nvram_remove_partition(), should this 760 * partition be removed? 1=remove, 0=keep 761 */ 762 static int nvram_can_remove_partition(struct nvram_partition *part, 763 const char *name, int sig, const char *exceptions[]) 764 { 765 if (part->header.signature != sig) 766 return 0; 767 if (name) { 768 if (strncmp(name, part->header.name, 12)) 769 return 0; 770 } else if (exceptions) { 771 const char **except; 772 for (except = exceptions; *except; except++) { 773 if (!strncmp(*except, part->header.name, 12)) 774 return 0; 775 } 776 } 777 return 1; 778 } 779 780 /** 781 * nvram_remove_partition - Remove one or more partitions in nvram 782 * @name: name of the partition to remove, or NULL for a 783 * signature only match 784 * @sig: signature of the partition(s) to remove 785 * @exceptions: When removing all partitions with a matching signature, 786 * leave these alone. 787 */ 788 789 int __init nvram_remove_partition(const char *name, int sig, 790 const char *exceptions[]) 791 { 792 struct nvram_partition *part, *prev, *tmp; 793 int rc; 794 795 list_for_each_entry(part, &nvram_partitions, partition) { 796 if (!nvram_can_remove_partition(part, name, sig, exceptions)) 797 continue; 798 799 /* Make partition a free partition */ 800 part->header.signature = NVRAM_SIG_FREE; 801 memset(part->header.name, 'w', 12); 802 part->header.checksum = nvram_checksum(&part->header); 803 rc = nvram_write_header(part); 804 if (rc <= 0) { 805 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 806 return rc; 807 } 808 } 809 810 /* Merge contiguous ones */ 811 prev = NULL; 812 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) { 813 if (part->header.signature != NVRAM_SIG_FREE) { 814 prev = NULL; 815 continue; 816 } 817 if (prev) { 818 prev->header.length += part->header.length; 819 prev->header.checksum = nvram_checksum(&prev->header); 820 rc = nvram_write_header(prev); 821 if (rc <= 0) { 822 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 823 return rc; 824 } 825 list_del(&part->partition); 826 kfree(part); 827 } else 828 prev = part; 829 } 830 831 return 0; 832 } 833 834 /** 835 * nvram_create_partition - Create a partition in nvram 836 * @name: name of the partition to create 837 * @sig: signature of the partition to create 838 * @req_size: size of data to allocate in bytes 839 * @min_size: minimum acceptable size (0 means req_size) 840 * 841 * Returns a negative error code or a positive nvram index 842 * of the beginning of the data area of the newly created 843 * partition. If you provided a min_size smaller than req_size 844 * you need to query for the actual size yourself after the 845 * call using nvram_partition_get_size(). 846 */ 847 loff_t __init nvram_create_partition(const char *name, int sig, 848 int req_size, int min_size) 849 { 850 struct nvram_partition *part; 851 struct nvram_partition *new_part; 852 struct nvram_partition *free_part = NULL; 853 static char nv_init_vals[16]; 854 loff_t tmp_index; 855 long size = 0; 856 int rc; 857 858 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16); 859 860 /* Convert sizes from bytes to blocks */ 861 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 862 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 863 864 /* If no minimum size specified, make it the same as the 865 * requested size 866 */ 867 if (min_size == 0) 868 min_size = req_size; 869 if (min_size > req_size) 870 return -EINVAL; 871 872 /* Now add one block to each for the header */ 873 req_size += 1; 874 min_size += 1; 875 876 /* Find a free partition that will give us the maximum needed size 877 If can't find one that will give us the minimum size needed */ 878 list_for_each_entry(part, &nvram_partitions, partition) { 879 if (part->header.signature != NVRAM_SIG_FREE) 880 continue; 881 882 if (part->header.length >= req_size) { 883 size = req_size; 884 free_part = part; 885 break; 886 } 887 if (part->header.length > size && 888 part->header.length >= min_size) { 889 size = part->header.length; 890 free_part = part; 891 } 892 } 893 if (!size) 894 return -ENOSPC; 895 896 /* Create our OS partition */ 897 new_part = kzalloc(sizeof(*new_part), GFP_KERNEL); 898 if (!new_part) { 899 pr_err("%s: kmalloc failed\n", __func__); 900 return -ENOMEM; 901 } 902 903 new_part->index = free_part->index; 904 new_part->header.signature = sig; 905 new_part->header.length = size; 906 memcpy(new_part->header.name, name, strnlen(name, sizeof(new_part->header.name))); 907 new_part->header.checksum = nvram_checksum(&new_part->header); 908 909 rc = nvram_write_header(new_part); 910 if (rc <= 0) { 911 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc); 912 kfree(new_part); 913 return rc; 914 } 915 list_add_tail(&new_part->partition, &free_part->partition); 916 917 /* Adjust or remove the partition we stole the space from */ 918 if (free_part->header.length > size) { 919 free_part->index += size * NVRAM_BLOCK_LEN; 920 free_part->header.length -= size; 921 free_part->header.checksum = nvram_checksum(&free_part->header); 922 rc = nvram_write_header(free_part); 923 if (rc <= 0) { 924 pr_err("%s: nvram_write_header failed (%d)\n", 925 __func__, rc); 926 return rc; 927 } 928 } else { 929 list_del(&free_part->partition); 930 kfree(free_part); 931 } 932 933 /* Clear the new partition */ 934 for (tmp_index = new_part->index + NVRAM_HEADER_LEN; 935 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN); 936 tmp_index += NVRAM_BLOCK_LEN) { 937 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index); 938 if (rc <= 0) { 939 pr_err("%s: nvram_write failed (%d)\n", 940 __func__, rc); 941 return rc; 942 } 943 } 944 945 return new_part->index + NVRAM_HEADER_LEN; 946 } 947 948 /** 949 * nvram_get_partition_size - Get the data size of an nvram partition 950 * @data_index: This is the offset of the start of the data of 951 * the partition. The same value that is returned by 952 * nvram_create_partition(). 953 */ 954 int nvram_get_partition_size(loff_t data_index) 955 { 956 struct nvram_partition *part; 957 958 list_for_each_entry(part, &nvram_partitions, partition) { 959 if (part->index + NVRAM_HEADER_LEN == data_index) 960 return (part->header.length - 1) * NVRAM_BLOCK_LEN; 961 } 962 return -1; 963 } 964 965 966 /** 967 * nvram_find_partition - Find an nvram partition by signature and name 968 * @name: Name of the partition or NULL for any name 969 * @sig: Signature to test against 970 * @out_size: if non-NULL, returns the size of the data part of the partition 971 */ 972 loff_t nvram_find_partition(const char *name, int sig, int *out_size) 973 { 974 struct nvram_partition *p; 975 976 list_for_each_entry(p, &nvram_partitions, partition) { 977 if (p->header.signature == sig && 978 (!name || !strncmp(p->header.name, name, 12))) { 979 if (out_size) 980 *out_size = (p->header.length - 1) * 981 NVRAM_BLOCK_LEN; 982 return p->index + NVRAM_HEADER_LEN; 983 } 984 } 985 return 0; 986 } 987 988 int __init nvram_scan_partitions(void) 989 { 990 loff_t cur_index = 0; 991 struct nvram_header phead; 992 struct nvram_partition * tmp_part; 993 unsigned char c_sum; 994 char * header; 995 int total_size; 996 int err; 997 998 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 999 return -ENODEV; 1000 total_size = ppc_md.nvram_size(); 1001 1002 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); 1003 if (!header) { 1004 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); 1005 return -ENOMEM; 1006 } 1007 1008 while (cur_index < total_size) { 1009 1010 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); 1011 if (err != NVRAM_HEADER_LEN) { 1012 printk(KERN_ERR "nvram_scan_partitions: Error parsing " 1013 "nvram partitions\n"); 1014 goto out; 1015 } 1016 1017 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ 1018 1019 memcpy(&phead, header, NVRAM_HEADER_LEN); 1020 1021 phead.length = be16_to_cpu(phead.length); 1022 1023 err = 0; 1024 c_sum = nvram_checksum(&phead); 1025 if (c_sum != phead.checksum) { 1026 printk(KERN_WARNING "WARNING: nvram partition checksum" 1027 " was %02x, should be %02x!\n", 1028 phead.checksum, c_sum); 1029 printk(KERN_WARNING "Terminating nvram partition scan\n"); 1030 goto out; 1031 } 1032 if (!phead.length) { 1033 printk(KERN_WARNING "WARNING: nvram corruption " 1034 "detected: 0-length partition\n"); 1035 goto out; 1036 } 1037 tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL); 1038 err = -ENOMEM; 1039 if (!tmp_part) { 1040 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); 1041 goto out; 1042 } 1043 1044 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); 1045 tmp_part->index = cur_index; 1046 list_add_tail(&tmp_part->partition, &nvram_partitions); 1047 1048 cur_index += phead.length * NVRAM_BLOCK_LEN; 1049 } 1050 err = 0; 1051 1052 #ifdef DEBUG_NVRAM 1053 nvram_print_partitions("NVRAM Partitions"); 1054 #endif 1055 1056 out: 1057 kfree(header); 1058 return err; 1059 } 1060