xref: /openbmc/linux/arch/powerpc/kernel/nvram_64.c (revision 22246614)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/module.h>
19 
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <asm/uaccess.h>
30 #include <asm/nvram.h>
31 #include <asm/rtas.h>
32 #include <asm/prom.h>
33 #include <asm/machdep.h>
34 
35 #undef DEBUG_NVRAM
36 
37 static struct nvram_partition * nvram_part;
38 static long nvram_error_log_index = -1;
39 static long nvram_error_log_size = 0;
40 
41 struct err_log_info {
42 	int error_type;
43 	unsigned int seq_num;
44 };
45 
46 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
47 {
48 	int size;
49 
50 	if (ppc_md.nvram_size == NULL)
51 		return -ENODEV;
52 	size = ppc_md.nvram_size();
53 
54 	switch (origin) {
55 	case 1:
56 		offset += file->f_pos;
57 		break;
58 	case 2:
59 		offset += size;
60 		break;
61 	}
62 	if (offset < 0)
63 		return -EINVAL;
64 	file->f_pos = offset;
65 	return file->f_pos;
66 }
67 
68 
69 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
70 			  size_t count, loff_t *ppos)
71 {
72 	ssize_t ret;
73 	char *tmp = NULL;
74 	ssize_t size;
75 
76 	ret = -ENODEV;
77 	if (!ppc_md.nvram_size)
78 		goto out;
79 
80 	ret = 0;
81 	size = ppc_md.nvram_size();
82 	if (*ppos >= size || size < 0)
83 		goto out;
84 
85 	count = min_t(size_t, count, size - *ppos);
86 	count = min(count, PAGE_SIZE);
87 
88 	ret = -ENOMEM;
89 	tmp = kmalloc(count, GFP_KERNEL);
90 	if (!tmp)
91 		goto out;
92 
93 	ret = ppc_md.nvram_read(tmp, count, ppos);
94 	if (ret <= 0)
95 		goto out;
96 
97 	if (copy_to_user(buf, tmp, ret))
98 		ret = -EFAULT;
99 
100 out:
101 	kfree(tmp);
102 	return ret;
103 
104 }
105 
106 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
107 			  size_t count, loff_t *ppos)
108 {
109 	ssize_t ret;
110 	char *tmp = NULL;
111 	ssize_t size;
112 
113 	ret = -ENODEV;
114 	if (!ppc_md.nvram_size)
115 		goto out;
116 
117 	ret = 0;
118 	size = ppc_md.nvram_size();
119 	if (*ppos >= size || size < 0)
120 		goto out;
121 
122 	count = min_t(size_t, count, size - *ppos);
123 	count = min(count, PAGE_SIZE);
124 
125 	ret = -ENOMEM;
126 	tmp = kmalloc(count, GFP_KERNEL);
127 	if (!tmp)
128 		goto out;
129 
130 	ret = -EFAULT;
131 	if (copy_from_user(tmp, buf, count))
132 		goto out;
133 
134 	ret = ppc_md.nvram_write(tmp, count, ppos);
135 
136 out:
137 	kfree(tmp);
138 	return ret;
139 
140 }
141 
142 static int dev_nvram_ioctl(struct inode *inode, struct file *file,
143 	unsigned int cmd, unsigned long arg)
144 {
145 	switch(cmd) {
146 #ifdef CONFIG_PPC_PMAC
147 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
148 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
149 	case IOC_NVRAM_GET_OFFSET: {
150 		int part, offset;
151 
152 		if (!machine_is(powermac))
153 			return -EINVAL;
154 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
155 			return -EFAULT;
156 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
157 			return -EINVAL;
158 		offset = pmac_get_partition(part);
159 		if (offset < 0)
160 			return offset;
161 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
162 			return -EFAULT;
163 		return 0;
164 	}
165 #endif /* CONFIG_PPC_PMAC */
166 	default:
167 		return -EINVAL;
168 	}
169 }
170 
171 const struct file_operations nvram_fops = {
172 	.owner =	THIS_MODULE,
173 	.llseek =	dev_nvram_llseek,
174 	.read =		dev_nvram_read,
175 	.write =	dev_nvram_write,
176 	.ioctl =	dev_nvram_ioctl,
177 };
178 
179 static struct miscdevice nvram_dev = {
180 	NVRAM_MINOR,
181 	"nvram",
182 	&nvram_fops
183 };
184 
185 
186 #ifdef DEBUG_NVRAM
187 static void nvram_print_partitions(char * label)
188 {
189 	struct list_head * p;
190 	struct nvram_partition * tmp_part;
191 
192 	printk(KERN_WARNING "--------%s---------\n", label);
193 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
194 	list_for_each(p, &nvram_part->partition) {
195 		tmp_part = list_entry(p, struct nvram_partition, partition);
196 		printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%s\n",
197 		       tmp_part->index, tmp_part->header.signature,
198 		       tmp_part->header.checksum, tmp_part->header.length,
199 		       tmp_part->header.name);
200 	}
201 }
202 #endif
203 
204 
205 static int nvram_write_header(struct nvram_partition * part)
206 {
207 	loff_t tmp_index;
208 	int rc;
209 
210 	tmp_index = part->index;
211 	rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
212 
213 	return rc;
214 }
215 
216 
217 static unsigned char nvram_checksum(struct nvram_header *p)
218 {
219 	unsigned int c_sum, c_sum2;
220 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
221 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
222 
223 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
224 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
225 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
226 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
227 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
228 	return c_sum;
229 }
230 
231 
232 /*
233  * Find an nvram partition, sig can be 0 for any
234  * partition or name can be NULL for any name, else
235  * tries to match both
236  */
237 struct nvram_partition *nvram_find_partition(int sig, const char *name)
238 {
239 	struct nvram_partition * part;
240 	struct list_head * p;
241 
242 	list_for_each(p, &nvram_part->partition) {
243 		part = list_entry(p, struct nvram_partition, partition);
244 
245 		if (sig && part->header.signature != sig)
246 			continue;
247 		if (name && 0 != strncmp(name, part->header.name, 12))
248 			continue;
249 		return part;
250 	}
251 	return NULL;
252 }
253 EXPORT_SYMBOL(nvram_find_partition);
254 
255 
256 static int nvram_remove_os_partition(void)
257 {
258 	struct list_head *i;
259 	struct list_head *j;
260 	struct nvram_partition * part;
261 	struct nvram_partition * cur_part;
262 	int rc;
263 
264 	list_for_each(i, &nvram_part->partition) {
265 		part = list_entry(i, struct nvram_partition, partition);
266 		if (part->header.signature != NVRAM_SIG_OS)
267 			continue;
268 
269 		/* Make os partition a free partition */
270 		part->header.signature = NVRAM_SIG_FREE;
271 		sprintf(part->header.name, "wwwwwwwwwwww");
272 		part->header.checksum = nvram_checksum(&part->header);
273 
274 		/* Merge contiguous free partitions backwards */
275 		list_for_each_prev(j, &part->partition) {
276 			cur_part = list_entry(j, struct nvram_partition, partition);
277 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
278 				break;
279 			}
280 
281 			part->header.length += cur_part->header.length;
282 			part->header.checksum = nvram_checksum(&part->header);
283 			part->index = cur_part->index;
284 
285 			list_del(&cur_part->partition);
286 			kfree(cur_part);
287 			j = &part->partition; /* fixup our loop */
288 		}
289 
290 		/* Merge contiguous free partitions forwards */
291 		list_for_each(j, &part->partition) {
292 			cur_part = list_entry(j, struct nvram_partition, partition);
293 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
294 				break;
295 			}
296 
297 			part->header.length += cur_part->header.length;
298 			part->header.checksum = nvram_checksum(&part->header);
299 
300 			list_del(&cur_part->partition);
301 			kfree(cur_part);
302 			j = &part->partition; /* fixup our loop */
303 		}
304 
305 		rc = nvram_write_header(part);
306 		if (rc <= 0) {
307 			printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
308 			return rc;
309 		}
310 
311 	}
312 
313 	return 0;
314 }
315 
316 /* nvram_create_os_partition
317  *
318  * Create a OS linux partition to buffer error logs.
319  * Will create a partition starting at the first free
320  * space found if space has enough room.
321  */
322 static int nvram_create_os_partition(void)
323 {
324 	struct nvram_partition *part;
325 	struct nvram_partition *new_part;
326 	struct nvram_partition *free_part = NULL;
327 	int seq_init[2] = { 0, 0 };
328 	loff_t tmp_index;
329 	long size = 0;
330 	int rc;
331 
332 	/* Find a free partition that will give us the maximum needed size
333 	   If can't find one that will give us the minimum size needed */
334 	list_for_each_entry(part, &nvram_part->partition, partition) {
335 		if (part->header.signature != NVRAM_SIG_FREE)
336 			continue;
337 
338 		if (part->header.length >= NVRAM_MAX_REQ) {
339 			size = NVRAM_MAX_REQ;
340 			free_part = part;
341 			break;
342 		}
343 		if (!size && part->header.length >= NVRAM_MIN_REQ) {
344 			size = NVRAM_MIN_REQ;
345 			free_part = part;
346 		}
347 	}
348 	if (!size)
349 		return -ENOSPC;
350 
351 	/* Create our OS partition */
352 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
353 	if (!new_part) {
354 		printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
355 		return -ENOMEM;
356 	}
357 
358 	new_part->index = free_part->index;
359 	new_part->header.signature = NVRAM_SIG_OS;
360 	new_part->header.length = size;
361 	strcpy(new_part->header.name, "ppc64,linux");
362 	new_part->header.checksum = nvram_checksum(&new_part->header);
363 
364 	rc = nvram_write_header(new_part);
365 	if (rc <= 0) {
366 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
367 				failed (%d)\n", rc);
368 		return rc;
369 	}
370 
371 	/* make sure and initialize to zero the sequence number and the error
372 	   type logged */
373 	tmp_index = new_part->index + NVRAM_HEADER_LEN;
374 	rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
375 	if (rc <= 0) {
376 		printk(KERN_ERR "nvram_create_os_partition: nvram_write "
377 				"failed (%d)\n", rc);
378 		return rc;
379 	}
380 
381 	nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
382 	nvram_error_log_size = ((part->header.length - 1) *
383 				NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
384 
385 	list_add_tail(&new_part->partition, &free_part->partition);
386 
387 	if (free_part->header.length <= size) {
388 		list_del(&free_part->partition);
389 		kfree(free_part);
390 		return 0;
391 	}
392 
393 	/* Adjust the partition we stole the space from */
394 	free_part->index += size * NVRAM_BLOCK_LEN;
395 	free_part->header.length -= size;
396 	free_part->header.checksum = nvram_checksum(&free_part->header);
397 
398 	rc = nvram_write_header(free_part);
399 	if (rc <= 0) {
400 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
401 		       "failed (%d)\n", rc);
402 		return rc;
403 	}
404 
405 	return 0;
406 }
407 
408 
409 /* nvram_setup_partition
410  *
411  * This will setup the partition we need for buffering the
412  * error logs and cleanup partitions if needed.
413  *
414  * The general strategy is the following:
415  * 1.) If there is ppc64,linux partition large enough then use it.
416  * 2.) If there is not a ppc64,linux partition large enough, search
417  * for a free partition that is large enough.
418  * 3.) If there is not a free partition large enough remove
419  * _all_ OS partitions and consolidate the space.
420  * 4.) Will first try getting a chunk that will satisfy the maximum
421  * error log size (NVRAM_MAX_REQ).
422  * 5.) If the max chunk cannot be allocated then try finding a chunk
423  * that will satisfy the minum needed (NVRAM_MIN_REQ).
424  */
425 static int nvram_setup_partition(void)
426 {
427 	struct list_head * p;
428 	struct nvram_partition * part;
429 	int rc;
430 
431 	/* For now, we don't do any of this on pmac, until I
432 	 * have figured out if it's worth killing some unused stuffs
433 	 * in our nvram, as Apple defined partitions use pretty much
434 	 * all of the space
435 	 */
436 	if (machine_is(powermac))
437 		return -ENOSPC;
438 
439 	/* see if we have an OS partition that meets our needs.
440 	   will try getting the max we need.  If not we'll delete
441 	   partitions and try again. */
442 	list_for_each(p, &nvram_part->partition) {
443 		part = list_entry(p, struct nvram_partition, partition);
444 		if (part->header.signature != NVRAM_SIG_OS)
445 			continue;
446 
447 		if (strcmp(part->header.name, "ppc64,linux"))
448 			continue;
449 
450 		if (part->header.length >= NVRAM_MIN_REQ) {
451 			/* found our partition */
452 			nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
453 			nvram_error_log_size = ((part->header.length - 1) *
454 						NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
455 			return 0;
456 		}
457 	}
458 
459 	/* try creating a partition with the free space we have */
460 	rc = nvram_create_os_partition();
461 	if (!rc) {
462 		return 0;
463 	}
464 
465 	/* need to free up some space */
466 	rc = nvram_remove_os_partition();
467 	if (rc) {
468 		return rc;
469 	}
470 
471 	/* create a partition in this new space */
472 	rc = nvram_create_os_partition();
473 	if (rc) {
474 		printk(KERN_ERR "nvram_create_os_partition: Could not find a "
475 		       "NVRAM partition large enough\n");
476 		return rc;
477 	}
478 
479 	return 0;
480 }
481 
482 
483 static int nvram_scan_partitions(void)
484 {
485 	loff_t cur_index = 0;
486 	struct nvram_header phead;
487 	struct nvram_partition * tmp_part;
488 	unsigned char c_sum;
489 	char * header;
490 	int total_size;
491 	int err;
492 
493 	if (ppc_md.nvram_size == NULL)
494 		return -ENODEV;
495 	total_size = ppc_md.nvram_size();
496 
497 	header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
498 	if (!header) {
499 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
500 		return -ENOMEM;
501 	}
502 
503 	while (cur_index < total_size) {
504 
505 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
506 		if (err != NVRAM_HEADER_LEN) {
507 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
508 			       "nvram partitions\n");
509 			goto out;
510 		}
511 
512 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
513 
514 		memcpy(&phead, header, NVRAM_HEADER_LEN);
515 
516 		err = 0;
517 		c_sum = nvram_checksum(&phead);
518 		if (c_sum != phead.checksum) {
519 			printk(KERN_WARNING "WARNING: nvram partition checksum"
520 			       " was %02x, should be %02x!\n",
521 			       phead.checksum, c_sum);
522 			printk(KERN_WARNING "Terminating nvram partition scan\n");
523 			goto out;
524 		}
525 		if (!phead.length) {
526 			printk(KERN_WARNING "WARNING: nvram corruption "
527 			       "detected: 0-length partition\n");
528 			goto out;
529 		}
530 		tmp_part = (struct nvram_partition *)
531 			kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
532 		err = -ENOMEM;
533 		if (!tmp_part) {
534 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
535 			goto out;
536 		}
537 
538 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
539 		tmp_part->index = cur_index;
540 		list_add_tail(&tmp_part->partition, &nvram_part->partition);
541 
542 		cur_index += phead.length * NVRAM_BLOCK_LEN;
543 	}
544 	err = 0;
545 
546  out:
547 	kfree(header);
548 	return err;
549 }
550 
551 static int __init nvram_init(void)
552 {
553 	int error;
554 	int rc;
555 
556 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
557 		return  -ENODEV;
558 
559   	rc = misc_register(&nvram_dev);
560 	if (rc != 0) {
561 		printk(KERN_ERR "nvram_init: failed to register device\n");
562 		return rc;
563 	}
564 
565   	/* initialize our anchor for the nvram partition list */
566   	nvram_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
567   	if (!nvram_part) {
568   		printk(KERN_ERR "nvram_init: Failed kmalloc\n");
569   		return -ENOMEM;
570   	}
571   	INIT_LIST_HEAD(&nvram_part->partition);
572 
573   	/* Get all the NVRAM partitions */
574   	error = nvram_scan_partitions();
575   	if (error) {
576   		printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
577   		return error;
578   	}
579 
580   	if(nvram_setup_partition())
581   		printk(KERN_WARNING "nvram_init: Could not find nvram partition"
582   		       " for nvram buffered error logging.\n");
583 
584 #ifdef DEBUG_NVRAM
585 	nvram_print_partitions("NVRAM Partitions");
586 #endif
587 
588   	return rc;
589 }
590 
591 void __exit nvram_cleanup(void)
592 {
593         misc_deregister( &nvram_dev );
594 }
595 
596 
597 #ifdef CONFIG_PPC_PSERIES
598 
599 /* nvram_write_error_log
600  *
601  * We need to buffer the error logs into nvram to ensure that we have
602  * the failure information to decode.  If we have a severe error there
603  * is no way to guarantee that the OS or the machine is in a state to
604  * get back to user land and write the error to disk.  For example if
605  * the SCSI device driver causes a Machine Check by writing to a bad
606  * IO address, there is no way of guaranteeing that the device driver
607  * is in any state that is would also be able to write the error data
608  * captured to disk, thus we buffer it in NVRAM for analysis on the
609  * next boot.
610  *
611  * In NVRAM the partition containing the error log buffer will looks like:
612  * Header (in bytes):
613  * +-----------+----------+--------+------------+------------------+
614  * | signature | checksum | length | name       | data             |
615  * |0          |1         |2      3|4         15|16        length-1|
616  * +-----------+----------+--------+------------+------------------+
617  *
618  * The 'data' section would look like (in bytes):
619  * +--------------+------------+-----------------------------------+
620  * | event_logged | sequence # | error log                         |
621  * |0            3|4          7|8            nvram_error_log_size-1|
622  * +--------------+------------+-----------------------------------+
623  *
624  * event_logged: 0 if event has not been logged to syslog, 1 if it has
625  * sequence #: The unique sequence # for each event. (until it wraps)
626  * error log: The error log from event_scan
627  */
628 int nvram_write_error_log(char * buff, int length,
629                           unsigned int err_type, unsigned int error_log_cnt)
630 {
631 	int rc;
632 	loff_t tmp_index;
633 	struct err_log_info info;
634 
635 	if (nvram_error_log_index == -1) {
636 		return -ESPIPE;
637 	}
638 
639 	if (length > nvram_error_log_size) {
640 		length = nvram_error_log_size;
641 	}
642 
643 	info.error_type = err_type;
644 	info.seq_num = error_log_cnt;
645 
646 	tmp_index = nvram_error_log_index;
647 
648 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
649 	if (rc <= 0) {
650 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
651 		return rc;
652 	}
653 
654 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
655 	if (rc <= 0) {
656 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
657 		return rc;
658 	}
659 
660 	return 0;
661 }
662 
663 /* nvram_read_error_log
664  *
665  * Reads nvram for error log for at most 'length'
666  */
667 int nvram_read_error_log(char * buff, int length,
668                          unsigned int * err_type, unsigned int * error_log_cnt)
669 {
670 	int rc;
671 	loff_t tmp_index;
672 	struct err_log_info info;
673 
674 	if (nvram_error_log_index == -1)
675 		return -1;
676 
677 	if (length > nvram_error_log_size)
678 		length = nvram_error_log_size;
679 
680 	tmp_index = nvram_error_log_index;
681 
682 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
683 	if (rc <= 0) {
684 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
685 		return rc;
686 	}
687 
688 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
689 	if (rc <= 0) {
690 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
691 		return rc;
692 	}
693 
694 	*error_log_cnt = info.seq_num;
695 	*err_type = info.error_type;
696 
697 	return 0;
698 }
699 
700 /* This doesn't actually zero anything, but it sets the event_logged
701  * word to tell that this event is safely in syslog.
702  */
703 int nvram_clear_error_log(void)
704 {
705 	loff_t tmp_index;
706 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
707 	int rc;
708 
709 	tmp_index = nvram_error_log_index;
710 
711 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
712 	if (rc <= 0) {
713 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
714 		return rc;
715 	}
716 
717 	return 0;
718 }
719 
720 #endif /* CONFIG_PPC_PSERIES */
721 
722 module_init(nvram_init);
723 module_exit(nvram_cleanup);
724 MODULE_LICENSE("GPL");
725