xref: /openbmc/linux/arch/powerpc/kernel/mce_power.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Machine check exception handling CPU-side for power7 and power8
4  *
5  * Copyright 2013 IBM Corporation
6  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
7  */
8 
9 #undef DEBUG
10 #define pr_fmt(fmt) "mce_power: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <asm/mmu.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/pgtable.h>
18 #include <asm/pte-walk.h>
19 #include <asm/sstep.h>
20 #include <asm/exception-64s.h>
21 
22 /*
23  * Convert an address related to an mm to a PFN. NOTE: we are in real
24  * mode, we could potentially race with page table updates.
25  */
26 unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
27 {
28 	pte_t *ptep;
29 	unsigned long flags;
30 	struct mm_struct *mm;
31 
32 	if (user_mode(regs))
33 		mm = current->mm;
34 	else
35 		mm = &init_mm;
36 
37 	local_irq_save(flags);
38 	if (mm == current->mm)
39 		ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
40 	else
41 		ptep = find_init_mm_pte(addr, NULL);
42 	local_irq_restore(flags);
43 	if (!ptep || pte_special(*ptep))
44 		return ULONG_MAX;
45 	return pte_pfn(*ptep);
46 }
47 
48 /* flush SLBs and reload */
49 #ifdef CONFIG_PPC_BOOK3S_64
50 void flush_and_reload_slb(void)
51 {
52 	/* Invalidate all SLBs */
53 	slb_flush_all_realmode();
54 
55 #ifdef CONFIG_KVM_BOOK3S_HANDLER
56 	/*
57 	 * If machine check is hit when in guest or in transition, we will
58 	 * only flush the SLBs and continue.
59 	 */
60 	if (get_paca()->kvm_hstate.in_guest)
61 		return;
62 #endif
63 	if (early_radix_enabled())
64 		return;
65 
66 	/*
67 	 * This probably shouldn't happen, but it may be possible it's
68 	 * called in early boot before SLB shadows are allocated.
69 	 */
70 	if (!get_slb_shadow())
71 		return;
72 
73 	slb_restore_bolted_realmode();
74 }
75 #endif
76 
77 static void flush_erat(void)
78 {
79 #ifdef CONFIG_PPC_BOOK3S_64
80 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
81 		flush_and_reload_slb();
82 		return;
83 	}
84 #endif
85 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
86 }
87 
88 #define MCE_FLUSH_SLB 1
89 #define MCE_FLUSH_TLB 2
90 #define MCE_FLUSH_ERAT 3
91 
92 static int mce_flush(int what)
93 {
94 #ifdef CONFIG_PPC_BOOK3S_64
95 	if (what == MCE_FLUSH_SLB) {
96 		flush_and_reload_slb();
97 		return 1;
98 	}
99 #endif
100 	if (what == MCE_FLUSH_ERAT) {
101 		flush_erat();
102 		return 1;
103 	}
104 	if (what == MCE_FLUSH_TLB) {
105 		tlbiel_all();
106 		return 1;
107 	}
108 
109 	return 0;
110 }
111 
112 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
113 
114 struct mce_ierror_table {
115 	unsigned long srr1_mask;
116 	unsigned long srr1_value;
117 	bool nip_valid; /* nip is a valid indicator of faulting address */
118 	unsigned int error_type;
119 	unsigned int error_subtype;
120 	unsigned int error_class;
121 	unsigned int initiator;
122 	unsigned int severity;
123 	bool sync_error;
124 };
125 
126 static const struct mce_ierror_table mce_p7_ierror_table[] = {
127 { 0x00000000001c0000, 0x0000000000040000, true,
128   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
129   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
130 { 0x00000000001c0000, 0x0000000000080000, true,
131   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
132   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
133 { 0x00000000001c0000, 0x00000000000c0000, true,
134   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
135   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
136 { 0x00000000001c0000, 0x0000000000100000, true,
137   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
138   MCE_ECLASS_SOFT_INDETERMINATE,
139   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
140 { 0x00000000001c0000, 0x0000000000140000, true,
141   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
142   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
143 { 0x00000000001c0000, 0x0000000000180000, true,
144   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
145   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
146 { 0x00000000001c0000, 0x00000000001c0000, true,
147   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
148   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
149 { 0, 0, 0, 0, 0, 0, 0 } };
150 
151 static const struct mce_ierror_table mce_p8_ierror_table[] = {
152 { 0x00000000081c0000, 0x0000000000040000, true,
153   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
154   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
155 { 0x00000000081c0000, 0x0000000000080000, true,
156   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
157   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
158 { 0x00000000081c0000, 0x00000000000c0000, true,
159   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
160   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
161 { 0x00000000081c0000, 0x0000000000100000, true,
162   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
163   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
164 { 0x00000000081c0000, 0x0000000000140000, true,
165   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
166   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
167 { 0x00000000081c0000, 0x0000000000180000, true,
168   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
169   MCE_ECLASS_HARDWARE,
170   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
171 { 0x00000000081c0000, 0x00000000001c0000, true,
172   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
173   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
174 { 0x00000000081c0000, 0x0000000008000000, true,
175   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
176   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
177 { 0x00000000081c0000, 0x0000000008040000, true,
178   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
179   MCE_ECLASS_HARDWARE,
180   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
181 { 0, 0, 0, 0, 0, 0, 0 } };
182 
183 static const struct mce_ierror_table mce_p9_ierror_table[] = {
184 { 0x00000000081c0000, 0x0000000000040000, true,
185   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
186   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
187 { 0x00000000081c0000, 0x0000000000080000, true,
188   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
189   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
190 { 0x00000000081c0000, 0x00000000000c0000, true,
191   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
192   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
193 { 0x00000000081c0000, 0x0000000000100000, true,
194   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
195   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
196 { 0x00000000081c0000, 0x0000000000140000, true,
197   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
198   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
199 { 0x00000000081c0000, 0x0000000000180000, true,
200   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
201   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
202 { 0x00000000081c0000, 0x00000000001c0000, true,
203   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN, MCE_ECLASS_SOFTWARE,
204   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
205 { 0x00000000081c0000, 0x0000000008000000, true,
206   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
207   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
208 { 0x00000000081c0000, 0x0000000008040000, true,
209   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
210   MCE_ECLASS_HARDWARE,
211   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
212 { 0x00000000081c0000, 0x00000000080c0000, true,
213   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH, MCE_ECLASS_SOFTWARE,
214   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
215 { 0x00000000081c0000, 0x0000000008100000, true,
216   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_SOFTWARE,
217   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
218 { 0x00000000081c0000, 0x0000000008140000, false,
219   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE, MCE_ECLASS_HARDWARE,
220   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
221 { 0x00000000081c0000, 0x0000000008180000, false,
222   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
223   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
224 { 0x00000000081c0000, 0x00000000081c0000, true, MCE_ECLASS_HARDWARE,
225   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
226   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
227 { 0, 0, 0, 0, 0, 0, 0 } };
228 
229 struct mce_derror_table {
230 	unsigned long dsisr_value;
231 	bool dar_valid; /* dar is a valid indicator of faulting address */
232 	unsigned int error_type;
233 	unsigned int error_subtype;
234 	unsigned int error_class;
235 	unsigned int initiator;
236 	unsigned int severity;
237 	bool sync_error;
238 };
239 
240 static const struct mce_derror_table mce_p7_derror_table[] = {
241 { 0x00008000, false,
242   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
243   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
244 { 0x00004000, true,
245   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
246   MCE_ECLASS_HARDWARE,
247   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
248 { 0x00000800, true,
249   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
250   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
251 { 0x00000400, true,
252   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
253   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
254 { 0x00000080, true,
255   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
256   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
257 { 0x00000100, true,
258   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
259   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
260 { 0x00000040, true,
261   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
262   MCE_ECLASS_HARD_INDETERMINATE,
263   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
264 { 0, false, 0, 0, 0, 0, 0 } };
265 
266 static const struct mce_derror_table mce_p8_derror_table[] = {
267 { 0x00008000, false,
268   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
269   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
270 { 0x00004000, true,
271   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
272   MCE_ECLASS_HARDWARE,
273   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
274 { 0x00002000, true,
275   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
276   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
277 { 0x00001000, true,
278   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
279   MCE_ECLASS_HARDWARE,
280   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
281 { 0x00000800, true,
282   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
283   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
284 { 0x00000400, true,
285   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
286   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
287 { 0x00000200, true,
288   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
289   MCE_ECLASS_SOFT_INDETERMINATE,
290   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
291 { 0x00000080, true,
292   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
293   MCE_ECLASS_SOFT_INDETERMINATE,
294   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
295 { 0x00000100, true,
296   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
297   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
298 { 0, false, 0, 0, 0, 0, 0 } };
299 
300 static const struct mce_derror_table mce_p9_derror_table[] = {
301 { 0x00008000, false,
302   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
303   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
304 { 0x00004000, true,
305   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
306   MCE_ECLASS_HARDWARE,
307   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
308 { 0x00002000, true,
309   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
310   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
311 { 0x00001000, true,
312   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
313   MCE_ECLASS_HARDWARE,
314   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
315 { 0x00000800, true,
316   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
317   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
318 { 0x00000400, true,
319   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
320   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
321 { 0x00000200, false,
322   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE, MCE_ECLASS_SOFTWARE,
323   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
324 { 0x00000080, true,
325   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
326   MCE_ECLASS_SOFT_INDETERMINATE,
327   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
328 { 0x00000100, true,
329   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
330   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
331 { 0x00000040, true,
332   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD, MCE_ECLASS_HARDWARE,
333   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
334 { 0x00000020, false,
335   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
336   MCE_ECLASS_HARDWARE,
337   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
338 { 0x00000010, false,
339   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
340   MCE_ECLASS_HARDWARE,
341   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
342 { 0x00000008, false,
343   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN, MCE_ECLASS_HARDWARE,
344   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
345 { 0, false, 0, 0, 0, 0, 0 } };
346 
347 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
348 					uint64_t *phys_addr)
349 {
350 	/*
351 	 * Carefully look at the NIP to determine
352 	 * the instruction to analyse. Reading the NIP
353 	 * in real-mode is tricky and can lead to recursive
354 	 * faults
355 	 */
356 	int instr;
357 	unsigned long pfn, instr_addr;
358 	struct instruction_op op;
359 	struct pt_regs tmp = *regs;
360 
361 	pfn = addr_to_pfn(regs, regs->nip);
362 	if (pfn != ULONG_MAX) {
363 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
364 		instr = *(unsigned int *)(instr_addr);
365 		if (!analyse_instr(&op, &tmp, instr)) {
366 			pfn = addr_to_pfn(regs, op.ea);
367 			*addr = op.ea;
368 			*phys_addr = (pfn << PAGE_SHIFT);
369 			return 0;
370 		}
371 		/*
372 		 * analyse_instr() might fail if the instruction
373 		 * is not a load/store, although this is unexpected
374 		 * for load/store errors or if we got the NIP
375 		 * wrong
376 		 */
377 	}
378 	*addr = 0;
379 	return -1;
380 }
381 
382 static int mce_handle_ierror(struct pt_regs *regs,
383 		const struct mce_ierror_table table[],
384 		struct mce_error_info *mce_err, uint64_t *addr,
385 		uint64_t *phys_addr)
386 {
387 	uint64_t srr1 = regs->msr;
388 	int handled = 0;
389 	int i;
390 
391 	*addr = 0;
392 
393 	for (i = 0; table[i].srr1_mask; i++) {
394 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
395 			continue;
396 
397 		/* attempt to correct the error */
398 		switch (table[i].error_type) {
399 		case MCE_ERROR_TYPE_SLB:
400 			handled = mce_flush(MCE_FLUSH_SLB);
401 			break;
402 		case MCE_ERROR_TYPE_ERAT:
403 			handled = mce_flush(MCE_FLUSH_ERAT);
404 			break;
405 		case MCE_ERROR_TYPE_TLB:
406 			handled = mce_flush(MCE_FLUSH_TLB);
407 			break;
408 		}
409 
410 		/* now fill in mce_error_info */
411 		mce_err->error_type = table[i].error_type;
412 		mce_err->error_class = table[i].error_class;
413 		switch (table[i].error_type) {
414 		case MCE_ERROR_TYPE_UE:
415 			mce_err->u.ue_error_type = table[i].error_subtype;
416 			break;
417 		case MCE_ERROR_TYPE_SLB:
418 			mce_err->u.slb_error_type = table[i].error_subtype;
419 			break;
420 		case MCE_ERROR_TYPE_ERAT:
421 			mce_err->u.erat_error_type = table[i].error_subtype;
422 			break;
423 		case MCE_ERROR_TYPE_TLB:
424 			mce_err->u.tlb_error_type = table[i].error_subtype;
425 			break;
426 		case MCE_ERROR_TYPE_USER:
427 			mce_err->u.user_error_type = table[i].error_subtype;
428 			break;
429 		case MCE_ERROR_TYPE_RA:
430 			mce_err->u.ra_error_type = table[i].error_subtype;
431 			break;
432 		case MCE_ERROR_TYPE_LINK:
433 			mce_err->u.link_error_type = table[i].error_subtype;
434 			break;
435 		}
436 		mce_err->sync_error = table[i].sync_error;
437 		mce_err->severity = table[i].severity;
438 		mce_err->initiator = table[i].initiator;
439 		if (table[i].nip_valid) {
440 			*addr = regs->nip;
441 			if (mce_err->sync_error &&
442 				table[i].error_type == MCE_ERROR_TYPE_UE) {
443 				unsigned long pfn;
444 
445 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
446 					pfn = addr_to_pfn(regs, regs->nip);
447 					if (pfn != ULONG_MAX) {
448 						*phys_addr =
449 							(pfn << PAGE_SHIFT);
450 					}
451 				}
452 			}
453 		}
454 		return handled;
455 	}
456 
457 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
458 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
459 	mce_err->severity = MCE_SEV_SEVERE;
460 	mce_err->initiator = MCE_INITIATOR_CPU;
461 	mce_err->sync_error = true;
462 
463 	return 0;
464 }
465 
466 static int mce_handle_derror(struct pt_regs *regs,
467 		const struct mce_derror_table table[],
468 		struct mce_error_info *mce_err, uint64_t *addr,
469 		uint64_t *phys_addr)
470 {
471 	uint64_t dsisr = regs->dsisr;
472 	int handled = 0;
473 	int found = 0;
474 	int i;
475 
476 	*addr = 0;
477 
478 	for (i = 0; table[i].dsisr_value; i++) {
479 		if (!(dsisr & table[i].dsisr_value))
480 			continue;
481 
482 		/* attempt to correct the error */
483 		switch (table[i].error_type) {
484 		case MCE_ERROR_TYPE_SLB:
485 			if (mce_flush(MCE_FLUSH_SLB))
486 				handled = 1;
487 			break;
488 		case MCE_ERROR_TYPE_ERAT:
489 			if (mce_flush(MCE_FLUSH_ERAT))
490 				handled = 1;
491 			break;
492 		case MCE_ERROR_TYPE_TLB:
493 			if (mce_flush(MCE_FLUSH_TLB))
494 				handled = 1;
495 			break;
496 		}
497 
498 		/*
499 		 * Attempt to handle multiple conditions, but only return
500 		 * one. Ensure uncorrectable errors are first in the table
501 		 * to match.
502 		 */
503 		if (found)
504 			continue;
505 
506 		/* now fill in mce_error_info */
507 		mce_err->error_type = table[i].error_type;
508 		mce_err->error_class = table[i].error_class;
509 		switch (table[i].error_type) {
510 		case MCE_ERROR_TYPE_UE:
511 			mce_err->u.ue_error_type = table[i].error_subtype;
512 			break;
513 		case MCE_ERROR_TYPE_SLB:
514 			mce_err->u.slb_error_type = table[i].error_subtype;
515 			break;
516 		case MCE_ERROR_TYPE_ERAT:
517 			mce_err->u.erat_error_type = table[i].error_subtype;
518 			break;
519 		case MCE_ERROR_TYPE_TLB:
520 			mce_err->u.tlb_error_type = table[i].error_subtype;
521 			break;
522 		case MCE_ERROR_TYPE_USER:
523 			mce_err->u.user_error_type = table[i].error_subtype;
524 			break;
525 		case MCE_ERROR_TYPE_RA:
526 			mce_err->u.ra_error_type = table[i].error_subtype;
527 			break;
528 		case MCE_ERROR_TYPE_LINK:
529 			mce_err->u.link_error_type = table[i].error_subtype;
530 			break;
531 		}
532 		mce_err->sync_error = table[i].sync_error;
533 		mce_err->severity = table[i].severity;
534 		mce_err->initiator = table[i].initiator;
535 		if (table[i].dar_valid)
536 			*addr = regs->dar;
537 		else if (mce_err->sync_error &&
538 				table[i].error_type == MCE_ERROR_TYPE_UE) {
539 			/*
540 			 * We do a maximum of 4 nested MCE calls, see
541 			 * kernel/exception-64s.h
542 			 */
543 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
544 				mce_find_instr_ea_and_pfn(regs, addr, phys_addr);
545 		}
546 		found = 1;
547 	}
548 
549 	if (found)
550 		return handled;
551 
552 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
553 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
554 	mce_err->severity = MCE_SEV_SEVERE;
555 	mce_err->initiator = MCE_INITIATOR_CPU;
556 	mce_err->sync_error = true;
557 
558 	return 0;
559 }
560 
561 static long mce_handle_ue_error(struct pt_regs *regs)
562 {
563 	long handled = 0;
564 
565 	/*
566 	 * On specific SCOM read via MMIO we may get a machine check
567 	 * exception with SRR0 pointing inside opal. If that is the
568 	 * case OPAL may have recovery address to re-read SCOM data in
569 	 * different way and hence we can recover from this MC.
570 	 */
571 
572 	if (ppc_md.mce_check_early_recovery) {
573 		if (ppc_md.mce_check_early_recovery(regs))
574 			handled = 1;
575 	}
576 	return handled;
577 }
578 
579 static long mce_handle_error(struct pt_regs *regs,
580 		const struct mce_derror_table dtable[],
581 		const struct mce_ierror_table itable[])
582 {
583 	struct mce_error_info mce_err = { 0 };
584 	uint64_t addr, phys_addr = ULONG_MAX;
585 	uint64_t srr1 = regs->msr;
586 	long handled;
587 
588 	if (SRR1_MC_LOADSTORE(srr1))
589 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
590 				&phys_addr);
591 	else
592 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
593 				&phys_addr);
594 
595 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
596 		handled = mce_handle_ue_error(regs);
597 
598 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
599 
600 	return handled;
601 }
602 
603 long __machine_check_early_realmode_p7(struct pt_regs *regs)
604 {
605 	/* P7 DD1 leaves top bits of DSISR undefined */
606 	regs->dsisr &= 0x0000ffff;
607 
608 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
609 }
610 
611 long __machine_check_early_realmode_p8(struct pt_regs *regs)
612 {
613 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
614 }
615 
616 long __machine_check_early_realmode_p9(struct pt_regs *regs)
617 {
618 	/*
619 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
620 	 * caused by a paste instruction where only DSISR bit 25 is set. This
621 	 * will result in the MCE handler seeing an unknown event and the kernel
622 	 * crashing. An MCE that occurs like this is spurious, so we don't need
623 	 * to do anything in terms of servicing it. If there is something that
624 	 * needs to be serviced, the CPU will raise the MCE again with the
625 	 * correct DSISR so that it can be serviced properly. So detect this
626 	 * case and mark it as handled.
627 	 */
628 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
629 		return 1;
630 
631 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
632 }
633