xref: /openbmc/linux/arch/powerpc/kernel/mce_power.c (revision 5a1ea477)
1 /*
2  * Machine check exception handling CPU-side for power7 and power8
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright 2013 IBM Corporation
19  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
20  */
21 
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce_power: " fmt
24 
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <asm/mmu.h>
28 #include <asm/mce.h>
29 #include <asm/machdep.h>
30 #include <asm/pgtable.h>
31 #include <asm/pte-walk.h>
32 #include <asm/sstep.h>
33 #include <asm/exception-64s.h>
34 
35 /*
36  * Convert an address related to an mm to a PFN. NOTE: we are in real
37  * mode, we could potentially race with page table updates.
38  */
39 unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
40 {
41 	pte_t *ptep;
42 	unsigned long flags;
43 	struct mm_struct *mm;
44 
45 	if (user_mode(regs))
46 		mm = current->mm;
47 	else
48 		mm = &init_mm;
49 
50 	local_irq_save(flags);
51 	if (mm == current->mm)
52 		ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
53 	else
54 		ptep = find_init_mm_pte(addr, NULL);
55 	local_irq_restore(flags);
56 	if (!ptep || pte_special(*ptep))
57 		return ULONG_MAX;
58 	return pte_pfn(*ptep);
59 }
60 
61 /* flush SLBs and reload */
62 #ifdef CONFIG_PPC_BOOK3S_64
63 void flush_and_reload_slb(void)
64 {
65 	/* Invalidate all SLBs */
66 	slb_flush_all_realmode();
67 
68 #ifdef CONFIG_KVM_BOOK3S_HANDLER
69 	/*
70 	 * If machine check is hit when in guest or in transition, we will
71 	 * only flush the SLBs and continue.
72 	 */
73 	if (get_paca()->kvm_hstate.in_guest)
74 		return;
75 #endif
76 	if (early_radix_enabled())
77 		return;
78 
79 	/*
80 	 * This probably shouldn't happen, but it may be possible it's
81 	 * called in early boot before SLB shadows are allocated.
82 	 */
83 	if (!get_slb_shadow())
84 		return;
85 
86 	slb_restore_bolted_realmode();
87 }
88 #endif
89 
90 static void flush_erat(void)
91 {
92 #ifdef CONFIG_PPC_BOOK3S_64
93 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
94 		flush_and_reload_slb();
95 		return;
96 	}
97 #endif
98 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
99 }
100 
101 #define MCE_FLUSH_SLB 1
102 #define MCE_FLUSH_TLB 2
103 #define MCE_FLUSH_ERAT 3
104 
105 static int mce_flush(int what)
106 {
107 #ifdef CONFIG_PPC_BOOK3S_64
108 	if (what == MCE_FLUSH_SLB) {
109 		flush_and_reload_slb();
110 		return 1;
111 	}
112 #endif
113 	if (what == MCE_FLUSH_ERAT) {
114 		flush_erat();
115 		return 1;
116 	}
117 	if (what == MCE_FLUSH_TLB) {
118 		tlbiel_all();
119 		return 1;
120 	}
121 
122 	return 0;
123 }
124 
125 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
126 
127 struct mce_ierror_table {
128 	unsigned long srr1_mask;
129 	unsigned long srr1_value;
130 	bool nip_valid; /* nip is a valid indicator of faulting address */
131 	unsigned int error_type;
132 	unsigned int error_subtype;
133 	unsigned int error_class;
134 	unsigned int initiator;
135 	unsigned int severity;
136 	bool sync_error;
137 };
138 
139 static const struct mce_ierror_table mce_p7_ierror_table[] = {
140 { 0x00000000001c0000, 0x0000000000040000, true,
141   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
142   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
143 { 0x00000000001c0000, 0x0000000000080000, true,
144   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
145   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
146 { 0x00000000001c0000, 0x00000000000c0000, true,
147   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
148   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
149 { 0x00000000001c0000, 0x0000000000100000, true,
150   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
151   MCE_ECLASS_SOFT_INDETERMINATE,
152   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
153 { 0x00000000001c0000, 0x0000000000140000, true,
154   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
155   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
156 { 0x00000000001c0000, 0x0000000000180000, true,
157   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
158   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
159 { 0x00000000001c0000, 0x00000000001c0000, true,
160   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
161   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
162 { 0, 0, 0, 0, 0, 0, 0 } };
163 
164 static const struct mce_ierror_table mce_p8_ierror_table[] = {
165 { 0x00000000081c0000, 0x0000000000040000, true,
166   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
167   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
168 { 0x00000000081c0000, 0x0000000000080000, true,
169   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
170   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
171 { 0x00000000081c0000, 0x00000000000c0000, true,
172   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
173   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
174 { 0x00000000081c0000, 0x0000000000100000, true,
175   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
176   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
177 { 0x00000000081c0000, 0x0000000000140000, true,
178   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
179   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
180 { 0x00000000081c0000, 0x0000000000180000, true,
181   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
182   MCE_ECLASS_HARDWARE,
183   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
184 { 0x00000000081c0000, 0x00000000001c0000, true,
185   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
186   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
187 { 0x00000000081c0000, 0x0000000008000000, true,
188   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
189   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
190 { 0x00000000081c0000, 0x0000000008040000, true,
191   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
192   MCE_ECLASS_HARDWARE,
193   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
194 { 0, 0, 0, 0, 0, 0, 0 } };
195 
196 static const struct mce_ierror_table mce_p9_ierror_table[] = {
197 { 0x00000000081c0000, 0x0000000000040000, true,
198   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
199   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
200 { 0x00000000081c0000, 0x0000000000080000, true,
201   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
202   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
203 { 0x00000000081c0000, 0x00000000000c0000, true,
204   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
205   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
206 { 0x00000000081c0000, 0x0000000000100000, true,
207   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
208   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
209 { 0x00000000081c0000, 0x0000000000140000, true,
210   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
211   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
212 { 0x00000000081c0000, 0x0000000000180000, true,
213   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
214   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
215 { 0x00000000081c0000, 0x00000000001c0000, true,
216   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN, MCE_ECLASS_SOFTWARE,
217   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
218 { 0x00000000081c0000, 0x0000000008000000, true,
219   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
220   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
221 { 0x00000000081c0000, 0x0000000008040000, true,
222   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
223   MCE_ECLASS_HARDWARE,
224   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
225 { 0x00000000081c0000, 0x00000000080c0000, true,
226   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH, MCE_ECLASS_SOFTWARE,
227   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
228 { 0x00000000081c0000, 0x0000000008100000, true,
229   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_SOFTWARE,
230   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
231 { 0x00000000081c0000, 0x0000000008140000, false,
232   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE, MCE_ECLASS_HARDWARE,
233   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
234 { 0x00000000081c0000, 0x0000000008180000, false,
235   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
236   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
237 { 0x00000000081c0000, 0x00000000081c0000, true, MCE_ECLASS_HARDWARE,
238   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
239   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
240 { 0, 0, 0, 0, 0, 0, 0 } };
241 
242 struct mce_derror_table {
243 	unsigned long dsisr_value;
244 	bool dar_valid; /* dar is a valid indicator of faulting address */
245 	unsigned int error_type;
246 	unsigned int error_subtype;
247 	unsigned int error_class;
248 	unsigned int initiator;
249 	unsigned int severity;
250 	bool sync_error;
251 };
252 
253 static const struct mce_derror_table mce_p7_derror_table[] = {
254 { 0x00008000, false,
255   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
256   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
257 { 0x00004000, true,
258   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
259   MCE_ECLASS_HARDWARE,
260   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
261 { 0x00000800, true,
262   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
263   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
264 { 0x00000400, true,
265   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
266   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
267 { 0x00000080, true,
268   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
269   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
270 { 0x00000100, true,
271   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
272   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
273 { 0x00000040, true,
274   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
275   MCE_ECLASS_HARD_INDETERMINATE,
276   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
277 { 0, false, 0, 0, 0, 0, 0 } };
278 
279 static const struct mce_derror_table mce_p8_derror_table[] = {
280 { 0x00008000, false,
281   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
282   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
283 { 0x00004000, true,
284   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
285   MCE_ECLASS_HARDWARE,
286   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
287 { 0x00002000, true,
288   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
289   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
290 { 0x00001000, true,
291   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
292   MCE_ECLASS_HARDWARE,
293   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
294 { 0x00000800, true,
295   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
296   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
297 { 0x00000400, true,
298   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
299   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
300 { 0x00000200, true,
301   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
302   MCE_ECLASS_SOFT_INDETERMINATE,
303   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
304 { 0x00000080, true,
305   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
306   MCE_ECLASS_SOFT_INDETERMINATE,
307   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
308 { 0x00000100, true,
309   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
310   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
311 { 0, false, 0, 0, 0, 0, 0 } };
312 
313 static const struct mce_derror_table mce_p9_derror_table[] = {
314 { 0x00008000, false,
315   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
316   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
317 { 0x00004000, true,
318   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
319   MCE_ECLASS_HARDWARE,
320   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
321 { 0x00002000, true,
322   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
323   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
324 { 0x00001000, true,
325   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
326   MCE_ECLASS_HARDWARE,
327   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
328 { 0x00000800, true,
329   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
330   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
331 { 0x00000400, true,
332   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
333   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
334 { 0x00000200, false,
335   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE, MCE_ECLASS_SOFTWARE,
336   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
337 { 0x00000080, true,
338   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
339   MCE_ECLASS_SOFT_INDETERMINATE,
340   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
341 { 0x00000100, true,
342   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
343   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
344 { 0x00000040, true,
345   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD, MCE_ECLASS_HARDWARE,
346   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
347 { 0x00000020, false,
348   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
349   MCE_ECLASS_HARDWARE,
350   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
351 { 0x00000010, false,
352   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
353   MCE_ECLASS_HARDWARE,
354   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
355 { 0x00000008, false,
356   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN, MCE_ECLASS_HARDWARE,
357   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
358 { 0, false, 0, 0, 0, 0, 0 } };
359 
360 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
361 					uint64_t *phys_addr)
362 {
363 	/*
364 	 * Carefully look at the NIP to determine
365 	 * the instruction to analyse. Reading the NIP
366 	 * in real-mode is tricky and can lead to recursive
367 	 * faults
368 	 */
369 	int instr;
370 	unsigned long pfn, instr_addr;
371 	struct instruction_op op;
372 	struct pt_regs tmp = *regs;
373 
374 	pfn = addr_to_pfn(regs, regs->nip);
375 	if (pfn != ULONG_MAX) {
376 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
377 		instr = *(unsigned int *)(instr_addr);
378 		if (!analyse_instr(&op, &tmp, instr)) {
379 			pfn = addr_to_pfn(regs, op.ea);
380 			*addr = op.ea;
381 			*phys_addr = (pfn << PAGE_SHIFT);
382 			return 0;
383 		}
384 		/*
385 		 * analyse_instr() might fail if the instruction
386 		 * is not a load/store, although this is unexpected
387 		 * for load/store errors or if we got the NIP
388 		 * wrong
389 		 */
390 	}
391 	*addr = 0;
392 	return -1;
393 }
394 
395 static int mce_handle_ierror(struct pt_regs *regs,
396 		const struct mce_ierror_table table[],
397 		struct mce_error_info *mce_err, uint64_t *addr,
398 		uint64_t *phys_addr)
399 {
400 	uint64_t srr1 = regs->msr;
401 	int handled = 0;
402 	int i;
403 
404 	*addr = 0;
405 
406 	for (i = 0; table[i].srr1_mask; i++) {
407 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
408 			continue;
409 
410 		/* attempt to correct the error */
411 		switch (table[i].error_type) {
412 		case MCE_ERROR_TYPE_SLB:
413 			handled = mce_flush(MCE_FLUSH_SLB);
414 			break;
415 		case MCE_ERROR_TYPE_ERAT:
416 			handled = mce_flush(MCE_FLUSH_ERAT);
417 			break;
418 		case MCE_ERROR_TYPE_TLB:
419 			handled = mce_flush(MCE_FLUSH_TLB);
420 			break;
421 		}
422 
423 		/* now fill in mce_error_info */
424 		mce_err->error_type = table[i].error_type;
425 		mce_err->error_class = table[i].error_class;
426 		switch (table[i].error_type) {
427 		case MCE_ERROR_TYPE_UE:
428 			mce_err->u.ue_error_type = table[i].error_subtype;
429 			break;
430 		case MCE_ERROR_TYPE_SLB:
431 			mce_err->u.slb_error_type = table[i].error_subtype;
432 			break;
433 		case MCE_ERROR_TYPE_ERAT:
434 			mce_err->u.erat_error_type = table[i].error_subtype;
435 			break;
436 		case MCE_ERROR_TYPE_TLB:
437 			mce_err->u.tlb_error_type = table[i].error_subtype;
438 			break;
439 		case MCE_ERROR_TYPE_USER:
440 			mce_err->u.user_error_type = table[i].error_subtype;
441 			break;
442 		case MCE_ERROR_TYPE_RA:
443 			mce_err->u.ra_error_type = table[i].error_subtype;
444 			break;
445 		case MCE_ERROR_TYPE_LINK:
446 			mce_err->u.link_error_type = table[i].error_subtype;
447 			break;
448 		}
449 		mce_err->sync_error = table[i].sync_error;
450 		mce_err->severity = table[i].severity;
451 		mce_err->initiator = table[i].initiator;
452 		if (table[i].nip_valid) {
453 			*addr = regs->nip;
454 			if (mce_err->sync_error &&
455 				table[i].error_type == MCE_ERROR_TYPE_UE) {
456 				unsigned long pfn;
457 
458 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
459 					pfn = addr_to_pfn(regs, regs->nip);
460 					if (pfn != ULONG_MAX) {
461 						*phys_addr =
462 							(pfn << PAGE_SHIFT);
463 					}
464 				}
465 			}
466 		}
467 		return handled;
468 	}
469 
470 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
471 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
472 	mce_err->severity = MCE_SEV_SEVERE;
473 	mce_err->initiator = MCE_INITIATOR_CPU;
474 	mce_err->sync_error = true;
475 
476 	return 0;
477 }
478 
479 static int mce_handle_derror(struct pt_regs *regs,
480 		const struct mce_derror_table table[],
481 		struct mce_error_info *mce_err, uint64_t *addr,
482 		uint64_t *phys_addr)
483 {
484 	uint64_t dsisr = regs->dsisr;
485 	int handled = 0;
486 	int found = 0;
487 	int i;
488 
489 	*addr = 0;
490 
491 	for (i = 0; table[i].dsisr_value; i++) {
492 		if (!(dsisr & table[i].dsisr_value))
493 			continue;
494 
495 		/* attempt to correct the error */
496 		switch (table[i].error_type) {
497 		case MCE_ERROR_TYPE_SLB:
498 			if (mce_flush(MCE_FLUSH_SLB))
499 				handled = 1;
500 			break;
501 		case MCE_ERROR_TYPE_ERAT:
502 			if (mce_flush(MCE_FLUSH_ERAT))
503 				handled = 1;
504 			break;
505 		case MCE_ERROR_TYPE_TLB:
506 			if (mce_flush(MCE_FLUSH_TLB))
507 				handled = 1;
508 			break;
509 		}
510 
511 		/*
512 		 * Attempt to handle multiple conditions, but only return
513 		 * one. Ensure uncorrectable errors are first in the table
514 		 * to match.
515 		 */
516 		if (found)
517 			continue;
518 
519 		/* now fill in mce_error_info */
520 		mce_err->error_type = table[i].error_type;
521 		mce_err->error_class = table[i].error_class;
522 		switch (table[i].error_type) {
523 		case MCE_ERROR_TYPE_UE:
524 			mce_err->u.ue_error_type = table[i].error_subtype;
525 			break;
526 		case MCE_ERROR_TYPE_SLB:
527 			mce_err->u.slb_error_type = table[i].error_subtype;
528 			break;
529 		case MCE_ERROR_TYPE_ERAT:
530 			mce_err->u.erat_error_type = table[i].error_subtype;
531 			break;
532 		case MCE_ERROR_TYPE_TLB:
533 			mce_err->u.tlb_error_type = table[i].error_subtype;
534 			break;
535 		case MCE_ERROR_TYPE_USER:
536 			mce_err->u.user_error_type = table[i].error_subtype;
537 			break;
538 		case MCE_ERROR_TYPE_RA:
539 			mce_err->u.ra_error_type = table[i].error_subtype;
540 			break;
541 		case MCE_ERROR_TYPE_LINK:
542 			mce_err->u.link_error_type = table[i].error_subtype;
543 			break;
544 		}
545 		mce_err->sync_error = table[i].sync_error;
546 		mce_err->severity = table[i].severity;
547 		mce_err->initiator = table[i].initiator;
548 		if (table[i].dar_valid)
549 			*addr = regs->dar;
550 		else if (mce_err->sync_error &&
551 				table[i].error_type == MCE_ERROR_TYPE_UE) {
552 			/*
553 			 * We do a maximum of 4 nested MCE calls, see
554 			 * kernel/exception-64s.h
555 			 */
556 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
557 				mce_find_instr_ea_and_pfn(regs, addr, phys_addr);
558 		}
559 		found = 1;
560 	}
561 
562 	if (found)
563 		return handled;
564 
565 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
566 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
567 	mce_err->severity = MCE_SEV_SEVERE;
568 	mce_err->initiator = MCE_INITIATOR_CPU;
569 	mce_err->sync_error = true;
570 
571 	return 0;
572 }
573 
574 static long mce_handle_ue_error(struct pt_regs *regs)
575 {
576 	long handled = 0;
577 
578 	/*
579 	 * On specific SCOM read via MMIO we may get a machine check
580 	 * exception with SRR0 pointing inside opal. If that is the
581 	 * case OPAL may have recovery address to re-read SCOM data in
582 	 * different way and hence we can recover from this MC.
583 	 */
584 
585 	if (ppc_md.mce_check_early_recovery) {
586 		if (ppc_md.mce_check_early_recovery(regs))
587 			handled = 1;
588 	}
589 	return handled;
590 }
591 
592 static long mce_handle_error(struct pt_regs *regs,
593 		const struct mce_derror_table dtable[],
594 		const struct mce_ierror_table itable[])
595 {
596 	struct mce_error_info mce_err = { 0 };
597 	uint64_t addr, phys_addr = ULONG_MAX;
598 	uint64_t srr1 = regs->msr;
599 	long handled;
600 
601 	if (SRR1_MC_LOADSTORE(srr1))
602 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
603 				&phys_addr);
604 	else
605 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
606 				&phys_addr);
607 
608 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
609 		handled = mce_handle_ue_error(regs);
610 
611 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
612 
613 	return handled;
614 }
615 
616 long __machine_check_early_realmode_p7(struct pt_regs *regs)
617 {
618 	/* P7 DD1 leaves top bits of DSISR undefined */
619 	regs->dsisr &= 0x0000ffff;
620 
621 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
622 }
623 
624 long __machine_check_early_realmode_p8(struct pt_regs *regs)
625 {
626 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
627 }
628 
629 long __machine_check_early_realmode_p9(struct pt_regs *regs)
630 {
631 	/*
632 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
633 	 * caused by a paste instruction where only DSISR bit 25 is set. This
634 	 * will result in the MCE handler seeing an unknown event and the kernel
635 	 * crashing. An MCE that occurs like this is spurious, so we don't need
636 	 * to do anything in terms of servicing it. If there is something that
637 	 * needs to be serviced, the CPU will raise the MCE again with the
638 	 * correct DSISR so that it can be serviced properly. So detect this
639 	 * case and mark it as handled.
640 	 */
641 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
642 		return 1;
643 
644 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
645 }
646