xref: /openbmc/linux/arch/powerpc/kernel/mce_power.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * Machine check exception handling CPU-side for power7 and power8
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright 2013 IBM Corporation
19  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
20  */
21 
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce_power: " fmt
24 
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <asm/mmu.h>
28 #include <asm/mce.h>
29 #include <asm/machdep.h>
30 #include <asm/pgtable.h>
31 #include <asm/pte-walk.h>
32 #include <asm/sstep.h>
33 #include <asm/exception-64s.h>
34 
35 /*
36  * Convert an address related to an mm to a PFN. NOTE: we are in real
37  * mode, we could potentially race with page table updates.
38  */
39 unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
40 {
41 	pte_t *ptep;
42 	unsigned long flags;
43 	struct mm_struct *mm;
44 
45 	if (user_mode(regs))
46 		mm = current->mm;
47 	else
48 		mm = &init_mm;
49 
50 	local_irq_save(flags);
51 	if (mm == current->mm)
52 		ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
53 	else
54 		ptep = find_init_mm_pte(addr, NULL);
55 	local_irq_restore(flags);
56 	if (!ptep || pte_special(*ptep))
57 		return ULONG_MAX;
58 	return pte_pfn(*ptep);
59 }
60 
61 /* flush SLBs and reload */
62 #ifdef CONFIG_PPC_BOOK3S_64
63 void flush_and_reload_slb(void)
64 {
65 	/* Invalidate all SLBs */
66 	slb_flush_all_realmode();
67 
68 #ifdef CONFIG_KVM_BOOK3S_HANDLER
69 	/*
70 	 * If machine check is hit when in guest or in transition, we will
71 	 * only flush the SLBs and continue.
72 	 */
73 	if (get_paca()->kvm_hstate.in_guest)
74 		return;
75 #endif
76 	if (early_radix_enabled())
77 		return;
78 
79 	/*
80 	 * This probably shouldn't happen, but it may be possible it's
81 	 * called in early boot before SLB shadows are allocated.
82 	 */
83 	if (!get_slb_shadow())
84 		return;
85 
86 	slb_restore_bolted_realmode();
87 }
88 #endif
89 
90 static void flush_erat(void)
91 {
92 #ifdef CONFIG_PPC_BOOK3S_64
93 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
94 		flush_and_reload_slb();
95 		return;
96 	}
97 #endif
98 	/* PPC_INVALIDATE_ERAT can only be used on ISA v3 and newer */
99 	asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
100 }
101 
102 #define MCE_FLUSH_SLB 1
103 #define MCE_FLUSH_TLB 2
104 #define MCE_FLUSH_ERAT 3
105 
106 static int mce_flush(int what)
107 {
108 #ifdef CONFIG_PPC_BOOK3S_64
109 	if (what == MCE_FLUSH_SLB) {
110 		flush_and_reload_slb();
111 		return 1;
112 	}
113 #endif
114 	if (what == MCE_FLUSH_ERAT) {
115 		flush_erat();
116 		return 1;
117 	}
118 	if (what == MCE_FLUSH_TLB) {
119 		tlbiel_all();
120 		return 1;
121 	}
122 
123 	return 0;
124 }
125 
126 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
127 
128 struct mce_ierror_table {
129 	unsigned long srr1_mask;
130 	unsigned long srr1_value;
131 	bool nip_valid; /* nip is a valid indicator of faulting address */
132 	unsigned int error_type;
133 	unsigned int error_subtype;
134 	unsigned int error_class;
135 	unsigned int initiator;
136 	unsigned int severity;
137 	bool sync_error;
138 };
139 
140 static const struct mce_ierror_table mce_p7_ierror_table[] = {
141 { 0x00000000001c0000, 0x0000000000040000, true,
142   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
143   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
144 { 0x00000000001c0000, 0x0000000000080000, true,
145   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
146   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
147 { 0x00000000001c0000, 0x00000000000c0000, true,
148   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
149   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
150 { 0x00000000001c0000, 0x0000000000100000, true,
151   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
152   MCE_ECLASS_SOFT_INDETERMINATE,
153   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
154 { 0x00000000001c0000, 0x0000000000140000, true,
155   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
156   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
157 { 0x00000000001c0000, 0x0000000000180000, true,
158   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
159   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
160 { 0x00000000001c0000, 0x00000000001c0000, true,
161   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
162   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
163 { 0, 0, 0, 0, 0, 0, 0 } };
164 
165 static const struct mce_ierror_table mce_p8_ierror_table[] = {
166 { 0x00000000081c0000, 0x0000000000040000, true,
167   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
168   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
169 { 0x00000000081c0000, 0x0000000000080000, true,
170   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
171   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
172 { 0x00000000081c0000, 0x00000000000c0000, true,
173   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
174   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
175 { 0x00000000081c0000, 0x0000000000100000, true,
176   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
177   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
178 { 0x00000000081c0000, 0x0000000000140000, true,
179   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
180   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
181 { 0x00000000081c0000, 0x0000000000180000, true,
182   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
183   MCE_ECLASS_HARDWARE,
184   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
185 { 0x00000000081c0000, 0x00000000001c0000, true,
186   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
187   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
188 { 0x00000000081c0000, 0x0000000008000000, true,
189   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
190   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
191 { 0x00000000081c0000, 0x0000000008040000, true,
192   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
193   MCE_ECLASS_HARDWARE,
194   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
195 { 0, 0, 0, 0, 0, 0, 0 } };
196 
197 static const struct mce_ierror_table mce_p9_ierror_table[] = {
198 { 0x00000000081c0000, 0x0000000000040000, true,
199   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
200   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
201 { 0x00000000081c0000, 0x0000000000080000, true,
202   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
203   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
204 { 0x00000000081c0000, 0x00000000000c0000, true,
205   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
206   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
207 { 0x00000000081c0000, 0x0000000000100000, true,
208   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
209   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
210 { 0x00000000081c0000, 0x0000000000140000, true,
211   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
212   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
213 { 0x00000000081c0000, 0x0000000000180000, true,
214   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
215   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
216 { 0x00000000081c0000, 0x00000000001c0000, true,
217   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN, MCE_ECLASS_SOFTWARE,
218   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
219 { 0x00000000081c0000, 0x0000000008000000, true,
220   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
221   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
222 { 0x00000000081c0000, 0x0000000008040000, true,
223   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
224   MCE_ECLASS_HARDWARE,
225   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
226 { 0x00000000081c0000, 0x00000000080c0000, true,
227   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH, MCE_ECLASS_SOFTWARE,
228   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
229 { 0x00000000081c0000, 0x0000000008100000, true,
230   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_SOFTWARE,
231   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
232 { 0x00000000081c0000, 0x0000000008140000, false,
233   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE, MCE_ECLASS_HARDWARE,
234   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
235 { 0x00000000081c0000, 0x0000000008180000, false,
236   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
237   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
238 { 0x00000000081c0000, 0x00000000081c0000, true, MCE_ECLASS_HARDWARE,
239   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
240   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
241 { 0, 0, 0, 0, 0, 0, 0 } };
242 
243 struct mce_derror_table {
244 	unsigned long dsisr_value;
245 	bool dar_valid; /* dar is a valid indicator of faulting address */
246 	unsigned int error_type;
247 	unsigned int error_subtype;
248 	unsigned int error_class;
249 	unsigned int initiator;
250 	unsigned int severity;
251 	bool sync_error;
252 };
253 
254 static const struct mce_derror_table mce_p7_derror_table[] = {
255 { 0x00008000, false,
256   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
257   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
258 { 0x00004000, true,
259   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
260   MCE_ECLASS_HARDWARE,
261   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
262 { 0x00000800, true,
263   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
264   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
265 { 0x00000400, true,
266   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
267   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
268 { 0x00000080, true,
269   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
270   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
271 { 0x00000100, true,
272   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
273   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
274 { 0x00000040, true,
275   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
276   MCE_ECLASS_HARD_INDETERMINATE,
277   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
278 { 0, false, 0, 0, 0, 0, 0 } };
279 
280 static const struct mce_derror_table mce_p8_derror_table[] = {
281 { 0x00008000, false,
282   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
283   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
284 { 0x00004000, true,
285   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
286   MCE_ECLASS_HARDWARE,
287   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
288 { 0x00002000, true,
289   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
290   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
291 { 0x00001000, true,
292   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
293   MCE_ECLASS_HARDWARE,
294   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
295 { 0x00000800, true,
296   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
297   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
298 { 0x00000400, true,
299   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
300   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
301 { 0x00000200, true,
302   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
303   MCE_ECLASS_SOFT_INDETERMINATE,
304   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
305 { 0x00000080, true,
306   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
307   MCE_ECLASS_SOFT_INDETERMINATE,
308   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
309 { 0x00000100, true,
310   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
311   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
312 { 0, false, 0, 0, 0, 0, 0 } };
313 
314 static const struct mce_derror_table mce_p9_derror_table[] = {
315 { 0x00008000, false,
316   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
317   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
318 { 0x00004000, true,
319   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
320   MCE_ECLASS_HARDWARE,
321   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
322 { 0x00002000, true,
323   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
324   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
325 { 0x00001000, true,
326   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
327   MCE_ECLASS_HARDWARE,
328   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
329 { 0x00000800, true,
330   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
331   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
332 { 0x00000400, true,
333   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
334   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
335 { 0x00000200, false,
336   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE, MCE_ECLASS_SOFTWARE,
337   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
338 { 0x00000080, true,
339   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
340   MCE_ECLASS_SOFT_INDETERMINATE,
341   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
342 { 0x00000100, true,
343   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
344   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
345 { 0x00000040, true,
346   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD, MCE_ECLASS_HARDWARE,
347   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
348 { 0x00000020, false,
349   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
350   MCE_ECLASS_HARDWARE,
351   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
352 { 0x00000010, false,
353   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
354   MCE_ECLASS_HARDWARE,
355   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
356 { 0x00000008, false,
357   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN, MCE_ECLASS_HARDWARE,
358   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
359 { 0, false, 0, 0, 0, 0, 0 } };
360 
361 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
362 					uint64_t *phys_addr)
363 {
364 	/*
365 	 * Carefully look at the NIP to determine
366 	 * the instruction to analyse. Reading the NIP
367 	 * in real-mode is tricky and can lead to recursive
368 	 * faults
369 	 */
370 	int instr;
371 	unsigned long pfn, instr_addr;
372 	struct instruction_op op;
373 	struct pt_regs tmp = *regs;
374 
375 	pfn = addr_to_pfn(regs, regs->nip);
376 	if (pfn != ULONG_MAX) {
377 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
378 		instr = *(unsigned int *)(instr_addr);
379 		if (!analyse_instr(&op, &tmp, instr)) {
380 			pfn = addr_to_pfn(regs, op.ea);
381 			*addr = op.ea;
382 			*phys_addr = (pfn << PAGE_SHIFT);
383 			return 0;
384 		}
385 		/*
386 		 * analyse_instr() might fail if the instruction
387 		 * is not a load/store, although this is unexpected
388 		 * for load/store errors or if we got the NIP
389 		 * wrong
390 		 */
391 	}
392 	*addr = 0;
393 	return -1;
394 }
395 
396 static int mce_handle_ierror(struct pt_regs *regs,
397 		const struct mce_ierror_table table[],
398 		struct mce_error_info *mce_err, uint64_t *addr,
399 		uint64_t *phys_addr)
400 {
401 	uint64_t srr1 = regs->msr;
402 	int handled = 0;
403 	int i;
404 
405 	*addr = 0;
406 
407 	for (i = 0; table[i].srr1_mask; i++) {
408 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
409 			continue;
410 
411 		/* attempt to correct the error */
412 		switch (table[i].error_type) {
413 		case MCE_ERROR_TYPE_SLB:
414 			handled = mce_flush(MCE_FLUSH_SLB);
415 			break;
416 		case MCE_ERROR_TYPE_ERAT:
417 			handled = mce_flush(MCE_FLUSH_ERAT);
418 			break;
419 		case MCE_ERROR_TYPE_TLB:
420 			handled = mce_flush(MCE_FLUSH_TLB);
421 			break;
422 		}
423 
424 		/* now fill in mce_error_info */
425 		mce_err->error_type = table[i].error_type;
426 		mce_err->error_class = table[i].error_class;
427 		switch (table[i].error_type) {
428 		case MCE_ERROR_TYPE_UE:
429 			mce_err->u.ue_error_type = table[i].error_subtype;
430 			break;
431 		case MCE_ERROR_TYPE_SLB:
432 			mce_err->u.slb_error_type = table[i].error_subtype;
433 			break;
434 		case MCE_ERROR_TYPE_ERAT:
435 			mce_err->u.erat_error_type = table[i].error_subtype;
436 			break;
437 		case MCE_ERROR_TYPE_TLB:
438 			mce_err->u.tlb_error_type = table[i].error_subtype;
439 			break;
440 		case MCE_ERROR_TYPE_USER:
441 			mce_err->u.user_error_type = table[i].error_subtype;
442 			break;
443 		case MCE_ERROR_TYPE_RA:
444 			mce_err->u.ra_error_type = table[i].error_subtype;
445 			break;
446 		case MCE_ERROR_TYPE_LINK:
447 			mce_err->u.link_error_type = table[i].error_subtype;
448 			break;
449 		}
450 		mce_err->sync_error = table[i].sync_error;
451 		mce_err->severity = table[i].severity;
452 		mce_err->initiator = table[i].initiator;
453 		if (table[i].nip_valid) {
454 			*addr = regs->nip;
455 			if (mce_err->sync_error &&
456 				table[i].error_type == MCE_ERROR_TYPE_UE) {
457 				unsigned long pfn;
458 
459 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
460 					pfn = addr_to_pfn(regs, regs->nip);
461 					if (pfn != ULONG_MAX) {
462 						*phys_addr =
463 							(pfn << PAGE_SHIFT);
464 					}
465 				}
466 			}
467 		}
468 		return handled;
469 	}
470 
471 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
472 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
473 	mce_err->severity = MCE_SEV_SEVERE;
474 	mce_err->initiator = MCE_INITIATOR_CPU;
475 	mce_err->sync_error = true;
476 
477 	return 0;
478 }
479 
480 static int mce_handle_derror(struct pt_regs *regs,
481 		const struct mce_derror_table table[],
482 		struct mce_error_info *mce_err, uint64_t *addr,
483 		uint64_t *phys_addr)
484 {
485 	uint64_t dsisr = regs->dsisr;
486 	int handled = 0;
487 	int found = 0;
488 	int i;
489 
490 	*addr = 0;
491 
492 	for (i = 0; table[i].dsisr_value; i++) {
493 		if (!(dsisr & table[i].dsisr_value))
494 			continue;
495 
496 		/* attempt to correct the error */
497 		switch (table[i].error_type) {
498 		case MCE_ERROR_TYPE_SLB:
499 			if (mce_flush(MCE_FLUSH_SLB))
500 				handled = 1;
501 			break;
502 		case MCE_ERROR_TYPE_ERAT:
503 			if (mce_flush(MCE_FLUSH_ERAT))
504 				handled = 1;
505 			break;
506 		case MCE_ERROR_TYPE_TLB:
507 			if (mce_flush(MCE_FLUSH_TLB))
508 				handled = 1;
509 			break;
510 		}
511 
512 		/*
513 		 * Attempt to handle multiple conditions, but only return
514 		 * one. Ensure uncorrectable errors are first in the table
515 		 * to match.
516 		 */
517 		if (found)
518 			continue;
519 
520 		/* now fill in mce_error_info */
521 		mce_err->error_type = table[i].error_type;
522 		mce_err->error_class = table[i].error_class;
523 		switch (table[i].error_type) {
524 		case MCE_ERROR_TYPE_UE:
525 			mce_err->u.ue_error_type = table[i].error_subtype;
526 			break;
527 		case MCE_ERROR_TYPE_SLB:
528 			mce_err->u.slb_error_type = table[i].error_subtype;
529 			break;
530 		case MCE_ERROR_TYPE_ERAT:
531 			mce_err->u.erat_error_type = table[i].error_subtype;
532 			break;
533 		case MCE_ERROR_TYPE_TLB:
534 			mce_err->u.tlb_error_type = table[i].error_subtype;
535 			break;
536 		case MCE_ERROR_TYPE_USER:
537 			mce_err->u.user_error_type = table[i].error_subtype;
538 			break;
539 		case MCE_ERROR_TYPE_RA:
540 			mce_err->u.ra_error_type = table[i].error_subtype;
541 			break;
542 		case MCE_ERROR_TYPE_LINK:
543 			mce_err->u.link_error_type = table[i].error_subtype;
544 			break;
545 		}
546 		mce_err->sync_error = table[i].sync_error;
547 		mce_err->severity = table[i].severity;
548 		mce_err->initiator = table[i].initiator;
549 		if (table[i].dar_valid)
550 			*addr = regs->dar;
551 		else if (mce_err->sync_error &&
552 				table[i].error_type == MCE_ERROR_TYPE_UE) {
553 			/*
554 			 * We do a maximum of 4 nested MCE calls, see
555 			 * kernel/exception-64s.h
556 			 */
557 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
558 				mce_find_instr_ea_and_pfn(regs, addr, phys_addr);
559 		}
560 		found = 1;
561 	}
562 
563 	if (found)
564 		return handled;
565 
566 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
567 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
568 	mce_err->severity = MCE_SEV_SEVERE;
569 	mce_err->initiator = MCE_INITIATOR_CPU;
570 	mce_err->sync_error = true;
571 
572 	return 0;
573 }
574 
575 static long mce_handle_ue_error(struct pt_regs *regs)
576 {
577 	long handled = 0;
578 
579 	/*
580 	 * On specific SCOM read via MMIO we may get a machine check
581 	 * exception with SRR0 pointing inside opal. If that is the
582 	 * case OPAL may have recovery address to re-read SCOM data in
583 	 * different way and hence we can recover from this MC.
584 	 */
585 
586 	if (ppc_md.mce_check_early_recovery) {
587 		if (ppc_md.mce_check_early_recovery(regs))
588 			handled = 1;
589 	}
590 	return handled;
591 }
592 
593 static long mce_handle_error(struct pt_regs *regs,
594 		const struct mce_derror_table dtable[],
595 		const struct mce_ierror_table itable[])
596 {
597 	struct mce_error_info mce_err = { 0 };
598 	uint64_t addr, phys_addr = ULONG_MAX;
599 	uint64_t srr1 = regs->msr;
600 	long handled;
601 
602 	if (SRR1_MC_LOADSTORE(srr1))
603 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
604 				&phys_addr);
605 	else
606 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
607 				&phys_addr);
608 
609 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
610 		handled = mce_handle_ue_error(regs);
611 
612 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
613 
614 	return handled;
615 }
616 
617 long __machine_check_early_realmode_p7(struct pt_regs *regs)
618 {
619 	/* P7 DD1 leaves top bits of DSISR undefined */
620 	regs->dsisr &= 0x0000ffff;
621 
622 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
623 }
624 
625 long __machine_check_early_realmode_p8(struct pt_regs *regs)
626 {
627 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
628 }
629 
630 long __machine_check_early_realmode_p9(struct pt_regs *regs)
631 {
632 	/*
633 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
634 	 * caused by a paste instruction where only DSISR bit 25 is set. This
635 	 * will result in the MCE handler seeing an unknown event and the kernel
636 	 * crashing. An MCE that occurs like this is spurious, so we don't need
637 	 * to do anything in terms of servicing it. If there is something that
638 	 * needs to be serviced, the CPU will raise the MCE again with the
639 	 * correct DSISR so that it can be serviced properly. So detect this
640 	 * case and mark it as handled.
641 	 */
642 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
643 		return 1;
644 
645 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
646 }
647