xref: /openbmc/linux/arch/powerpc/kernel/mce_power.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Machine check exception handling CPU-side for power7 and power8
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright 2013 IBM Corporation
19  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
20  */
21 
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce_power: " fmt
24 
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <asm/mmu.h>
28 #include <asm/mce.h>
29 #include <asm/machdep.h>
30 #include <asm/pgtable.h>
31 #include <asm/pte-walk.h>
32 #include <asm/sstep.h>
33 #include <asm/exception-64s.h>
34 
35 /*
36  * Convert an address related to an mm to a PFN. NOTE: we are in real
37  * mode, we could potentially race with page table updates.
38  */
39 static unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
40 {
41 	pte_t *ptep;
42 	unsigned long flags;
43 	struct mm_struct *mm;
44 
45 	if (user_mode(regs))
46 		mm = current->mm;
47 	else
48 		mm = &init_mm;
49 
50 	local_irq_save(flags);
51 	if (mm == current->mm)
52 		ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
53 	else
54 		ptep = find_init_mm_pte(addr, NULL);
55 	local_irq_restore(flags);
56 	if (!ptep || pte_special(*ptep))
57 		return ULONG_MAX;
58 	return pte_pfn(*ptep);
59 }
60 
61 /* flush SLBs and reload */
62 #ifdef CONFIG_PPC_BOOK3S_64
63 static void flush_and_reload_slb(void)
64 {
65 	struct slb_shadow *slb;
66 	unsigned long i, n;
67 
68 	/* Invalidate all SLBs */
69 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
70 
71 #ifdef CONFIG_KVM_BOOK3S_HANDLER
72 	/*
73 	 * If machine check is hit when in guest or in transition, we will
74 	 * only flush the SLBs and continue.
75 	 */
76 	if (get_paca()->kvm_hstate.in_guest)
77 		return;
78 #endif
79 
80 	/* For host kernel, reload the SLBs from shadow SLB buffer. */
81 	slb = get_slb_shadow();
82 	if (!slb)
83 		return;
84 
85 	n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
86 
87 	/* Load up the SLB entries from shadow SLB */
88 	for (i = 0; i < n; i++) {
89 		unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
90 		unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
91 
92 		rb = (rb & ~0xFFFul) | i;
93 		asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
94 	}
95 }
96 #endif
97 
98 static void flush_erat(void)
99 {
100 	asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
101 }
102 
103 #define MCE_FLUSH_SLB 1
104 #define MCE_FLUSH_TLB 2
105 #define MCE_FLUSH_ERAT 3
106 
107 static int mce_flush(int what)
108 {
109 #ifdef CONFIG_PPC_BOOK3S_64
110 	if (what == MCE_FLUSH_SLB) {
111 		flush_and_reload_slb();
112 		return 1;
113 	}
114 #endif
115 	if (what == MCE_FLUSH_ERAT) {
116 		flush_erat();
117 		return 1;
118 	}
119 	if (what == MCE_FLUSH_TLB) {
120 		tlbiel_all();
121 		return 1;
122 	}
123 
124 	return 0;
125 }
126 
127 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
128 
129 struct mce_ierror_table {
130 	unsigned long srr1_mask;
131 	unsigned long srr1_value;
132 	bool nip_valid; /* nip is a valid indicator of faulting address */
133 	unsigned int error_type;
134 	unsigned int error_subtype;
135 	unsigned int initiator;
136 	unsigned int severity;
137 };
138 
139 static const struct mce_ierror_table mce_p7_ierror_table[] = {
140 { 0x00000000001c0000, 0x0000000000040000, true,
141   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
142   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
143 { 0x00000000001c0000, 0x0000000000080000, true,
144   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
145   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
146 { 0x00000000001c0000, 0x00000000000c0000, true,
147   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
148   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
149 { 0x00000000001c0000, 0x0000000000100000, true,
150   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
151   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
152 { 0x00000000001c0000, 0x0000000000140000, true,
153   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
154   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
155 { 0x00000000001c0000, 0x0000000000180000, true,
156   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
157   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
158 { 0x00000000001c0000, 0x00000000001c0000, true,
159   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
160   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
161 { 0, 0, 0, 0, 0, 0 } };
162 
163 static const struct mce_ierror_table mce_p8_ierror_table[] = {
164 { 0x00000000081c0000, 0x0000000000040000, true,
165   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
166   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
167 { 0x00000000081c0000, 0x0000000000080000, true,
168   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
169   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
170 { 0x00000000081c0000, 0x00000000000c0000, true,
171   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
172   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
173 { 0x00000000081c0000, 0x0000000000100000, true,
174   MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
175   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
176 { 0x00000000081c0000, 0x0000000000140000, true,
177   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
178   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
179 { 0x00000000081c0000, 0x0000000000180000, true,
180   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
181   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
182 { 0x00000000081c0000, 0x00000000001c0000, true,
183   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
184   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
185 { 0x00000000081c0000, 0x0000000008000000, true,
186   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
187   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
188 { 0x00000000081c0000, 0x0000000008040000, true,
189   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
190   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
191 { 0, 0, 0, 0, 0, 0 } };
192 
193 static const struct mce_ierror_table mce_p9_ierror_table[] = {
194 { 0x00000000081c0000, 0x0000000000040000, true,
195   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
196   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
197 { 0x00000000081c0000, 0x0000000000080000, true,
198   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
199   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
200 { 0x00000000081c0000, 0x00000000000c0000, true,
201   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
202   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
203 { 0x00000000081c0000, 0x0000000000100000, true,
204   MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
205   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
206 { 0x00000000081c0000, 0x0000000000140000, true,
207   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
208   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
209 { 0x00000000081c0000, 0x0000000000180000, true,
210   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
211   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
212 { 0x00000000081c0000, 0x00000000001c0000, true,
213   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN,
214   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
215 { 0x00000000081c0000, 0x0000000008000000, true,
216   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
217   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
218 { 0x00000000081c0000, 0x0000000008040000, true,
219   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
220   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
221 { 0x00000000081c0000, 0x00000000080c0000, true,
222   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH,
223   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
224 { 0x00000000081c0000, 0x0000000008100000, true,
225   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH,
226   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
227 { 0x00000000081c0000, 0x0000000008140000, false,
228   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE,
229   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, }, /* ASYNC is fatal */
230 { 0x00000000081c0000, 0x0000000008180000, false,
231   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
232   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, }, /* ASYNC is fatal */
233 { 0x00000000081c0000, 0x00000000081c0000, true,
234   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
235   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
236 { 0, 0, 0, 0, 0, 0 } };
237 
238 struct mce_derror_table {
239 	unsigned long dsisr_value;
240 	bool dar_valid; /* dar is a valid indicator of faulting address */
241 	unsigned int error_type;
242 	unsigned int error_subtype;
243 	unsigned int initiator;
244 	unsigned int severity;
245 };
246 
247 static const struct mce_derror_table mce_p7_derror_table[] = {
248 { 0x00008000, false,
249   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
250   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
251 { 0x00004000, true,
252   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
253   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
254 { 0x00000800, true,
255   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
256   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
257 { 0x00000400, true,
258   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
259   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
260 { 0x00000100, true,
261   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
262   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
263 { 0x00000080, true,
264   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,
265   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
266 { 0x00000040, true,
267   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
268   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
269 { 0, false, 0, 0, 0, 0 } };
270 
271 static const struct mce_derror_table mce_p8_derror_table[] = {
272 { 0x00008000, false,
273   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
274   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
275 { 0x00004000, true,
276   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
277   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
278 { 0x00002000, true,
279   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
280   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
281 { 0x00001000, true,
282   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
283   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
284 { 0x00000800, true,
285   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
286   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
287 { 0x00000400, true,
288   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
289   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
290 { 0x00000200, true,
291   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
292   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
293 { 0x00000100, true,
294   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
295   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
296 { 0x00000080, true,
297   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,
298   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
299 { 0, false, 0, 0, 0, 0 } };
300 
301 static const struct mce_derror_table mce_p9_derror_table[] = {
302 { 0x00008000, false,
303   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
304   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
305 { 0x00004000, true,
306   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
307   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
308 { 0x00002000, true,
309   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
310   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
311 { 0x00001000, true,
312   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
313   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
314 { 0x00000800, true,
315   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
316   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
317 { 0x00000400, true,
318   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
319   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
320 { 0x00000200, false,
321   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE,
322   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
323 { 0x00000100, true,
324   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
325   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
326 { 0x00000080, true,
327   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,
328   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
329 { 0x00000040, true,
330   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD,
331   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
332 { 0x00000020, false,
333   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
334   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
335 { 0x00000010, false,
336   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
337   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
338 { 0x00000008, false,
339   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN,
340   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
341 { 0, false, 0, 0, 0, 0 } };
342 
343 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
344 					uint64_t *phys_addr)
345 {
346 	/*
347 	 * Carefully look at the NIP to determine
348 	 * the instruction to analyse. Reading the NIP
349 	 * in real-mode is tricky and can lead to recursive
350 	 * faults
351 	 */
352 	int instr;
353 	unsigned long pfn, instr_addr;
354 	struct instruction_op op;
355 	struct pt_regs tmp = *regs;
356 
357 	pfn = addr_to_pfn(regs, regs->nip);
358 	if (pfn != ULONG_MAX) {
359 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
360 		instr = *(unsigned int *)(instr_addr);
361 		if (!analyse_instr(&op, &tmp, instr)) {
362 			pfn = addr_to_pfn(regs, op.ea);
363 			*addr = op.ea;
364 			*phys_addr = (pfn << PAGE_SHIFT);
365 			return 0;
366 		}
367 		/*
368 		 * analyse_instr() might fail if the instruction
369 		 * is not a load/store, although this is unexpected
370 		 * for load/store errors or if we got the NIP
371 		 * wrong
372 		 */
373 	}
374 	*addr = 0;
375 	return -1;
376 }
377 
378 static int mce_handle_ierror(struct pt_regs *regs,
379 		const struct mce_ierror_table table[],
380 		struct mce_error_info *mce_err, uint64_t *addr,
381 		uint64_t *phys_addr)
382 {
383 	uint64_t srr1 = regs->msr;
384 	int handled = 0;
385 	int i;
386 
387 	*addr = 0;
388 
389 	for (i = 0; table[i].srr1_mask; i++) {
390 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
391 			continue;
392 
393 		/* attempt to correct the error */
394 		switch (table[i].error_type) {
395 		case MCE_ERROR_TYPE_SLB:
396 			handled = mce_flush(MCE_FLUSH_SLB);
397 			break;
398 		case MCE_ERROR_TYPE_ERAT:
399 			handled = mce_flush(MCE_FLUSH_ERAT);
400 			break;
401 		case MCE_ERROR_TYPE_TLB:
402 			handled = mce_flush(MCE_FLUSH_TLB);
403 			break;
404 		}
405 
406 		/* now fill in mce_error_info */
407 		mce_err->error_type = table[i].error_type;
408 		switch (table[i].error_type) {
409 		case MCE_ERROR_TYPE_UE:
410 			mce_err->u.ue_error_type = table[i].error_subtype;
411 			break;
412 		case MCE_ERROR_TYPE_SLB:
413 			mce_err->u.slb_error_type = table[i].error_subtype;
414 			break;
415 		case MCE_ERROR_TYPE_ERAT:
416 			mce_err->u.erat_error_type = table[i].error_subtype;
417 			break;
418 		case MCE_ERROR_TYPE_TLB:
419 			mce_err->u.tlb_error_type = table[i].error_subtype;
420 			break;
421 		case MCE_ERROR_TYPE_USER:
422 			mce_err->u.user_error_type = table[i].error_subtype;
423 			break;
424 		case MCE_ERROR_TYPE_RA:
425 			mce_err->u.ra_error_type = table[i].error_subtype;
426 			break;
427 		case MCE_ERROR_TYPE_LINK:
428 			mce_err->u.link_error_type = table[i].error_subtype;
429 			break;
430 		}
431 		mce_err->severity = table[i].severity;
432 		mce_err->initiator = table[i].initiator;
433 		if (table[i].nip_valid) {
434 			*addr = regs->nip;
435 			if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
436 				table[i].error_type == MCE_ERROR_TYPE_UE) {
437 				unsigned long pfn;
438 
439 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
440 					pfn = addr_to_pfn(regs, regs->nip);
441 					if (pfn != ULONG_MAX) {
442 						*phys_addr =
443 							(pfn << PAGE_SHIFT);
444 						handled = 1;
445 					}
446 				}
447 			}
448 		}
449 		return handled;
450 	}
451 
452 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
453 	mce_err->severity = MCE_SEV_ERROR_SYNC;
454 	mce_err->initiator = MCE_INITIATOR_CPU;
455 
456 	return 0;
457 }
458 
459 static int mce_handle_derror(struct pt_regs *regs,
460 		const struct mce_derror_table table[],
461 		struct mce_error_info *mce_err, uint64_t *addr,
462 		uint64_t *phys_addr)
463 {
464 	uint64_t dsisr = regs->dsisr;
465 	int handled = 0;
466 	int found = 0;
467 	int i;
468 
469 	*addr = 0;
470 
471 	for (i = 0; table[i].dsisr_value; i++) {
472 		if (!(dsisr & table[i].dsisr_value))
473 			continue;
474 
475 		/* attempt to correct the error */
476 		switch (table[i].error_type) {
477 		case MCE_ERROR_TYPE_SLB:
478 			if (mce_flush(MCE_FLUSH_SLB))
479 				handled = 1;
480 			break;
481 		case MCE_ERROR_TYPE_ERAT:
482 			if (mce_flush(MCE_FLUSH_ERAT))
483 				handled = 1;
484 			break;
485 		case MCE_ERROR_TYPE_TLB:
486 			if (mce_flush(MCE_FLUSH_TLB))
487 				handled = 1;
488 			break;
489 		}
490 
491 		/*
492 		 * Attempt to handle multiple conditions, but only return
493 		 * one. Ensure uncorrectable errors are first in the table
494 		 * to match.
495 		 */
496 		if (found)
497 			continue;
498 
499 		/* now fill in mce_error_info */
500 		mce_err->error_type = table[i].error_type;
501 		switch (table[i].error_type) {
502 		case MCE_ERROR_TYPE_UE:
503 			mce_err->u.ue_error_type = table[i].error_subtype;
504 			break;
505 		case MCE_ERROR_TYPE_SLB:
506 			mce_err->u.slb_error_type = table[i].error_subtype;
507 			break;
508 		case MCE_ERROR_TYPE_ERAT:
509 			mce_err->u.erat_error_type = table[i].error_subtype;
510 			break;
511 		case MCE_ERROR_TYPE_TLB:
512 			mce_err->u.tlb_error_type = table[i].error_subtype;
513 			break;
514 		case MCE_ERROR_TYPE_USER:
515 			mce_err->u.user_error_type = table[i].error_subtype;
516 			break;
517 		case MCE_ERROR_TYPE_RA:
518 			mce_err->u.ra_error_type = table[i].error_subtype;
519 			break;
520 		case MCE_ERROR_TYPE_LINK:
521 			mce_err->u.link_error_type = table[i].error_subtype;
522 			break;
523 		}
524 		mce_err->severity = table[i].severity;
525 		mce_err->initiator = table[i].initiator;
526 		if (table[i].dar_valid)
527 			*addr = regs->dar;
528 		else if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
529 				table[i].error_type == MCE_ERROR_TYPE_UE) {
530 			/*
531 			 * We do a maximum of 4 nested MCE calls, see
532 			 * kernel/exception-64s.h
533 			 */
534 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
535 				if (!mce_find_instr_ea_and_pfn(regs, addr,
536 								phys_addr))
537 					handled = 1;
538 		}
539 		found = 1;
540 	}
541 
542 	if (found)
543 		return handled;
544 
545 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
546 	mce_err->severity = MCE_SEV_ERROR_SYNC;
547 	mce_err->initiator = MCE_INITIATOR_CPU;
548 
549 	return 0;
550 }
551 
552 static long mce_handle_ue_error(struct pt_regs *regs)
553 {
554 	long handled = 0;
555 
556 	/*
557 	 * On specific SCOM read via MMIO we may get a machine check
558 	 * exception with SRR0 pointing inside opal. If that is the
559 	 * case OPAL may have recovery address to re-read SCOM data in
560 	 * different way and hence we can recover from this MC.
561 	 */
562 
563 	if (ppc_md.mce_check_early_recovery) {
564 		if (ppc_md.mce_check_early_recovery(regs))
565 			handled = 1;
566 	}
567 	return handled;
568 }
569 
570 static long mce_handle_error(struct pt_regs *regs,
571 		const struct mce_derror_table dtable[],
572 		const struct mce_ierror_table itable[])
573 {
574 	struct mce_error_info mce_err = { 0 };
575 	uint64_t addr, phys_addr;
576 	uint64_t srr1 = regs->msr;
577 	long handled;
578 
579 	if (SRR1_MC_LOADSTORE(srr1))
580 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
581 				&phys_addr);
582 	else
583 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
584 				&phys_addr);
585 
586 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
587 		handled = mce_handle_ue_error(regs);
588 
589 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
590 
591 	return handled;
592 }
593 
594 long __machine_check_early_realmode_p7(struct pt_regs *regs)
595 {
596 	/* P7 DD1 leaves top bits of DSISR undefined */
597 	regs->dsisr &= 0x0000ffff;
598 
599 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
600 }
601 
602 long __machine_check_early_realmode_p8(struct pt_regs *regs)
603 {
604 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
605 }
606 
607 long __machine_check_early_realmode_p9(struct pt_regs *regs)
608 {
609 	/*
610 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
611 	 * caused by a paste instruction where only DSISR bit 25 is set. This
612 	 * will result in the MCE handler seeing an unknown event and the kernel
613 	 * crashing. An MCE that occurs like this is spurious, so we don't need
614 	 * to do anything in terms of servicing it. If there is something that
615 	 * needs to be serviced, the CPU will raise the MCE again with the
616 	 * correct DSISR so that it can be serviced properly. So detect this
617 	 * case and mark it as handled.
618 	 */
619 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
620 		return 1;
621 
622 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
623 }
624