xref: /openbmc/linux/arch/powerpc/kernel/mce_power.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Machine check exception handling CPU-side for power7 and power8
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright 2013 IBM Corporation
19  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
20  */
21 
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce_power: " fmt
24 
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <asm/mmu.h>
28 #include <asm/mce.h>
29 #include <asm/machdep.h>
30 #include <asm/pgtable.h>
31 #include <asm/pte-walk.h>
32 #include <asm/sstep.h>
33 #include <asm/exception-64s.h>
34 
35 /*
36  * Convert an address related to an mm to a PFN. NOTE: we are in real
37  * mode, we could potentially race with page table updates.
38  */
39 static unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
40 {
41 	pte_t *ptep;
42 	unsigned long flags;
43 	struct mm_struct *mm;
44 
45 	if (user_mode(regs))
46 		mm = current->mm;
47 	else
48 		mm = &init_mm;
49 
50 	local_irq_save(flags);
51 	if (mm == current->mm)
52 		ptep = find_current_mm_pte(mm->pgd, addr, NULL, NULL);
53 	else
54 		ptep = find_init_mm_pte(addr, NULL);
55 	local_irq_restore(flags);
56 	if (!ptep || pte_special(*ptep))
57 		return ULONG_MAX;
58 	return pte_pfn(*ptep);
59 }
60 
61 /* flush SLBs and reload */
62 #ifdef CONFIG_PPC_BOOK3S_64
63 static void flush_and_reload_slb(void)
64 {
65 	/* Invalidate all SLBs */
66 	slb_flush_all_realmode();
67 
68 #ifdef CONFIG_KVM_BOOK3S_HANDLER
69 	/*
70 	 * If machine check is hit when in guest or in transition, we will
71 	 * only flush the SLBs and continue.
72 	 */
73 	if (get_paca()->kvm_hstate.in_guest)
74 		return;
75 #endif
76 	if (early_radix_enabled())
77 		return;
78 
79 	/*
80 	 * This probably shouldn't happen, but it may be possible it's
81 	 * called in early boot before SLB shadows are allocated.
82 	 */
83 	if (!get_slb_shadow())
84 		return;
85 
86 	slb_restore_bolted_realmode();
87 }
88 #endif
89 
90 static void flush_erat(void)
91 {
92 	asm volatile(PPC_INVALIDATE_ERAT : : :"memory");
93 }
94 
95 #define MCE_FLUSH_SLB 1
96 #define MCE_FLUSH_TLB 2
97 #define MCE_FLUSH_ERAT 3
98 
99 static int mce_flush(int what)
100 {
101 #ifdef CONFIG_PPC_BOOK3S_64
102 	if (what == MCE_FLUSH_SLB) {
103 		flush_and_reload_slb();
104 		return 1;
105 	}
106 #endif
107 	if (what == MCE_FLUSH_ERAT) {
108 		flush_erat();
109 		return 1;
110 	}
111 	if (what == MCE_FLUSH_TLB) {
112 		tlbiel_all();
113 		return 1;
114 	}
115 
116 	return 0;
117 }
118 
119 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
120 
121 struct mce_ierror_table {
122 	unsigned long srr1_mask;
123 	unsigned long srr1_value;
124 	bool nip_valid; /* nip is a valid indicator of faulting address */
125 	unsigned int error_type;
126 	unsigned int error_subtype;
127 	unsigned int initiator;
128 	unsigned int severity;
129 };
130 
131 static const struct mce_ierror_table mce_p7_ierror_table[] = {
132 { 0x00000000001c0000, 0x0000000000040000, true,
133   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
134   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
135 { 0x00000000001c0000, 0x0000000000080000, true,
136   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
137   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
138 { 0x00000000001c0000, 0x00000000000c0000, true,
139   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
140   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
141 { 0x00000000001c0000, 0x0000000000100000, true,
142   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
143   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
144 { 0x00000000001c0000, 0x0000000000140000, true,
145   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
146   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
147 { 0x00000000001c0000, 0x0000000000180000, true,
148   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
149   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
150 { 0x00000000001c0000, 0x00000000001c0000, true,
151   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
152   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
153 { 0, 0, 0, 0, 0, 0 } };
154 
155 static const struct mce_ierror_table mce_p8_ierror_table[] = {
156 { 0x00000000081c0000, 0x0000000000040000, true,
157   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
158   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
159 { 0x00000000081c0000, 0x0000000000080000, true,
160   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
161   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
162 { 0x00000000081c0000, 0x00000000000c0000, true,
163   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
164   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
165 { 0x00000000081c0000, 0x0000000000100000, true,
166   MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
167   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
168 { 0x00000000081c0000, 0x0000000000140000, true,
169   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
170   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
171 { 0x00000000081c0000, 0x0000000000180000, true,
172   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
173   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
174 { 0x00000000081c0000, 0x00000000001c0000, true,
175   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
176   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
177 { 0x00000000081c0000, 0x0000000008000000, true,
178   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
179   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
180 { 0x00000000081c0000, 0x0000000008040000, true,
181   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
182   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
183 { 0, 0, 0, 0, 0, 0 } };
184 
185 static const struct mce_ierror_table mce_p9_ierror_table[] = {
186 { 0x00000000081c0000, 0x0000000000040000, true,
187   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH,
188   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
189 { 0x00000000081c0000, 0x0000000000080000, true,
190   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY,
191   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
192 { 0x00000000081c0000, 0x00000000000c0000, true,
193   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT,
194   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
195 { 0x00000000081c0000, 0x0000000000100000, true,
196   MCE_ERROR_TYPE_ERAT,MCE_ERAT_ERROR_MULTIHIT,
197   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
198 { 0x00000000081c0000, 0x0000000000140000, true,
199   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT,
200   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
201 { 0x00000000081c0000, 0x0000000000180000, true,
202   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
203   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
204 { 0x00000000081c0000, 0x00000000001c0000, true,
205   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN,
206   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
207 { 0x00000000081c0000, 0x0000000008000000, true,
208   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_IFETCH_TIMEOUT,
209   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
210 { 0x00000000081c0000, 0x0000000008040000, true,
211   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
212   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
213 { 0x00000000081c0000, 0x00000000080c0000, true,
214   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH,
215   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
216 { 0x00000000081c0000, 0x0000000008100000, true,
217   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH,
218   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
219 { 0x00000000081c0000, 0x0000000008140000, false,
220   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE,
221   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, }, /* ASYNC is fatal */
222 { 0x00000000081c0000, 0x0000000008180000, false,
223   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
224   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, }, /* ASYNC is fatal */
225 { 0x00000000081c0000, 0x00000000081c0000, true,
226   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
227   MCE_INITIATOR_CPU,  MCE_SEV_ERROR_SYNC, },
228 { 0, 0, 0, 0, 0, 0 } };
229 
230 struct mce_derror_table {
231 	unsigned long dsisr_value;
232 	bool dar_valid; /* dar is a valid indicator of faulting address */
233 	unsigned int error_type;
234 	unsigned int error_subtype;
235 	unsigned int initiator;
236 	unsigned int severity;
237 };
238 
239 static const struct mce_derror_table mce_p7_derror_table[] = {
240 { 0x00008000, false,
241   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
242   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
243 { 0x00004000, true,
244   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
245   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
246 { 0x00000800, true,
247   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
248   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
249 { 0x00000400, true,
250   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
251   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
252 { 0x00000080, true,
253   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
254   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
255 { 0x00000100, true,
256   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
257   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
258 { 0x00000040, true,
259   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
260   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
261 { 0, false, 0, 0, 0, 0 } };
262 
263 static const struct mce_derror_table mce_p8_derror_table[] = {
264 { 0x00008000, false,
265   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
266   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
267 { 0x00004000, true,
268   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
269   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
270 { 0x00002000, true,
271   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
272   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
273 { 0x00001000, true,
274   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
275   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
276 { 0x00000800, true,
277   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
278   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
279 { 0x00000400, true,
280   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
281   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
282 { 0x00000200, true,
283   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
284   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
285 { 0x00000080, true,
286   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
287   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
288 { 0x00000100, true,
289   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
290   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
291 { 0, false, 0, 0, 0, 0 } };
292 
293 static const struct mce_derror_table mce_p9_derror_table[] = {
294 { 0x00008000, false,
295   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE,
296   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
297 { 0x00004000, true,
298   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
299   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
300 { 0x00002000, true,
301   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT,
302   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
303 { 0x00001000, true,
304   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
305   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
306 { 0x00000800, true,
307   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT,
308   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
309 { 0x00000400, true,
310   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT,
311   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
312 { 0x00000200, false,
313   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE,
314   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
315 { 0x00000080, true,
316   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
317   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
318 { 0x00000100, true,
319   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY,
320   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
321 { 0x00000040, true,
322   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD,
323   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
324 { 0x00000020, false,
325   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
326   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
327 { 0x00000010, false,
328   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
329   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
330 { 0x00000008, false,
331   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN,
332   MCE_INITIATOR_CPU,   MCE_SEV_ERROR_SYNC, },
333 { 0, false, 0, 0, 0, 0 } };
334 
335 static int mce_find_instr_ea_and_pfn(struct pt_regs *regs, uint64_t *addr,
336 					uint64_t *phys_addr)
337 {
338 	/*
339 	 * Carefully look at the NIP to determine
340 	 * the instruction to analyse. Reading the NIP
341 	 * in real-mode is tricky and can lead to recursive
342 	 * faults
343 	 */
344 	int instr;
345 	unsigned long pfn, instr_addr;
346 	struct instruction_op op;
347 	struct pt_regs tmp = *regs;
348 
349 	pfn = addr_to_pfn(regs, regs->nip);
350 	if (pfn != ULONG_MAX) {
351 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
352 		instr = *(unsigned int *)(instr_addr);
353 		if (!analyse_instr(&op, &tmp, instr)) {
354 			pfn = addr_to_pfn(regs, op.ea);
355 			*addr = op.ea;
356 			*phys_addr = (pfn << PAGE_SHIFT);
357 			return 0;
358 		}
359 		/*
360 		 * analyse_instr() might fail if the instruction
361 		 * is not a load/store, although this is unexpected
362 		 * for load/store errors or if we got the NIP
363 		 * wrong
364 		 */
365 	}
366 	*addr = 0;
367 	return -1;
368 }
369 
370 static int mce_handle_ierror(struct pt_regs *regs,
371 		const struct mce_ierror_table table[],
372 		struct mce_error_info *mce_err, uint64_t *addr,
373 		uint64_t *phys_addr)
374 {
375 	uint64_t srr1 = regs->msr;
376 	int handled = 0;
377 	int i;
378 
379 	*addr = 0;
380 
381 	for (i = 0; table[i].srr1_mask; i++) {
382 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
383 			continue;
384 
385 		/* attempt to correct the error */
386 		switch (table[i].error_type) {
387 		case MCE_ERROR_TYPE_SLB:
388 			handled = mce_flush(MCE_FLUSH_SLB);
389 			break;
390 		case MCE_ERROR_TYPE_ERAT:
391 			handled = mce_flush(MCE_FLUSH_ERAT);
392 			break;
393 		case MCE_ERROR_TYPE_TLB:
394 			handled = mce_flush(MCE_FLUSH_TLB);
395 			break;
396 		}
397 
398 		/* now fill in mce_error_info */
399 		mce_err->error_type = table[i].error_type;
400 		switch (table[i].error_type) {
401 		case MCE_ERROR_TYPE_UE:
402 			mce_err->u.ue_error_type = table[i].error_subtype;
403 			break;
404 		case MCE_ERROR_TYPE_SLB:
405 			mce_err->u.slb_error_type = table[i].error_subtype;
406 			break;
407 		case MCE_ERROR_TYPE_ERAT:
408 			mce_err->u.erat_error_type = table[i].error_subtype;
409 			break;
410 		case MCE_ERROR_TYPE_TLB:
411 			mce_err->u.tlb_error_type = table[i].error_subtype;
412 			break;
413 		case MCE_ERROR_TYPE_USER:
414 			mce_err->u.user_error_type = table[i].error_subtype;
415 			break;
416 		case MCE_ERROR_TYPE_RA:
417 			mce_err->u.ra_error_type = table[i].error_subtype;
418 			break;
419 		case MCE_ERROR_TYPE_LINK:
420 			mce_err->u.link_error_type = table[i].error_subtype;
421 			break;
422 		}
423 		mce_err->severity = table[i].severity;
424 		mce_err->initiator = table[i].initiator;
425 		if (table[i].nip_valid) {
426 			*addr = regs->nip;
427 			if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
428 				table[i].error_type == MCE_ERROR_TYPE_UE) {
429 				unsigned long pfn;
430 
431 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
432 					pfn = addr_to_pfn(regs, regs->nip);
433 					if (pfn != ULONG_MAX) {
434 						*phys_addr =
435 							(pfn << PAGE_SHIFT);
436 					}
437 				}
438 			}
439 		}
440 		return handled;
441 	}
442 
443 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
444 	mce_err->severity = MCE_SEV_ERROR_SYNC;
445 	mce_err->initiator = MCE_INITIATOR_CPU;
446 
447 	return 0;
448 }
449 
450 static int mce_handle_derror(struct pt_regs *regs,
451 		const struct mce_derror_table table[],
452 		struct mce_error_info *mce_err, uint64_t *addr,
453 		uint64_t *phys_addr)
454 {
455 	uint64_t dsisr = regs->dsisr;
456 	int handled = 0;
457 	int found = 0;
458 	int i;
459 
460 	*addr = 0;
461 
462 	for (i = 0; table[i].dsisr_value; i++) {
463 		if (!(dsisr & table[i].dsisr_value))
464 			continue;
465 
466 		/* attempt to correct the error */
467 		switch (table[i].error_type) {
468 		case MCE_ERROR_TYPE_SLB:
469 			if (mce_flush(MCE_FLUSH_SLB))
470 				handled = 1;
471 			break;
472 		case MCE_ERROR_TYPE_ERAT:
473 			if (mce_flush(MCE_FLUSH_ERAT))
474 				handled = 1;
475 			break;
476 		case MCE_ERROR_TYPE_TLB:
477 			if (mce_flush(MCE_FLUSH_TLB))
478 				handled = 1;
479 			break;
480 		}
481 
482 		/*
483 		 * Attempt to handle multiple conditions, but only return
484 		 * one. Ensure uncorrectable errors are first in the table
485 		 * to match.
486 		 */
487 		if (found)
488 			continue;
489 
490 		/* now fill in mce_error_info */
491 		mce_err->error_type = table[i].error_type;
492 		switch (table[i].error_type) {
493 		case MCE_ERROR_TYPE_UE:
494 			mce_err->u.ue_error_type = table[i].error_subtype;
495 			break;
496 		case MCE_ERROR_TYPE_SLB:
497 			mce_err->u.slb_error_type = table[i].error_subtype;
498 			break;
499 		case MCE_ERROR_TYPE_ERAT:
500 			mce_err->u.erat_error_type = table[i].error_subtype;
501 			break;
502 		case MCE_ERROR_TYPE_TLB:
503 			mce_err->u.tlb_error_type = table[i].error_subtype;
504 			break;
505 		case MCE_ERROR_TYPE_USER:
506 			mce_err->u.user_error_type = table[i].error_subtype;
507 			break;
508 		case MCE_ERROR_TYPE_RA:
509 			mce_err->u.ra_error_type = table[i].error_subtype;
510 			break;
511 		case MCE_ERROR_TYPE_LINK:
512 			mce_err->u.link_error_type = table[i].error_subtype;
513 			break;
514 		}
515 		mce_err->severity = table[i].severity;
516 		mce_err->initiator = table[i].initiator;
517 		if (table[i].dar_valid)
518 			*addr = regs->dar;
519 		else if (mce_err->severity == MCE_SEV_ERROR_SYNC &&
520 				table[i].error_type == MCE_ERROR_TYPE_UE) {
521 			/*
522 			 * We do a maximum of 4 nested MCE calls, see
523 			 * kernel/exception-64s.h
524 			 */
525 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
526 				mce_find_instr_ea_and_pfn(regs, addr, phys_addr);
527 		}
528 		found = 1;
529 	}
530 
531 	if (found)
532 		return handled;
533 
534 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
535 	mce_err->severity = MCE_SEV_ERROR_SYNC;
536 	mce_err->initiator = MCE_INITIATOR_CPU;
537 
538 	return 0;
539 }
540 
541 static long mce_handle_ue_error(struct pt_regs *regs)
542 {
543 	long handled = 0;
544 
545 	/*
546 	 * On specific SCOM read via MMIO we may get a machine check
547 	 * exception with SRR0 pointing inside opal. If that is the
548 	 * case OPAL may have recovery address to re-read SCOM data in
549 	 * different way and hence we can recover from this MC.
550 	 */
551 
552 	if (ppc_md.mce_check_early_recovery) {
553 		if (ppc_md.mce_check_early_recovery(regs))
554 			handled = 1;
555 	}
556 	return handled;
557 }
558 
559 static long mce_handle_error(struct pt_regs *regs,
560 		const struct mce_derror_table dtable[],
561 		const struct mce_ierror_table itable[])
562 {
563 	struct mce_error_info mce_err = { 0 };
564 	uint64_t addr, phys_addr = ULONG_MAX;
565 	uint64_t srr1 = regs->msr;
566 	long handled;
567 
568 	if (SRR1_MC_LOADSTORE(srr1))
569 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
570 				&phys_addr);
571 	else
572 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
573 				&phys_addr);
574 
575 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
576 		handled = mce_handle_ue_error(regs);
577 
578 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
579 
580 	return handled;
581 }
582 
583 long __machine_check_early_realmode_p7(struct pt_regs *regs)
584 {
585 	/* P7 DD1 leaves top bits of DSISR undefined */
586 	regs->dsisr &= 0x0000ffff;
587 
588 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
589 }
590 
591 long __machine_check_early_realmode_p8(struct pt_regs *regs)
592 {
593 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
594 }
595 
596 long __machine_check_early_realmode_p9(struct pt_regs *regs)
597 {
598 	/*
599 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
600 	 * caused by a paste instruction where only DSISR bit 25 is set. This
601 	 * will result in the MCE handler seeing an unknown event and the kernel
602 	 * crashing. An MCE that occurs like this is spurious, so we don't need
603 	 * to do anything in terms of servicing it. If there is something that
604 	 * needs to be serviced, the CPU will raise the MCE again with the
605 	 * correct DSISR so that it can be serviced properly. So detect this
606 	 * case and mark it as handled.
607 	 */
608 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
609 		return 1;
610 
611 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
612 }
613