1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <linux/kdebug.h> 34 #include <asm/cacheflush.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 39 #ifdef CONFIG_BOOKE 40 #define MSR_SINGLESTEP (MSR_DE) 41 #else 42 #define MSR_SINGLESTEP (MSR_SE) 43 #endif 44 45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 47 48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 49 50 int __kprobes arch_prepare_kprobe(struct kprobe *p) 51 { 52 int ret = 0; 53 kprobe_opcode_t insn = *p->addr; 54 55 if ((unsigned long)p->addr & 0x03) { 56 printk("Attempt to register kprobe at an unaligned address\n"); 57 ret = -EINVAL; 58 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 59 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 60 ret = -EINVAL; 61 } 62 63 /* insn must be on a special executable page on ppc64. This is 64 * not explicitly required on ppc32 (right now), but it doesn't hurt */ 65 if (!ret) { 66 p->ainsn.insn = get_insn_slot(); 67 if (!p->ainsn.insn) 68 ret = -ENOMEM; 69 } 70 71 if (!ret) { 72 memcpy(p->ainsn.insn, p->addr, 73 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 74 p->opcode = *p->addr; 75 flush_icache_range((unsigned long)p->ainsn.insn, 76 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 77 } 78 79 p->ainsn.boostable = 0; 80 return ret; 81 } 82 83 void __kprobes arch_arm_kprobe(struct kprobe *p) 84 { 85 *p->addr = BREAKPOINT_INSTRUCTION; 86 flush_icache_range((unsigned long) p->addr, 87 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 88 } 89 90 void __kprobes arch_disarm_kprobe(struct kprobe *p) 91 { 92 *p->addr = p->opcode; 93 flush_icache_range((unsigned long) p->addr, 94 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 95 } 96 97 void __kprobes arch_remove_kprobe(struct kprobe *p) 98 { 99 if (p->ainsn.insn) { 100 free_insn_slot(p->ainsn.insn, 0); 101 p->ainsn.insn = NULL; 102 } 103 } 104 105 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 106 { 107 /* We turn off async exceptions to ensure that the single step will 108 * be for the instruction we have the kprobe on, if we dont its 109 * possible we'd get the single step reported for an exception handler 110 * like Decrementer or External Interrupt */ 111 regs->msr &= ~MSR_EE; 112 regs->msr |= MSR_SINGLESTEP; 113 #ifdef CONFIG_BOOKE 114 regs->msr &= ~MSR_CE; 115 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); 116 #endif 117 118 /* 119 * On powerpc we should single step on the original 120 * instruction even if the probed insn is a trap 121 * variant as values in regs could play a part in 122 * if the trap is taken or not 123 */ 124 regs->nip = (unsigned long)p->ainsn.insn; 125 } 126 127 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 128 { 129 kcb->prev_kprobe.kp = kprobe_running(); 130 kcb->prev_kprobe.status = kcb->kprobe_status; 131 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 132 } 133 134 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 135 { 136 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 137 kcb->kprobe_status = kcb->prev_kprobe.status; 138 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 139 } 140 141 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 142 struct kprobe_ctlblk *kcb) 143 { 144 __get_cpu_var(current_kprobe) = p; 145 kcb->kprobe_saved_msr = regs->msr; 146 } 147 148 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 149 struct pt_regs *regs) 150 { 151 ri->ret_addr = (kprobe_opcode_t *)regs->link; 152 153 /* Replace the return addr with trampoline addr */ 154 regs->link = (unsigned long)kretprobe_trampoline; 155 } 156 157 static int __kprobes kprobe_handler(struct pt_regs *regs) 158 { 159 struct kprobe *p; 160 int ret = 0; 161 unsigned int *addr = (unsigned int *)regs->nip; 162 struct kprobe_ctlblk *kcb; 163 164 /* 165 * We don't want to be preempted for the entire 166 * duration of kprobe processing 167 */ 168 preempt_disable(); 169 kcb = get_kprobe_ctlblk(); 170 171 /* Check we're not actually recursing */ 172 if (kprobe_running()) { 173 p = get_kprobe(addr); 174 if (p) { 175 kprobe_opcode_t insn = *p->ainsn.insn; 176 if (kcb->kprobe_status == KPROBE_HIT_SS && 177 is_trap(insn)) { 178 /* Turn off 'trace' bits */ 179 regs->msr &= ~MSR_SINGLESTEP; 180 regs->msr |= kcb->kprobe_saved_msr; 181 goto no_kprobe; 182 } 183 /* We have reentered the kprobe_handler(), since 184 * another probe was hit while within the handler. 185 * We here save the original kprobes variables and 186 * just single step on the instruction of the new probe 187 * without calling any user handlers. 188 */ 189 save_previous_kprobe(kcb); 190 set_current_kprobe(p, regs, kcb); 191 kcb->kprobe_saved_msr = regs->msr; 192 kprobes_inc_nmissed_count(p); 193 prepare_singlestep(p, regs); 194 kcb->kprobe_status = KPROBE_REENTER; 195 return 1; 196 } else { 197 if (*addr != BREAKPOINT_INSTRUCTION) { 198 /* If trap variant, then it belongs not to us */ 199 kprobe_opcode_t cur_insn = *addr; 200 if (is_trap(cur_insn)) 201 goto no_kprobe; 202 /* The breakpoint instruction was removed by 203 * another cpu right after we hit, no further 204 * handling of this interrupt is appropriate 205 */ 206 ret = 1; 207 goto no_kprobe; 208 } 209 p = __get_cpu_var(current_kprobe); 210 if (p->break_handler && p->break_handler(p, regs)) { 211 goto ss_probe; 212 } 213 } 214 goto no_kprobe; 215 } 216 217 p = get_kprobe(addr); 218 if (!p) { 219 if (*addr != BREAKPOINT_INSTRUCTION) { 220 /* 221 * PowerPC has multiple variants of the "trap" 222 * instruction. If the current instruction is a 223 * trap variant, it could belong to someone else 224 */ 225 kprobe_opcode_t cur_insn = *addr; 226 if (is_trap(cur_insn)) 227 goto no_kprobe; 228 /* 229 * The breakpoint instruction was removed right 230 * after we hit it. Another cpu has removed 231 * either a probepoint or a debugger breakpoint 232 * at this address. In either case, no further 233 * handling of this interrupt is appropriate. 234 */ 235 ret = 1; 236 } 237 /* Not one of ours: let kernel handle it */ 238 goto no_kprobe; 239 } 240 241 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 242 set_current_kprobe(p, regs, kcb); 243 if (p->pre_handler && p->pre_handler(p, regs)) 244 /* handler has already set things up, so skip ss setup */ 245 return 1; 246 247 ss_probe: 248 if (p->ainsn.boostable >= 0) { 249 unsigned int insn = *p->ainsn.insn; 250 251 /* regs->nip is also adjusted if emulate_step returns 1 */ 252 ret = emulate_step(regs, insn); 253 if (ret > 0) { 254 /* 255 * Once this instruction has been boosted 256 * successfully, set the boostable flag 257 */ 258 if (unlikely(p->ainsn.boostable == 0)) 259 p->ainsn.boostable = 1; 260 261 if (p->post_handler) 262 p->post_handler(p, regs, 0); 263 264 kcb->kprobe_status = KPROBE_HIT_SSDONE; 265 reset_current_kprobe(); 266 preempt_enable_no_resched(); 267 return 1; 268 } else if (ret < 0) { 269 /* 270 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 271 * So, we should never get here... but, its still 272 * good to catch them, just in case... 273 */ 274 printk("Can't step on instruction %x\n", insn); 275 BUG(); 276 } else if (ret == 0) 277 /* This instruction can't be boosted */ 278 p->ainsn.boostable = -1; 279 } 280 prepare_singlestep(p, regs); 281 kcb->kprobe_status = KPROBE_HIT_SS; 282 return 1; 283 284 no_kprobe: 285 preempt_enable_no_resched(); 286 return ret; 287 } 288 289 /* 290 * Function return probe trampoline: 291 * - init_kprobes() establishes a probepoint here 292 * - When the probed function returns, this probe 293 * causes the handlers to fire 294 */ 295 static void __used kretprobe_trampoline_holder(void) 296 { 297 asm volatile(".global kretprobe_trampoline\n" 298 "kretprobe_trampoline:\n" 299 "nop\n"); 300 } 301 302 /* 303 * Called when the probe at kretprobe trampoline is hit 304 */ 305 static int __kprobes trampoline_probe_handler(struct kprobe *p, 306 struct pt_regs *regs) 307 { 308 struct kretprobe_instance *ri = NULL; 309 struct hlist_head *head, empty_rp; 310 struct hlist_node *node, *tmp; 311 unsigned long flags, orig_ret_address = 0; 312 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 313 314 INIT_HLIST_HEAD(&empty_rp); 315 kretprobe_hash_lock(current, &head, &flags); 316 317 /* 318 * It is possible to have multiple instances associated with a given 319 * task either because an multiple functions in the call path 320 * have a return probe installed on them, and/or more than one return 321 * return probe was registered for a target function. 322 * 323 * We can handle this because: 324 * - instances are always inserted at the head of the list 325 * - when multiple return probes are registered for the same 326 * function, the first instance's ret_addr will point to the 327 * real return address, and all the rest will point to 328 * kretprobe_trampoline 329 */ 330 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 331 if (ri->task != current) 332 /* another task is sharing our hash bucket */ 333 continue; 334 335 if (ri->rp && ri->rp->handler) 336 ri->rp->handler(ri, regs); 337 338 orig_ret_address = (unsigned long)ri->ret_addr; 339 recycle_rp_inst(ri, &empty_rp); 340 341 if (orig_ret_address != trampoline_address) 342 /* 343 * This is the real return address. Any other 344 * instances associated with this task are for 345 * other calls deeper on the call stack 346 */ 347 break; 348 } 349 350 kretprobe_assert(ri, orig_ret_address, trampoline_address); 351 regs->nip = orig_ret_address; 352 353 reset_current_kprobe(); 354 kretprobe_hash_unlock(current, &flags); 355 preempt_enable_no_resched(); 356 357 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 358 hlist_del(&ri->hlist); 359 kfree(ri); 360 } 361 /* 362 * By returning a non-zero value, we are telling 363 * kprobe_handler() that we don't want the post_handler 364 * to run (and have re-enabled preemption) 365 */ 366 return 1; 367 } 368 369 /* 370 * Called after single-stepping. p->addr is the address of the 371 * instruction whose first byte has been replaced by the "breakpoint" 372 * instruction. To avoid the SMP problems that can occur when we 373 * temporarily put back the original opcode to single-step, we 374 * single-stepped a copy of the instruction. The address of this 375 * copy is p->ainsn.insn. 376 */ 377 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 378 { 379 int ret; 380 unsigned int insn = *p->ainsn.insn; 381 382 regs->nip = (unsigned long)p->addr; 383 ret = emulate_step(regs, insn); 384 if (ret == 0) 385 regs->nip = (unsigned long)p->addr + 4; 386 } 387 388 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 389 { 390 struct kprobe *cur = kprobe_running(); 391 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 392 393 if (!cur) 394 return 0; 395 396 /* make sure we got here for instruction we have a kprobe on */ 397 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) 398 return 0; 399 400 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 401 kcb->kprobe_status = KPROBE_HIT_SSDONE; 402 cur->post_handler(cur, regs, 0); 403 } 404 405 resume_execution(cur, regs); 406 regs->msr |= kcb->kprobe_saved_msr; 407 408 /*Restore back the original saved kprobes variables and continue. */ 409 if (kcb->kprobe_status == KPROBE_REENTER) { 410 restore_previous_kprobe(kcb); 411 goto out; 412 } 413 reset_current_kprobe(); 414 out: 415 preempt_enable_no_resched(); 416 417 /* 418 * if somebody else is singlestepping across a probe point, msr 419 * will have DE/SE set, in which case, continue the remaining processing 420 * of do_debug, as if this is not a probe hit. 421 */ 422 if (regs->msr & MSR_SINGLESTEP) 423 return 0; 424 425 return 1; 426 } 427 428 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 429 { 430 struct kprobe *cur = kprobe_running(); 431 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 432 const struct exception_table_entry *entry; 433 434 switch(kcb->kprobe_status) { 435 case KPROBE_HIT_SS: 436 case KPROBE_REENTER: 437 /* 438 * We are here because the instruction being single 439 * stepped caused a page fault. We reset the current 440 * kprobe and the nip points back to the probe address 441 * and allow the page fault handler to continue as a 442 * normal page fault. 443 */ 444 regs->nip = (unsigned long)cur->addr; 445 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ 446 regs->msr |= kcb->kprobe_saved_msr; 447 if (kcb->kprobe_status == KPROBE_REENTER) 448 restore_previous_kprobe(kcb); 449 else 450 reset_current_kprobe(); 451 preempt_enable_no_resched(); 452 break; 453 case KPROBE_HIT_ACTIVE: 454 case KPROBE_HIT_SSDONE: 455 /* 456 * We increment the nmissed count for accounting, 457 * we can also use npre/npostfault count for accouting 458 * these specific fault cases. 459 */ 460 kprobes_inc_nmissed_count(cur); 461 462 /* 463 * We come here because instructions in the pre/post 464 * handler caused the page_fault, this could happen 465 * if handler tries to access user space by 466 * copy_from_user(), get_user() etc. Let the 467 * user-specified handler try to fix it first. 468 */ 469 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 470 return 1; 471 472 /* 473 * In case the user-specified fault handler returned 474 * zero, try to fix up. 475 */ 476 if ((entry = search_exception_tables(regs->nip)) != NULL) { 477 regs->nip = entry->fixup; 478 return 1; 479 } 480 481 /* 482 * fixup_exception() could not handle it, 483 * Let do_page_fault() fix it. 484 */ 485 break; 486 default: 487 break; 488 } 489 return 0; 490 } 491 492 /* 493 * Wrapper routine to for handling exceptions. 494 */ 495 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 496 unsigned long val, void *data) 497 { 498 struct die_args *args = (struct die_args *)data; 499 int ret = NOTIFY_DONE; 500 501 if (args->regs && user_mode(args->regs)) 502 return ret; 503 504 switch (val) { 505 case DIE_BPT: 506 if (kprobe_handler(args->regs)) 507 ret = NOTIFY_STOP; 508 break; 509 case DIE_SSTEP: 510 if (post_kprobe_handler(args->regs)) 511 ret = NOTIFY_STOP; 512 break; 513 default: 514 break; 515 } 516 return ret; 517 } 518 519 #ifdef CONFIG_PPC64 520 unsigned long arch_deref_entry_point(void *entry) 521 { 522 return ((func_descr_t *)entry)->entry; 523 } 524 #endif 525 526 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 527 { 528 struct jprobe *jp = container_of(p, struct jprobe, kp); 529 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 530 531 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 532 533 /* setup return addr to the jprobe handler routine */ 534 regs->nip = arch_deref_entry_point(jp->entry); 535 #ifdef CONFIG_PPC64 536 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 537 #endif 538 539 return 1; 540 } 541 542 void __used __kprobes jprobe_return(void) 543 { 544 asm volatile("trap" ::: "memory"); 545 } 546 547 static void __used __kprobes jprobe_return_end(void) 548 { 549 }; 550 551 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 552 { 553 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 554 555 /* 556 * FIXME - we should ideally be validating that we got here 'cos 557 * of the "trap" in jprobe_return() above, before restoring the 558 * saved regs... 559 */ 560 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 561 preempt_enable_no_resched(); 562 return 1; 563 } 564 565 static struct kprobe trampoline_p = { 566 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 567 .pre_handler = trampoline_probe_handler 568 }; 569 570 int __init arch_init_kprobes(void) 571 { 572 return register_kprobe(&trampoline_p); 573 } 574 575 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 576 { 577 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 578 return 1; 579 580 return 0; 581 } 582