xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *		for PPC64
14  */
15 
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <asm/code-patching.h>
23 #include <asm/cacheflush.h>
24 #include <asm/sstep.h>
25 #include <asm/sections.h>
26 #include <linux/uaccess.h>
27 
28 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
29 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
30 
31 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
32 
33 bool arch_within_kprobe_blacklist(unsigned long addr)
34 {
35 	return  (addr >= (unsigned long)__kprobes_text_start &&
36 		 addr < (unsigned long)__kprobes_text_end) ||
37 		(addr >= (unsigned long)_stext &&
38 		 addr < (unsigned long)__head_end);
39 }
40 
41 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
42 {
43 	kprobe_opcode_t *addr = NULL;
44 
45 #ifdef PPC64_ELF_ABI_v2
46 	/* PPC64 ABIv2 needs local entry point */
47 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
48 	if (addr && !offset) {
49 #ifdef CONFIG_KPROBES_ON_FTRACE
50 		unsigned long faddr;
51 		/*
52 		 * Per livepatch.h, ftrace location is always within the first
53 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
54 		 */
55 		faddr = ftrace_location_range((unsigned long)addr,
56 					      (unsigned long)addr + 16);
57 		if (faddr)
58 			addr = (kprobe_opcode_t *)faddr;
59 		else
60 #endif
61 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
62 	}
63 #elif defined(PPC64_ELF_ABI_v1)
64 	/*
65 	 * 64bit powerpc ABIv1 uses function descriptors:
66 	 * - Check for the dot variant of the symbol first.
67 	 * - If that fails, try looking up the symbol provided.
68 	 *
69 	 * This ensures we always get to the actual symbol and not
70 	 * the descriptor.
71 	 *
72 	 * Also handle <module:symbol> format.
73 	 */
74 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
75 	bool dot_appended = false;
76 	const char *c;
77 	ssize_t ret = 0;
78 	int len = 0;
79 
80 	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
81 		c++;
82 		len = c - name;
83 		memcpy(dot_name, name, len);
84 	} else
85 		c = name;
86 
87 	if (*c != '\0' && *c != '.') {
88 		dot_name[len++] = '.';
89 		dot_appended = true;
90 	}
91 	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
92 	if (ret > 0)
93 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
94 
95 	/* Fallback to the original non-dot symbol lookup */
96 	if (!addr && dot_appended)
97 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
98 #else
99 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
100 #endif
101 
102 	return addr;
103 }
104 
105 int arch_prepare_kprobe(struct kprobe *p)
106 {
107 	int ret = 0;
108 	kprobe_opcode_t insn = *p->addr;
109 
110 	if ((unsigned long)p->addr & 0x03) {
111 		printk("Attempt to register kprobe at an unaligned address\n");
112 		ret = -EINVAL;
113 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
114 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
115 		ret = -EINVAL;
116 	}
117 
118 	/* insn must be on a special executable page on ppc64.  This is
119 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
120 	if (!ret) {
121 		p->ainsn.insn = get_insn_slot();
122 		if (!p->ainsn.insn)
123 			ret = -ENOMEM;
124 	}
125 
126 	if (!ret) {
127 		memcpy(p->ainsn.insn, p->addr,
128 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
129 		p->opcode = *p->addr;
130 		flush_icache_range((unsigned long)p->ainsn.insn,
131 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
132 	}
133 
134 	p->ainsn.boostable = 0;
135 	return ret;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138 
139 void arch_arm_kprobe(struct kprobe *p)
140 {
141 	patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
142 }
143 NOKPROBE_SYMBOL(arch_arm_kprobe);
144 
145 void arch_disarm_kprobe(struct kprobe *p)
146 {
147 	patch_instruction(p->addr, p->opcode);
148 }
149 NOKPROBE_SYMBOL(arch_disarm_kprobe);
150 
151 void arch_remove_kprobe(struct kprobe *p)
152 {
153 	if (p->ainsn.insn) {
154 		free_insn_slot(p->ainsn.insn, 0);
155 		p->ainsn.insn = NULL;
156 	}
157 }
158 NOKPROBE_SYMBOL(arch_remove_kprobe);
159 
160 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
161 {
162 	enable_single_step(regs);
163 
164 	/*
165 	 * On powerpc we should single step on the original
166 	 * instruction even if the probed insn is a trap
167 	 * variant as values in regs could play a part in
168 	 * if the trap is taken or not
169 	 */
170 	regs->nip = (unsigned long)p->ainsn.insn;
171 }
172 
173 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
174 {
175 	kcb->prev_kprobe.kp = kprobe_running();
176 	kcb->prev_kprobe.status = kcb->kprobe_status;
177 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
178 }
179 
180 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
181 {
182 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
183 	kcb->kprobe_status = kcb->prev_kprobe.status;
184 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
185 }
186 
187 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
188 				struct kprobe_ctlblk *kcb)
189 {
190 	__this_cpu_write(current_kprobe, p);
191 	kcb->kprobe_saved_msr = regs->msr;
192 }
193 
194 bool arch_kprobe_on_func_entry(unsigned long offset)
195 {
196 #ifdef PPC64_ELF_ABI_v2
197 #ifdef CONFIG_KPROBES_ON_FTRACE
198 	return offset <= 16;
199 #else
200 	return offset <= 8;
201 #endif
202 #else
203 	return !offset;
204 #endif
205 }
206 
207 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
208 {
209 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
210 
211 	/* Replace the return addr with trampoline addr */
212 	regs->link = (unsigned long)kretprobe_trampoline;
213 }
214 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
215 
216 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
217 {
218 	int ret;
219 	unsigned int insn = *p->ainsn.insn;
220 
221 	/* regs->nip is also adjusted if emulate_step returns 1 */
222 	ret = emulate_step(regs, insn);
223 	if (ret > 0) {
224 		/*
225 		 * Once this instruction has been boosted
226 		 * successfully, set the boostable flag
227 		 */
228 		if (unlikely(p->ainsn.boostable == 0))
229 			p->ainsn.boostable = 1;
230 	} else if (ret < 0) {
231 		/*
232 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
233 		 * So, we should never get here... but, its still
234 		 * good to catch them, just in case...
235 		 */
236 		printk("Can't step on instruction %x\n", insn);
237 		BUG();
238 	} else {
239 		/*
240 		 * If we haven't previously emulated this instruction, then it
241 		 * can't be boosted. Note it down so we don't try to do so again.
242 		 *
243 		 * If, however, we had emulated this instruction in the past,
244 		 * then this is just an error with the current run (for
245 		 * instance, exceptions due to a load/store). We return 0 so
246 		 * that this is now single-stepped, but continue to try
247 		 * emulating it in subsequent probe hits.
248 		 */
249 		if (unlikely(p->ainsn.boostable != 1))
250 			p->ainsn.boostable = -1;
251 	}
252 
253 	return ret;
254 }
255 NOKPROBE_SYMBOL(try_to_emulate);
256 
257 int kprobe_handler(struct pt_regs *regs)
258 {
259 	struct kprobe *p;
260 	int ret = 0;
261 	unsigned int *addr = (unsigned int *)regs->nip;
262 	struct kprobe_ctlblk *kcb;
263 
264 	if (user_mode(regs))
265 		return 0;
266 
267 	/*
268 	 * We don't want to be preempted for the entire
269 	 * duration of kprobe processing
270 	 */
271 	preempt_disable();
272 	kcb = get_kprobe_ctlblk();
273 
274 	/* Check we're not actually recursing */
275 	if (kprobe_running()) {
276 		p = get_kprobe(addr);
277 		if (p) {
278 			kprobe_opcode_t insn = *p->ainsn.insn;
279 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
280 					is_trap(insn)) {
281 				/* Turn off 'trace' bits */
282 				regs->msr &= ~MSR_SINGLESTEP;
283 				regs->msr |= kcb->kprobe_saved_msr;
284 				goto no_kprobe;
285 			}
286 			/* We have reentered the kprobe_handler(), since
287 			 * another probe was hit while within the handler.
288 			 * We here save the original kprobes variables and
289 			 * just single step on the instruction of the new probe
290 			 * without calling any user handlers.
291 			 */
292 			save_previous_kprobe(kcb);
293 			set_current_kprobe(p, regs, kcb);
294 			kprobes_inc_nmissed_count(p);
295 			kcb->kprobe_status = KPROBE_REENTER;
296 			if (p->ainsn.boostable >= 0) {
297 				ret = try_to_emulate(p, regs);
298 
299 				if (ret > 0) {
300 					restore_previous_kprobe(kcb);
301 					preempt_enable_no_resched();
302 					return 1;
303 				}
304 			}
305 			prepare_singlestep(p, regs);
306 			return 1;
307 		} else if (*addr != BREAKPOINT_INSTRUCTION) {
308 			/* If trap variant, then it belongs not to us */
309 			kprobe_opcode_t cur_insn = *addr;
310 
311 			if (is_trap(cur_insn))
312 				goto no_kprobe;
313 			/* The breakpoint instruction was removed by
314 			 * another cpu right after we hit, no further
315 			 * handling of this interrupt is appropriate
316 			 */
317 			ret = 1;
318 		}
319 		goto no_kprobe;
320 	}
321 
322 	p = get_kprobe(addr);
323 	if (!p) {
324 		if (*addr != BREAKPOINT_INSTRUCTION) {
325 			/*
326 			 * PowerPC has multiple variants of the "trap"
327 			 * instruction. If the current instruction is a
328 			 * trap variant, it could belong to someone else
329 			 */
330 			kprobe_opcode_t cur_insn = *addr;
331 			if (is_trap(cur_insn))
332 				goto no_kprobe;
333 			/*
334 			 * The breakpoint instruction was removed right
335 			 * after we hit it.  Another cpu has removed
336 			 * either a probepoint or a debugger breakpoint
337 			 * at this address.  In either case, no further
338 			 * handling of this interrupt is appropriate.
339 			 */
340 			ret = 1;
341 		}
342 		/* Not one of ours: let kernel handle it */
343 		goto no_kprobe;
344 	}
345 
346 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
347 	set_current_kprobe(p, regs, kcb);
348 	if (p->pre_handler && p->pre_handler(p, regs)) {
349 		/* handler changed execution path, so skip ss setup */
350 		reset_current_kprobe();
351 		preempt_enable_no_resched();
352 		return 1;
353 	}
354 
355 	if (p->ainsn.boostable >= 0) {
356 		ret = try_to_emulate(p, regs);
357 
358 		if (ret > 0) {
359 			if (p->post_handler)
360 				p->post_handler(p, regs, 0);
361 
362 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
363 			reset_current_kprobe();
364 			preempt_enable_no_resched();
365 			return 1;
366 		}
367 	}
368 	prepare_singlestep(p, regs);
369 	kcb->kprobe_status = KPROBE_HIT_SS;
370 	return 1;
371 
372 no_kprobe:
373 	preempt_enable_no_resched();
374 	return ret;
375 }
376 NOKPROBE_SYMBOL(kprobe_handler);
377 
378 /*
379  * Function return probe trampoline:
380  * 	- init_kprobes() establishes a probepoint here
381  * 	- When the probed function returns, this probe
382  * 		causes the handlers to fire
383  */
384 asm(".global kretprobe_trampoline\n"
385 	".type kretprobe_trampoline, @function\n"
386 	"kretprobe_trampoline:\n"
387 	"nop\n"
388 	"blr\n"
389 	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
390 
391 /*
392  * Called when the probe at kretprobe trampoline is hit
393  */
394 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
395 {
396 	struct kretprobe_instance *ri = NULL;
397 	struct hlist_head *head, empty_rp;
398 	struct hlist_node *tmp;
399 	unsigned long flags, orig_ret_address = 0;
400 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
401 
402 	INIT_HLIST_HEAD(&empty_rp);
403 	kretprobe_hash_lock(current, &head, &flags);
404 
405 	/*
406 	 * It is possible to have multiple instances associated with a given
407 	 * task either because an multiple functions in the call path
408 	 * have a return probe installed on them, and/or more than one return
409 	 * return probe was registered for a target function.
410 	 *
411 	 * We can handle this because:
412 	 *     - instances are always inserted at the head of the list
413 	 *     - when multiple return probes are registered for the same
414 	 *       function, the first instance's ret_addr will point to the
415 	 *       real return address, and all the rest will point to
416 	 *       kretprobe_trampoline
417 	 */
418 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
419 		if (ri->task != current)
420 			/* another task is sharing our hash bucket */
421 			continue;
422 
423 		if (ri->rp && ri->rp->handler)
424 			ri->rp->handler(ri, regs);
425 
426 		orig_ret_address = (unsigned long)ri->ret_addr;
427 		recycle_rp_inst(ri, &empty_rp);
428 
429 		if (orig_ret_address != trampoline_address)
430 			/*
431 			 * This is the real return address. Any other
432 			 * instances associated with this task are for
433 			 * other calls deeper on the call stack
434 			 */
435 			break;
436 	}
437 
438 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
439 
440 	/*
441 	 * We get here through one of two paths:
442 	 * 1. by taking a trap -> kprobe_handler() -> here
443 	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
444 	 *
445 	 * When going back through (1), we need regs->nip to be setup properly
446 	 * as it is used to determine the return address from the trap.
447 	 * For (2), since nip is not honoured with optprobes, we instead setup
448 	 * the link register properly so that the subsequent 'blr' in
449 	 * kretprobe_trampoline jumps back to the right instruction.
450 	 *
451 	 * For nip, we should set the address to the previous instruction since
452 	 * we end up emulating it in kprobe_handler(), which increments the nip
453 	 * again.
454 	 */
455 	regs->nip = orig_ret_address - 4;
456 	regs->link = orig_ret_address;
457 
458 	kretprobe_hash_unlock(current, &flags);
459 
460 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
461 		hlist_del(&ri->hlist);
462 		kfree(ri);
463 	}
464 
465 	return 0;
466 }
467 NOKPROBE_SYMBOL(trampoline_probe_handler);
468 
469 /*
470  * Called after single-stepping.  p->addr is the address of the
471  * instruction whose first byte has been replaced by the "breakpoint"
472  * instruction.  To avoid the SMP problems that can occur when we
473  * temporarily put back the original opcode to single-step, we
474  * single-stepped a copy of the instruction.  The address of this
475  * copy is p->ainsn.insn.
476  */
477 int kprobe_post_handler(struct pt_regs *regs)
478 {
479 	struct kprobe *cur = kprobe_running();
480 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481 
482 	if (!cur || user_mode(regs))
483 		return 0;
484 
485 	/* make sure we got here for instruction we have a kprobe on */
486 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
487 		return 0;
488 
489 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
490 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
491 		cur->post_handler(cur, regs, 0);
492 	}
493 
494 	/* Adjust nip to after the single-stepped instruction */
495 	regs->nip = (unsigned long)cur->addr + 4;
496 	regs->msr |= kcb->kprobe_saved_msr;
497 
498 	/*Restore back the original saved kprobes variables and continue. */
499 	if (kcb->kprobe_status == KPROBE_REENTER) {
500 		restore_previous_kprobe(kcb);
501 		goto out;
502 	}
503 	reset_current_kprobe();
504 out:
505 	preempt_enable_no_resched();
506 
507 	/*
508 	 * if somebody else is singlestepping across a probe point, msr
509 	 * will have DE/SE set, in which case, continue the remaining processing
510 	 * of do_debug, as if this is not a probe hit.
511 	 */
512 	if (regs->msr & MSR_SINGLESTEP)
513 		return 0;
514 
515 	return 1;
516 }
517 NOKPROBE_SYMBOL(kprobe_post_handler);
518 
519 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
520 {
521 	struct kprobe *cur = kprobe_running();
522 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
523 	const struct exception_table_entry *entry;
524 
525 	switch(kcb->kprobe_status) {
526 	case KPROBE_HIT_SS:
527 	case KPROBE_REENTER:
528 		/*
529 		 * We are here because the instruction being single
530 		 * stepped caused a page fault. We reset the current
531 		 * kprobe and the nip points back to the probe address
532 		 * and allow the page fault handler to continue as a
533 		 * normal page fault.
534 		 */
535 		regs->nip = (unsigned long)cur->addr;
536 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
537 		regs->msr |= kcb->kprobe_saved_msr;
538 		if (kcb->kprobe_status == KPROBE_REENTER)
539 			restore_previous_kprobe(kcb);
540 		else
541 			reset_current_kprobe();
542 		preempt_enable_no_resched();
543 		break;
544 	case KPROBE_HIT_ACTIVE:
545 	case KPROBE_HIT_SSDONE:
546 		/*
547 		 * We increment the nmissed count for accounting,
548 		 * we can also use npre/npostfault count for accounting
549 		 * these specific fault cases.
550 		 */
551 		kprobes_inc_nmissed_count(cur);
552 
553 		/*
554 		 * We come here because instructions in the pre/post
555 		 * handler caused the page_fault, this could happen
556 		 * if handler tries to access user space by
557 		 * copy_from_user(), get_user() etc. Let the
558 		 * user-specified handler try to fix it first.
559 		 */
560 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
561 			return 1;
562 
563 		/*
564 		 * In case the user-specified fault handler returned
565 		 * zero, try to fix up.
566 		 */
567 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
568 			regs->nip = extable_fixup(entry);
569 			return 1;
570 		}
571 
572 		/*
573 		 * fixup_exception() could not handle it,
574 		 * Let do_page_fault() fix it.
575 		 */
576 		break;
577 	default:
578 		break;
579 	}
580 	return 0;
581 }
582 NOKPROBE_SYMBOL(kprobe_fault_handler);
583 
584 unsigned long arch_deref_entry_point(void *entry)
585 {
586 #ifdef PPC64_ELF_ABI_v1
587 	if (!kernel_text_address((unsigned long)entry))
588 		return ppc_global_function_entry(entry);
589 	else
590 #endif
591 		return (unsigned long)entry;
592 }
593 NOKPROBE_SYMBOL(arch_deref_entry_point);
594 
595 static struct kprobe trampoline_p = {
596 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
597 	.pre_handler = trampoline_probe_handler
598 };
599 
600 int __init arch_init_kprobes(void)
601 {
602 	return register_kprobe(&trampoline_p);
603 }
604 
605 int arch_trampoline_kprobe(struct kprobe *p)
606 {
607 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
608 		return 1;
609 
610 	return 0;
611 }
612 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
613