xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision f42b3800)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
42 
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45 	int ret = 0;
46 	kprobe_opcode_t insn = *p->addr;
47 
48 	if ((unsigned long)p->addr & 0x03) {
49 		printk("Attempt to register kprobe at an unaligned address\n");
50 		ret = -EINVAL;
51 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
52 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
53 		ret = -EINVAL;
54 	}
55 
56 	/* insn must be on a special executable page on ppc64 */
57 	if (!ret) {
58 		p->ainsn.insn = get_insn_slot();
59 		if (!p->ainsn.insn)
60 			ret = -ENOMEM;
61 	}
62 
63 	if (!ret) {
64 		memcpy(p->ainsn.insn, p->addr,
65 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66 		p->opcode = *p->addr;
67 		flush_icache_range((unsigned long)p->ainsn.insn,
68 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
69 	}
70 
71 	p->ainsn.boostable = 0;
72 	return ret;
73 }
74 
75 void __kprobes arch_arm_kprobe(struct kprobe *p)
76 {
77 	*p->addr = BREAKPOINT_INSTRUCTION;
78 	flush_icache_range((unsigned long) p->addr,
79 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
80 }
81 
82 void __kprobes arch_disarm_kprobe(struct kprobe *p)
83 {
84 	*p->addr = p->opcode;
85 	flush_icache_range((unsigned long) p->addr,
86 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
87 }
88 
89 void __kprobes arch_remove_kprobe(struct kprobe *p)
90 {
91 	mutex_lock(&kprobe_mutex);
92 	free_insn_slot(p->ainsn.insn, 0);
93 	mutex_unlock(&kprobe_mutex);
94 }
95 
96 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
97 {
98 	regs->msr |= MSR_SE;
99 
100 	/*
101 	 * On powerpc we should single step on the original
102 	 * instruction even if the probed insn is a trap
103 	 * variant as values in regs could play a part in
104 	 * if the trap is taken or not
105 	 */
106 	regs->nip = (unsigned long)p->ainsn.insn;
107 }
108 
109 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
110 {
111 	kcb->prev_kprobe.kp = kprobe_running();
112 	kcb->prev_kprobe.status = kcb->kprobe_status;
113 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
114 }
115 
116 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
117 {
118 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
119 	kcb->kprobe_status = kcb->prev_kprobe.status;
120 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
121 }
122 
123 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
124 				struct kprobe_ctlblk *kcb)
125 {
126 	__get_cpu_var(current_kprobe) = p;
127 	kcb->kprobe_saved_msr = regs->msr;
128 }
129 
130 /* Called with kretprobe_lock held */
131 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
132 				      struct pt_regs *regs)
133 {
134 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
135 
136 	/* Replace the return addr with trampoline addr */
137 	regs->link = (unsigned long)kretprobe_trampoline;
138 }
139 
140 static int __kprobes kprobe_handler(struct pt_regs *regs)
141 {
142 	struct kprobe *p;
143 	int ret = 0;
144 	unsigned int *addr = (unsigned int *)regs->nip;
145 	struct kprobe_ctlblk *kcb;
146 
147 	/*
148 	 * We don't want to be preempted for the entire
149 	 * duration of kprobe processing
150 	 */
151 	preempt_disable();
152 	kcb = get_kprobe_ctlblk();
153 
154 	/* Check we're not actually recursing */
155 	if (kprobe_running()) {
156 		p = get_kprobe(addr);
157 		if (p) {
158 			kprobe_opcode_t insn = *p->ainsn.insn;
159 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
160 					is_trap(insn)) {
161 				regs->msr &= ~MSR_SE;
162 				regs->msr |= kcb->kprobe_saved_msr;
163 				goto no_kprobe;
164 			}
165 			/* We have reentered the kprobe_handler(), since
166 			 * another probe was hit while within the handler.
167 			 * We here save the original kprobes variables and
168 			 * just single step on the instruction of the new probe
169 			 * without calling any user handlers.
170 			 */
171 			save_previous_kprobe(kcb);
172 			set_current_kprobe(p, regs, kcb);
173 			kcb->kprobe_saved_msr = regs->msr;
174 			kprobes_inc_nmissed_count(p);
175 			prepare_singlestep(p, regs);
176 			kcb->kprobe_status = KPROBE_REENTER;
177 			return 1;
178 		} else {
179 			if (*addr != BREAKPOINT_INSTRUCTION) {
180 				/* If trap variant, then it belongs not to us */
181 				kprobe_opcode_t cur_insn = *addr;
182 				if (is_trap(cur_insn))
183 		       			goto no_kprobe;
184 				/* The breakpoint instruction was removed by
185 				 * another cpu right after we hit, no further
186 				 * handling of this interrupt is appropriate
187 				 */
188 				ret = 1;
189 				goto no_kprobe;
190 			}
191 			p = __get_cpu_var(current_kprobe);
192 			if (p->break_handler && p->break_handler(p, regs)) {
193 				goto ss_probe;
194 			}
195 		}
196 		goto no_kprobe;
197 	}
198 
199 	p = get_kprobe(addr);
200 	if (!p) {
201 		if (*addr != BREAKPOINT_INSTRUCTION) {
202 			/*
203 			 * PowerPC has multiple variants of the "trap"
204 			 * instruction. If the current instruction is a
205 			 * trap variant, it could belong to someone else
206 			 */
207 			kprobe_opcode_t cur_insn = *addr;
208 			if (is_trap(cur_insn))
209 		       		goto no_kprobe;
210 			/*
211 			 * The breakpoint instruction was removed right
212 			 * after we hit it.  Another cpu has removed
213 			 * either a probepoint or a debugger breakpoint
214 			 * at this address.  In either case, no further
215 			 * handling of this interrupt is appropriate.
216 			 */
217 			ret = 1;
218 		}
219 		/* Not one of ours: let kernel handle it */
220 		goto no_kprobe;
221 	}
222 
223 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
224 	set_current_kprobe(p, regs, kcb);
225 	if (p->pre_handler && p->pre_handler(p, regs))
226 		/* handler has already set things up, so skip ss setup */
227 		return 1;
228 
229 ss_probe:
230 	if (p->ainsn.boostable >= 0) {
231 		unsigned int insn = *p->ainsn.insn;
232 
233 		/* regs->nip is also adjusted if emulate_step returns 1 */
234 		ret = emulate_step(regs, insn);
235 		if (ret > 0) {
236 			/*
237 			 * Once this instruction has been boosted
238 			 * successfully, set the boostable flag
239 			 */
240 			if (unlikely(p->ainsn.boostable == 0))
241 				p->ainsn.boostable = 1;
242 
243 			if (p->post_handler)
244 				p->post_handler(p, regs, 0);
245 
246 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
247 			reset_current_kprobe();
248 			preempt_enable_no_resched();
249 			return 1;
250 		} else if (ret < 0) {
251 			/*
252 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
253 			 * So, we should never get here... but, its still
254 			 * good to catch them, just in case...
255 			 */
256 			printk("Can't step on instruction %x\n", insn);
257 			BUG();
258 		} else if (ret == 0)
259 			/* This instruction can't be boosted */
260 			p->ainsn.boostable = -1;
261 	}
262 	prepare_singlestep(p, regs);
263 	kcb->kprobe_status = KPROBE_HIT_SS;
264 	return 1;
265 
266 no_kprobe:
267 	preempt_enable_no_resched();
268 	return ret;
269 }
270 
271 /*
272  * Function return probe trampoline:
273  * 	- init_kprobes() establishes a probepoint here
274  * 	- When the probed function returns, this probe
275  * 		causes the handlers to fire
276  */
277 static void __used kretprobe_trampoline_holder(void)
278 {
279 	asm volatile(".global kretprobe_trampoline\n"
280 			"kretprobe_trampoline:\n"
281 			"nop\n");
282 }
283 
284 /*
285  * Called when the probe at kretprobe trampoline is hit
286  */
287 static int __kprobes trampoline_probe_handler(struct kprobe *p,
288 						struct pt_regs *regs)
289 {
290 	struct kretprobe_instance *ri = NULL;
291 	struct hlist_head *head, empty_rp;
292 	struct hlist_node *node, *tmp;
293 	unsigned long flags, orig_ret_address = 0;
294 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
295 
296 	INIT_HLIST_HEAD(&empty_rp);
297 	spin_lock_irqsave(&kretprobe_lock, flags);
298 	head = kretprobe_inst_table_head(current);
299 
300 	/*
301 	 * It is possible to have multiple instances associated with a given
302 	 * task either because an multiple functions in the call path
303 	 * have a return probe installed on them, and/or more then one return
304 	 * return probe was registered for a target function.
305 	 *
306 	 * We can handle this because:
307 	 *     - instances are always inserted at the head of the list
308 	 *     - when multiple return probes are registered for the same
309 	 *       function, the first instance's ret_addr will point to the
310 	 *       real return address, and all the rest will point to
311 	 *       kretprobe_trampoline
312 	 */
313 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
314 		if (ri->task != current)
315 			/* another task is sharing our hash bucket */
316 			continue;
317 
318 		if (ri->rp && ri->rp->handler)
319 			ri->rp->handler(ri, regs);
320 
321 		orig_ret_address = (unsigned long)ri->ret_addr;
322 		recycle_rp_inst(ri, &empty_rp);
323 
324 		if (orig_ret_address != trampoline_address)
325 			/*
326 			 * This is the real return address. Any other
327 			 * instances associated with this task are for
328 			 * other calls deeper on the call stack
329 			 */
330 			break;
331 	}
332 
333 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
334 	regs->nip = orig_ret_address;
335 
336 	reset_current_kprobe();
337 	spin_unlock_irqrestore(&kretprobe_lock, flags);
338 	preempt_enable_no_resched();
339 
340 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
341 		hlist_del(&ri->hlist);
342 		kfree(ri);
343 	}
344 	/*
345 	 * By returning a non-zero value, we are telling
346 	 * kprobe_handler() that we don't want the post_handler
347 	 * to run (and have re-enabled preemption)
348 	 */
349 	return 1;
350 }
351 
352 /*
353  * Called after single-stepping.  p->addr is the address of the
354  * instruction whose first byte has been replaced by the "breakpoint"
355  * instruction.  To avoid the SMP problems that can occur when we
356  * temporarily put back the original opcode to single-step, we
357  * single-stepped a copy of the instruction.  The address of this
358  * copy is p->ainsn.insn.
359  */
360 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
361 {
362 	int ret;
363 	unsigned int insn = *p->ainsn.insn;
364 
365 	regs->nip = (unsigned long)p->addr;
366 	ret = emulate_step(regs, insn);
367 	if (ret == 0)
368 		regs->nip = (unsigned long)p->addr + 4;
369 }
370 
371 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
372 {
373 	struct kprobe *cur = kprobe_running();
374 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375 
376 	if (!cur)
377 		return 0;
378 
379 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
380 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
381 		cur->post_handler(cur, regs, 0);
382 	}
383 
384 	resume_execution(cur, regs);
385 	regs->msr |= kcb->kprobe_saved_msr;
386 
387 	/*Restore back the original saved kprobes variables and continue. */
388 	if (kcb->kprobe_status == KPROBE_REENTER) {
389 		restore_previous_kprobe(kcb);
390 		goto out;
391 	}
392 	reset_current_kprobe();
393 out:
394 	preempt_enable_no_resched();
395 
396 	/*
397 	 * if somebody else is singlestepping across a probe point, msr
398 	 * will have SE set, in which case, continue the remaining processing
399 	 * of do_debug, as if this is not a probe hit.
400 	 */
401 	if (regs->msr & MSR_SE)
402 		return 0;
403 
404 	return 1;
405 }
406 
407 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
408 {
409 	struct kprobe *cur = kprobe_running();
410 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 	const struct exception_table_entry *entry;
412 
413 	switch(kcb->kprobe_status) {
414 	case KPROBE_HIT_SS:
415 	case KPROBE_REENTER:
416 		/*
417 		 * We are here because the instruction being single
418 		 * stepped caused a page fault. We reset the current
419 		 * kprobe and the nip points back to the probe address
420 		 * and allow the page fault handler to continue as a
421 		 * normal page fault.
422 		 */
423 		regs->nip = (unsigned long)cur->addr;
424 		regs->msr &= ~MSR_SE;
425 		regs->msr |= kcb->kprobe_saved_msr;
426 		if (kcb->kprobe_status == KPROBE_REENTER)
427 			restore_previous_kprobe(kcb);
428 		else
429 			reset_current_kprobe();
430 		preempt_enable_no_resched();
431 		break;
432 	case KPROBE_HIT_ACTIVE:
433 	case KPROBE_HIT_SSDONE:
434 		/*
435 		 * We increment the nmissed count for accounting,
436 		 * we can also use npre/npostfault count for accouting
437 		 * these specific fault cases.
438 		 */
439 		kprobes_inc_nmissed_count(cur);
440 
441 		/*
442 		 * We come here because instructions in the pre/post
443 		 * handler caused the page_fault, this could happen
444 		 * if handler tries to access user space by
445 		 * copy_from_user(), get_user() etc. Let the
446 		 * user-specified handler try to fix it first.
447 		 */
448 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
449 			return 1;
450 
451 		/*
452 		 * In case the user-specified fault handler returned
453 		 * zero, try to fix up.
454 		 */
455 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
456 			regs->nip = entry->fixup;
457 			return 1;
458 		}
459 
460 		/*
461 		 * fixup_exception() could not handle it,
462 		 * Let do_page_fault() fix it.
463 		 */
464 		break;
465 	default:
466 		break;
467 	}
468 	return 0;
469 }
470 
471 /*
472  * Wrapper routine to for handling exceptions.
473  */
474 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
475 				       unsigned long val, void *data)
476 {
477 	struct die_args *args = (struct die_args *)data;
478 	int ret = NOTIFY_DONE;
479 
480 	if (args->regs && user_mode(args->regs))
481 		return ret;
482 
483 	switch (val) {
484 	case DIE_BPT:
485 		if (kprobe_handler(args->regs))
486 			ret = NOTIFY_STOP;
487 		break;
488 	case DIE_SSTEP:
489 		if (post_kprobe_handler(args->regs))
490 			ret = NOTIFY_STOP;
491 		break;
492 	default:
493 		break;
494 	}
495 	return ret;
496 }
497 
498 #ifdef CONFIG_PPC64
499 unsigned long arch_deref_entry_point(void *entry)
500 {
501 	return (unsigned long)(((func_descr_t *)entry)->entry);
502 }
503 #endif
504 
505 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
506 {
507 	struct jprobe *jp = container_of(p, struct jprobe, kp);
508 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
509 
510 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
511 
512 	/* setup return addr to the jprobe handler routine */
513 	regs->nip = arch_deref_entry_point(jp->entry);
514 #ifdef CONFIG_PPC64
515 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
516 #endif
517 
518 	return 1;
519 }
520 
521 void __used __kprobes jprobe_return(void)
522 {
523 	asm volatile("trap" ::: "memory");
524 }
525 
526 static void __used __kprobes jprobe_return_end(void)
527 {
528 };
529 
530 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
531 {
532 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
533 
534 	/*
535 	 * FIXME - we should ideally be validating that we got here 'cos
536 	 * of the "trap" in jprobe_return() above, before restoring the
537 	 * saved regs...
538 	 */
539 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
540 	preempt_enable_no_resched();
541 	return 1;
542 }
543 
544 static struct kprobe trampoline_p = {
545 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
546 	.pre_handler = trampoline_probe_handler
547 };
548 
549 int __init arch_init_kprobes(void)
550 {
551 	return register_kprobe(&trampoline_p);
552 }
553 
554 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
555 {
556 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
557 		return 1;
558 
559 	return 0;
560 }
561