1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <linux/kdebug.h> 34 #include <asm/cacheflush.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 42 43 int __kprobes arch_prepare_kprobe(struct kprobe *p) 44 { 45 int ret = 0; 46 kprobe_opcode_t insn = *p->addr; 47 48 if ((unsigned long)p->addr & 0x03) { 49 printk("Attempt to register kprobe at an unaligned address\n"); 50 ret = -EINVAL; 51 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 52 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 53 ret = -EINVAL; 54 } 55 56 /* insn must be on a special executable page on ppc64 */ 57 if (!ret) { 58 p->ainsn.insn = get_insn_slot(); 59 if (!p->ainsn.insn) 60 ret = -ENOMEM; 61 } 62 63 if (!ret) { 64 memcpy(p->ainsn.insn, p->addr, 65 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 66 p->opcode = *p->addr; 67 flush_icache_range((unsigned long)p->ainsn.insn, 68 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 69 } 70 71 p->ainsn.boostable = 0; 72 return ret; 73 } 74 75 void __kprobes arch_arm_kprobe(struct kprobe *p) 76 { 77 *p->addr = BREAKPOINT_INSTRUCTION; 78 flush_icache_range((unsigned long) p->addr, 79 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 80 } 81 82 void __kprobes arch_disarm_kprobe(struct kprobe *p) 83 { 84 *p->addr = p->opcode; 85 flush_icache_range((unsigned long) p->addr, 86 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 87 } 88 89 void __kprobes arch_remove_kprobe(struct kprobe *p) 90 { 91 mutex_lock(&kprobe_mutex); 92 free_insn_slot(p->ainsn.insn, 0); 93 mutex_unlock(&kprobe_mutex); 94 } 95 96 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 97 { 98 regs->msr |= MSR_SE; 99 100 /* 101 * On powerpc we should single step on the original 102 * instruction even if the probed insn is a trap 103 * variant as values in regs could play a part in 104 * if the trap is taken or not 105 */ 106 regs->nip = (unsigned long)p->ainsn.insn; 107 } 108 109 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 110 { 111 kcb->prev_kprobe.kp = kprobe_running(); 112 kcb->prev_kprobe.status = kcb->kprobe_status; 113 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 114 } 115 116 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 117 { 118 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 119 kcb->kprobe_status = kcb->prev_kprobe.status; 120 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 121 } 122 123 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 124 struct kprobe_ctlblk *kcb) 125 { 126 __get_cpu_var(current_kprobe) = p; 127 kcb->kprobe_saved_msr = regs->msr; 128 } 129 130 /* Called with kretprobe_lock held */ 131 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 132 struct pt_regs *regs) 133 { 134 ri->ret_addr = (kprobe_opcode_t *)regs->link; 135 136 /* Replace the return addr with trampoline addr */ 137 regs->link = (unsigned long)kretprobe_trampoline; 138 } 139 140 static int __kprobes kprobe_handler(struct pt_regs *regs) 141 { 142 struct kprobe *p; 143 int ret = 0; 144 unsigned int *addr = (unsigned int *)regs->nip; 145 struct kprobe_ctlblk *kcb; 146 147 /* 148 * We don't want to be preempted for the entire 149 * duration of kprobe processing 150 */ 151 preempt_disable(); 152 kcb = get_kprobe_ctlblk(); 153 154 /* Check we're not actually recursing */ 155 if (kprobe_running()) { 156 p = get_kprobe(addr); 157 if (p) { 158 kprobe_opcode_t insn = *p->ainsn.insn; 159 if (kcb->kprobe_status == KPROBE_HIT_SS && 160 is_trap(insn)) { 161 regs->msr &= ~MSR_SE; 162 regs->msr |= kcb->kprobe_saved_msr; 163 goto no_kprobe; 164 } 165 /* We have reentered the kprobe_handler(), since 166 * another probe was hit while within the handler. 167 * We here save the original kprobes variables and 168 * just single step on the instruction of the new probe 169 * without calling any user handlers. 170 */ 171 save_previous_kprobe(kcb); 172 set_current_kprobe(p, regs, kcb); 173 kcb->kprobe_saved_msr = regs->msr; 174 kprobes_inc_nmissed_count(p); 175 prepare_singlestep(p, regs); 176 kcb->kprobe_status = KPROBE_REENTER; 177 return 1; 178 } else { 179 if (*addr != BREAKPOINT_INSTRUCTION) { 180 /* If trap variant, then it belongs not to us */ 181 kprobe_opcode_t cur_insn = *addr; 182 if (is_trap(cur_insn)) 183 goto no_kprobe; 184 /* The breakpoint instruction was removed by 185 * another cpu right after we hit, no further 186 * handling of this interrupt is appropriate 187 */ 188 ret = 1; 189 goto no_kprobe; 190 } 191 p = __get_cpu_var(current_kprobe); 192 if (p->break_handler && p->break_handler(p, regs)) { 193 goto ss_probe; 194 } 195 } 196 goto no_kprobe; 197 } 198 199 p = get_kprobe(addr); 200 if (!p) { 201 if (*addr != BREAKPOINT_INSTRUCTION) { 202 /* 203 * PowerPC has multiple variants of the "trap" 204 * instruction. If the current instruction is a 205 * trap variant, it could belong to someone else 206 */ 207 kprobe_opcode_t cur_insn = *addr; 208 if (is_trap(cur_insn)) 209 goto no_kprobe; 210 /* 211 * The breakpoint instruction was removed right 212 * after we hit it. Another cpu has removed 213 * either a probepoint or a debugger breakpoint 214 * at this address. In either case, no further 215 * handling of this interrupt is appropriate. 216 */ 217 ret = 1; 218 } 219 /* Not one of ours: let kernel handle it */ 220 goto no_kprobe; 221 } 222 223 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 224 set_current_kprobe(p, regs, kcb); 225 if (p->pre_handler && p->pre_handler(p, regs)) 226 /* handler has already set things up, so skip ss setup */ 227 return 1; 228 229 ss_probe: 230 if (p->ainsn.boostable >= 0) { 231 unsigned int insn = *p->ainsn.insn; 232 233 /* regs->nip is also adjusted if emulate_step returns 1 */ 234 ret = emulate_step(regs, insn); 235 if (ret > 0) { 236 /* 237 * Once this instruction has been boosted 238 * successfully, set the boostable flag 239 */ 240 if (unlikely(p->ainsn.boostable == 0)) 241 p->ainsn.boostable = 1; 242 243 if (p->post_handler) 244 p->post_handler(p, regs, 0); 245 246 kcb->kprobe_status = KPROBE_HIT_SSDONE; 247 reset_current_kprobe(); 248 preempt_enable_no_resched(); 249 return 1; 250 } else if (ret < 0) { 251 /* 252 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 253 * So, we should never get here... but, its still 254 * good to catch them, just in case... 255 */ 256 printk("Can't step on instruction %x\n", insn); 257 BUG(); 258 } else if (ret == 0) 259 /* This instruction can't be boosted */ 260 p->ainsn.boostable = -1; 261 } 262 prepare_singlestep(p, regs); 263 kcb->kprobe_status = KPROBE_HIT_SS; 264 return 1; 265 266 no_kprobe: 267 preempt_enable_no_resched(); 268 return ret; 269 } 270 271 /* 272 * Function return probe trampoline: 273 * - init_kprobes() establishes a probepoint here 274 * - When the probed function returns, this probe 275 * causes the handlers to fire 276 */ 277 static void __used kretprobe_trampoline_holder(void) 278 { 279 asm volatile(".global kretprobe_trampoline\n" 280 "kretprobe_trampoline:\n" 281 "nop\n"); 282 } 283 284 /* 285 * Called when the probe at kretprobe trampoline is hit 286 */ 287 static int __kprobes trampoline_probe_handler(struct kprobe *p, 288 struct pt_regs *regs) 289 { 290 struct kretprobe_instance *ri = NULL; 291 struct hlist_head *head, empty_rp; 292 struct hlist_node *node, *tmp; 293 unsigned long flags, orig_ret_address = 0; 294 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 295 296 INIT_HLIST_HEAD(&empty_rp); 297 spin_lock_irqsave(&kretprobe_lock, flags); 298 head = kretprobe_inst_table_head(current); 299 300 /* 301 * It is possible to have multiple instances associated with a given 302 * task either because an multiple functions in the call path 303 * have a return probe installed on them, and/or more then one return 304 * return probe was registered for a target function. 305 * 306 * We can handle this because: 307 * - instances are always inserted at the head of the list 308 * - when multiple return probes are registered for the same 309 * function, the first instance's ret_addr will point to the 310 * real return address, and all the rest will point to 311 * kretprobe_trampoline 312 */ 313 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 314 if (ri->task != current) 315 /* another task is sharing our hash bucket */ 316 continue; 317 318 if (ri->rp && ri->rp->handler) 319 ri->rp->handler(ri, regs); 320 321 orig_ret_address = (unsigned long)ri->ret_addr; 322 recycle_rp_inst(ri, &empty_rp); 323 324 if (orig_ret_address != trampoline_address) 325 /* 326 * This is the real return address. Any other 327 * instances associated with this task are for 328 * other calls deeper on the call stack 329 */ 330 break; 331 } 332 333 kretprobe_assert(ri, orig_ret_address, trampoline_address); 334 regs->nip = orig_ret_address; 335 336 reset_current_kprobe(); 337 spin_unlock_irqrestore(&kretprobe_lock, flags); 338 preempt_enable_no_resched(); 339 340 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 341 hlist_del(&ri->hlist); 342 kfree(ri); 343 } 344 /* 345 * By returning a non-zero value, we are telling 346 * kprobe_handler() that we don't want the post_handler 347 * to run (and have re-enabled preemption) 348 */ 349 return 1; 350 } 351 352 /* 353 * Called after single-stepping. p->addr is the address of the 354 * instruction whose first byte has been replaced by the "breakpoint" 355 * instruction. To avoid the SMP problems that can occur when we 356 * temporarily put back the original opcode to single-step, we 357 * single-stepped a copy of the instruction. The address of this 358 * copy is p->ainsn.insn. 359 */ 360 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 361 { 362 int ret; 363 unsigned int insn = *p->ainsn.insn; 364 365 regs->nip = (unsigned long)p->addr; 366 ret = emulate_step(regs, insn); 367 if (ret == 0) 368 regs->nip = (unsigned long)p->addr + 4; 369 } 370 371 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 372 { 373 struct kprobe *cur = kprobe_running(); 374 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 375 376 if (!cur) 377 return 0; 378 379 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 380 kcb->kprobe_status = KPROBE_HIT_SSDONE; 381 cur->post_handler(cur, regs, 0); 382 } 383 384 resume_execution(cur, regs); 385 regs->msr |= kcb->kprobe_saved_msr; 386 387 /*Restore back the original saved kprobes variables and continue. */ 388 if (kcb->kprobe_status == KPROBE_REENTER) { 389 restore_previous_kprobe(kcb); 390 goto out; 391 } 392 reset_current_kprobe(); 393 out: 394 preempt_enable_no_resched(); 395 396 /* 397 * if somebody else is singlestepping across a probe point, msr 398 * will have SE set, in which case, continue the remaining processing 399 * of do_debug, as if this is not a probe hit. 400 */ 401 if (regs->msr & MSR_SE) 402 return 0; 403 404 return 1; 405 } 406 407 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 408 { 409 struct kprobe *cur = kprobe_running(); 410 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 411 const struct exception_table_entry *entry; 412 413 switch(kcb->kprobe_status) { 414 case KPROBE_HIT_SS: 415 case KPROBE_REENTER: 416 /* 417 * We are here because the instruction being single 418 * stepped caused a page fault. We reset the current 419 * kprobe and the nip points back to the probe address 420 * and allow the page fault handler to continue as a 421 * normal page fault. 422 */ 423 regs->nip = (unsigned long)cur->addr; 424 regs->msr &= ~MSR_SE; 425 regs->msr |= kcb->kprobe_saved_msr; 426 if (kcb->kprobe_status == KPROBE_REENTER) 427 restore_previous_kprobe(kcb); 428 else 429 reset_current_kprobe(); 430 preempt_enable_no_resched(); 431 break; 432 case KPROBE_HIT_ACTIVE: 433 case KPROBE_HIT_SSDONE: 434 /* 435 * We increment the nmissed count for accounting, 436 * we can also use npre/npostfault count for accouting 437 * these specific fault cases. 438 */ 439 kprobes_inc_nmissed_count(cur); 440 441 /* 442 * We come here because instructions in the pre/post 443 * handler caused the page_fault, this could happen 444 * if handler tries to access user space by 445 * copy_from_user(), get_user() etc. Let the 446 * user-specified handler try to fix it first. 447 */ 448 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 449 return 1; 450 451 /* 452 * In case the user-specified fault handler returned 453 * zero, try to fix up. 454 */ 455 if ((entry = search_exception_tables(regs->nip)) != NULL) { 456 regs->nip = entry->fixup; 457 return 1; 458 } 459 460 /* 461 * fixup_exception() could not handle it, 462 * Let do_page_fault() fix it. 463 */ 464 break; 465 default: 466 break; 467 } 468 return 0; 469 } 470 471 /* 472 * Wrapper routine to for handling exceptions. 473 */ 474 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 475 unsigned long val, void *data) 476 { 477 struct die_args *args = (struct die_args *)data; 478 int ret = NOTIFY_DONE; 479 480 if (args->regs && user_mode(args->regs)) 481 return ret; 482 483 switch (val) { 484 case DIE_BPT: 485 if (kprobe_handler(args->regs)) 486 ret = NOTIFY_STOP; 487 break; 488 case DIE_SSTEP: 489 if (post_kprobe_handler(args->regs)) 490 ret = NOTIFY_STOP; 491 break; 492 default: 493 break; 494 } 495 return ret; 496 } 497 498 #ifdef CONFIG_PPC64 499 unsigned long arch_deref_entry_point(void *entry) 500 { 501 return (unsigned long)(((func_descr_t *)entry)->entry); 502 } 503 #endif 504 505 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 506 { 507 struct jprobe *jp = container_of(p, struct jprobe, kp); 508 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 509 510 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 511 512 /* setup return addr to the jprobe handler routine */ 513 regs->nip = arch_deref_entry_point(jp->entry); 514 #ifdef CONFIG_PPC64 515 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 516 #endif 517 518 return 1; 519 } 520 521 void __used __kprobes jprobe_return(void) 522 { 523 asm volatile("trap" ::: "memory"); 524 } 525 526 static void __used __kprobes jprobe_return_end(void) 527 { 528 }; 529 530 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 531 { 532 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 533 534 /* 535 * FIXME - we should ideally be validating that we got here 'cos 536 * of the "trap" in jprobe_return() above, before restoring the 537 * saved regs... 538 */ 539 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 540 preempt_enable_no_resched(); 541 return 1; 542 } 543 544 static struct kprobe trampoline_p = { 545 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 546 .pre_handler = trampoline_probe_handler 547 }; 548 549 int __init arch_init_kprobes(void) 550 { 551 return register_kprobe(&trampoline_p); 552 } 553 554 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 555 { 556 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 557 return 1; 558 559 return 0; 560 } 561