xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision ec5263f4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *		for PPC64
14  */
15 
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <linux/moduleloader.h>
23 #include <asm/code-patching.h>
24 #include <asm/cacheflush.h>
25 #include <asm/sstep.h>
26 #include <asm/sections.h>
27 #include <asm/inst.h>
28 #include <asm/set_memory.h>
29 #include <linux/uaccess.h>
30 
31 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
32 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
33 
34 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
35 
36 bool arch_within_kprobe_blacklist(unsigned long addr)
37 {
38 	return  (addr >= (unsigned long)__kprobes_text_start &&
39 		 addr < (unsigned long)__kprobes_text_end) ||
40 		(addr >= (unsigned long)_stext &&
41 		 addr < (unsigned long)__head_end);
42 }
43 
44 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
45 {
46 	kprobe_opcode_t *addr = NULL;
47 
48 #ifdef CONFIG_PPC64_ELF_ABI_V2
49 	/* PPC64 ABIv2 needs local entry point */
50 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
51 	if (addr && !offset) {
52 #ifdef CONFIG_KPROBES_ON_FTRACE
53 		unsigned long faddr;
54 		/*
55 		 * Per livepatch.h, ftrace location is always within the first
56 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
57 		 */
58 		faddr = ftrace_location_range((unsigned long)addr,
59 					      (unsigned long)addr + 16);
60 		if (faddr)
61 			addr = (kprobe_opcode_t *)faddr;
62 		else
63 #endif
64 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
65 	}
66 #elif defined(CONFIG_PPC64_ELF_ABI_V1)
67 	/*
68 	 * 64bit powerpc ABIv1 uses function descriptors:
69 	 * - Check for the dot variant of the symbol first.
70 	 * - If that fails, try looking up the symbol provided.
71 	 *
72 	 * This ensures we always get to the actual symbol and not
73 	 * the descriptor.
74 	 *
75 	 * Also handle <module:symbol> format.
76 	 */
77 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
78 	bool dot_appended = false;
79 	const char *c;
80 	ssize_t ret = 0;
81 	int len = 0;
82 
83 	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
84 		c++;
85 		len = c - name;
86 		memcpy(dot_name, name, len);
87 	} else
88 		c = name;
89 
90 	if (*c != '\0' && *c != '.') {
91 		dot_name[len++] = '.';
92 		dot_appended = true;
93 	}
94 	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
95 	if (ret > 0)
96 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
97 
98 	/* Fallback to the original non-dot symbol lookup */
99 	if (!addr && dot_appended)
100 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101 #else
102 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103 #endif
104 
105 	return addr;
106 }
107 
108 static bool arch_kprobe_on_func_entry(unsigned long offset)
109 {
110 #ifdef CONFIG_PPC64_ELF_ABI_V2
111 #ifdef CONFIG_KPROBES_ON_FTRACE
112 	return offset <= 16;
113 #else
114 	return offset <= 8;
115 #endif
116 #else
117 	return !offset;
118 #endif
119 }
120 
121 /* XXX try and fold the magic of kprobe_lookup_name() in this */
122 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
123 					 bool *on_func_entry)
124 {
125 	*on_func_entry = arch_kprobe_on_func_entry(offset);
126 	return (kprobe_opcode_t *)(addr + offset);
127 }
128 
129 void *alloc_insn_page(void)
130 {
131 	void *page;
132 
133 	page = module_alloc(PAGE_SIZE);
134 	if (!page)
135 		return NULL;
136 
137 	if (strict_module_rwx_enabled()) {
138 		set_memory_ro((unsigned long)page, 1);
139 		set_memory_x((unsigned long)page, 1);
140 	}
141 	return page;
142 }
143 
144 int arch_prepare_kprobe(struct kprobe *p)
145 {
146 	int ret = 0;
147 	struct kprobe *prev;
148 	ppc_inst_t insn = ppc_inst_read(p->addr);
149 
150 	if ((unsigned long)p->addr & 0x03) {
151 		printk("Attempt to register kprobe at an unaligned address\n");
152 		ret = -EINVAL;
153 	} else if (!can_single_step(ppc_inst_val(insn))) {
154 		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
155 		ret = -EINVAL;
156 	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
157 		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
158 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
159 		ret = -EINVAL;
160 	}
161 	preempt_disable();
162 	prev = get_kprobe(p->addr - 1);
163 	preempt_enable_no_resched();
164 	if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
165 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
166 		ret = -EINVAL;
167 	}
168 
169 	/* insn must be on a special executable page on ppc64.  This is
170 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
171 	if (!ret) {
172 		p->ainsn.insn = get_insn_slot();
173 		if (!p->ainsn.insn)
174 			ret = -ENOMEM;
175 	}
176 
177 	if (!ret) {
178 		patch_instruction(p->ainsn.insn, insn);
179 		p->opcode = ppc_inst_val(insn);
180 	}
181 
182 	p->ainsn.boostable = 0;
183 	return ret;
184 }
185 NOKPROBE_SYMBOL(arch_prepare_kprobe);
186 
187 void arch_arm_kprobe(struct kprobe *p)
188 {
189 	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
190 }
191 NOKPROBE_SYMBOL(arch_arm_kprobe);
192 
193 void arch_disarm_kprobe(struct kprobe *p)
194 {
195 	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
196 }
197 NOKPROBE_SYMBOL(arch_disarm_kprobe);
198 
199 void arch_remove_kprobe(struct kprobe *p)
200 {
201 	if (p->ainsn.insn) {
202 		free_insn_slot(p->ainsn.insn, 0);
203 		p->ainsn.insn = NULL;
204 	}
205 }
206 NOKPROBE_SYMBOL(arch_remove_kprobe);
207 
208 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
209 {
210 	enable_single_step(regs);
211 
212 	/*
213 	 * On powerpc we should single step on the original
214 	 * instruction even if the probed insn is a trap
215 	 * variant as values in regs could play a part in
216 	 * if the trap is taken or not
217 	 */
218 	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
219 }
220 
221 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
222 {
223 	kcb->prev_kprobe.kp = kprobe_running();
224 	kcb->prev_kprobe.status = kcb->kprobe_status;
225 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
226 }
227 
228 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
229 {
230 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
231 	kcb->kprobe_status = kcb->prev_kprobe.status;
232 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
233 }
234 
235 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
236 				struct kprobe_ctlblk *kcb)
237 {
238 	__this_cpu_write(current_kprobe, p);
239 	kcb->kprobe_saved_msr = regs->msr;
240 }
241 
242 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
243 {
244 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
245 	ri->fp = NULL;
246 
247 	/* Replace the return addr with trampoline addr */
248 	regs->link = (unsigned long)__kretprobe_trampoline;
249 }
250 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
251 
252 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
253 {
254 	int ret;
255 	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
256 
257 	/* regs->nip is also adjusted if emulate_step returns 1 */
258 	ret = emulate_step(regs, insn);
259 	if (ret > 0) {
260 		/*
261 		 * Once this instruction has been boosted
262 		 * successfully, set the boostable flag
263 		 */
264 		if (unlikely(p->ainsn.boostable == 0))
265 			p->ainsn.boostable = 1;
266 	} else if (ret < 0) {
267 		/*
268 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
269 		 * So, we should never get here... but, its still
270 		 * good to catch them, just in case...
271 		 */
272 		printk("Can't step on instruction %s\n", ppc_inst_as_str(insn));
273 		BUG();
274 	} else {
275 		/*
276 		 * If we haven't previously emulated this instruction, then it
277 		 * can't be boosted. Note it down so we don't try to do so again.
278 		 *
279 		 * If, however, we had emulated this instruction in the past,
280 		 * then this is just an error with the current run (for
281 		 * instance, exceptions due to a load/store). We return 0 so
282 		 * that this is now single-stepped, but continue to try
283 		 * emulating it in subsequent probe hits.
284 		 */
285 		if (unlikely(p->ainsn.boostable != 1))
286 			p->ainsn.boostable = -1;
287 	}
288 
289 	return ret;
290 }
291 NOKPROBE_SYMBOL(try_to_emulate);
292 
293 int kprobe_handler(struct pt_regs *regs)
294 {
295 	struct kprobe *p;
296 	int ret = 0;
297 	unsigned int *addr = (unsigned int *)regs->nip;
298 	struct kprobe_ctlblk *kcb;
299 
300 	if (user_mode(regs))
301 		return 0;
302 
303 	if (!IS_ENABLED(CONFIG_BOOKE) &&
304 	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
305 		return 0;
306 
307 	/*
308 	 * We don't want to be preempted for the entire
309 	 * duration of kprobe processing
310 	 */
311 	preempt_disable();
312 	kcb = get_kprobe_ctlblk();
313 
314 	p = get_kprobe(addr);
315 	if (!p) {
316 		unsigned int instr;
317 
318 		if (get_kernel_nofault(instr, addr))
319 			goto no_kprobe;
320 
321 		if (instr != BREAKPOINT_INSTRUCTION) {
322 			/*
323 			 * PowerPC has multiple variants of the "trap"
324 			 * instruction. If the current instruction is a
325 			 * trap variant, it could belong to someone else
326 			 */
327 			if (is_trap(instr))
328 				goto no_kprobe;
329 			/*
330 			 * The breakpoint instruction was removed right
331 			 * after we hit it.  Another cpu has removed
332 			 * either a probepoint or a debugger breakpoint
333 			 * at this address.  In either case, no further
334 			 * handling of this interrupt is appropriate.
335 			 */
336 			ret = 1;
337 		}
338 		/* Not one of ours: let kernel handle it */
339 		goto no_kprobe;
340 	}
341 
342 	/* Check we're not actually recursing */
343 	if (kprobe_running()) {
344 		kprobe_opcode_t insn = *p->ainsn.insn;
345 		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
346 			/* Turn off 'trace' bits */
347 			regs_set_return_msr(regs,
348 				(regs->msr & ~MSR_SINGLESTEP) |
349 				kcb->kprobe_saved_msr);
350 			goto no_kprobe;
351 		}
352 
353 		/*
354 		 * We have reentered the kprobe_handler(), since another probe
355 		 * was hit while within the handler. We here save the original
356 		 * kprobes variables and just single step on the instruction of
357 		 * the new probe without calling any user handlers.
358 		 */
359 		save_previous_kprobe(kcb);
360 		set_current_kprobe(p, regs, kcb);
361 		kprobes_inc_nmissed_count(p);
362 		kcb->kprobe_status = KPROBE_REENTER;
363 		if (p->ainsn.boostable >= 0) {
364 			ret = try_to_emulate(p, regs);
365 
366 			if (ret > 0) {
367 				restore_previous_kprobe(kcb);
368 				preempt_enable_no_resched();
369 				return 1;
370 			}
371 		}
372 		prepare_singlestep(p, regs);
373 		return 1;
374 	}
375 
376 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
377 	set_current_kprobe(p, regs, kcb);
378 	if (p->pre_handler && p->pre_handler(p, regs)) {
379 		/* handler changed execution path, so skip ss setup */
380 		reset_current_kprobe();
381 		preempt_enable_no_resched();
382 		return 1;
383 	}
384 
385 	if (p->ainsn.boostable >= 0) {
386 		ret = try_to_emulate(p, regs);
387 
388 		if (ret > 0) {
389 			if (p->post_handler)
390 				p->post_handler(p, regs, 0);
391 
392 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
393 			reset_current_kprobe();
394 			preempt_enable_no_resched();
395 			return 1;
396 		}
397 	}
398 	prepare_singlestep(p, regs);
399 	kcb->kprobe_status = KPROBE_HIT_SS;
400 	return 1;
401 
402 no_kprobe:
403 	preempt_enable_no_resched();
404 	return ret;
405 }
406 NOKPROBE_SYMBOL(kprobe_handler);
407 
408 /*
409  * Function return probe trampoline:
410  * 	- init_kprobes() establishes a probepoint here
411  * 	- When the probed function returns, this probe
412  * 		causes the handlers to fire
413  */
414 asm(".global __kretprobe_trampoline\n"
415 	".type __kretprobe_trampoline, @function\n"
416 	"__kretprobe_trampoline:\n"
417 	"nop\n"
418 	"blr\n"
419 	".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
420 
421 /*
422  * Called when the probe at kretprobe trampoline is hit
423  */
424 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
425 {
426 	unsigned long orig_ret_address;
427 
428 	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
429 	/*
430 	 * We get here through one of two paths:
431 	 * 1. by taking a trap -> kprobe_handler() -> here
432 	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
433 	 *
434 	 * When going back through (1), we need regs->nip to be setup properly
435 	 * as it is used to determine the return address from the trap.
436 	 * For (2), since nip is not honoured with optprobes, we instead setup
437 	 * the link register properly so that the subsequent 'blr' in
438 	 * __kretprobe_trampoline jumps back to the right instruction.
439 	 *
440 	 * For nip, we should set the address to the previous instruction since
441 	 * we end up emulating it in kprobe_handler(), which increments the nip
442 	 * again.
443 	 */
444 	regs_set_return_ip(regs, orig_ret_address - 4);
445 	regs->link = orig_ret_address;
446 
447 	return 0;
448 }
449 NOKPROBE_SYMBOL(trampoline_probe_handler);
450 
451 /*
452  * Called after single-stepping.  p->addr is the address of the
453  * instruction whose first byte has been replaced by the "breakpoint"
454  * instruction.  To avoid the SMP problems that can occur when we
455  * temporarily put back the original opcode to single-step, we
456  * single-stepped a copy of the instruction.  The address of this
457  * copy is p->ainsn.insn.
458  */
459 int kprobe_post_handler(struct pt_regs *regs)
460 {
461 	int len;
462 	struct kprobe *cur = kprobe_running();
463 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464 
465 	if (!cur || user_mode(regs))
466 		return 0;
467 
468 	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
469 	/* make sure we got here for instruction we have a kprobe on */
470 	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
471 		return 0;
472 
473 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
474 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
475 		cur->post_handler(cur, regs, 0);
476 	}
477 
478 	/* Adjust nip to after the single-stepped instruction */
479 	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
480 	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
481 
482 	/*Restore back the original saved kprobes variables and continue. */
483 	if (kcb->kprobe_status == KPROBE_REENTER) {
484 		restore_previous_kprobe(kcb);
485 		goto out;
486 	}
487 	reset_current_kprobe();
488 out:
489 	preempt_enable_no_resched();
490 
491 	/*
492 	 * if somebody else is singlestepping across a probe point, msr
493 	 * will have DE/SE set, in which case, continue the remaining processing
494 	 * of do_debug, as if this is not a probe hit.
495 	 */
496 	if (regs->msr & MSR_SINGLESTEP)
497 		return 0;
498 
499 	return 1;
500 }
501 NOKPROBE_SYMBOL(kprobe_post_handler);
502 
503 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
504 {
505 	struct kprobe *cur = kprobe_running();
506 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507 	const struct exception_table_entry *entry;
508 
509 	switch(kcb->kprobe_status) {
510 	case KPROBE_HIT_SS:
511 	case KPROBE_REENTER:
512 		/*
513 		 * We are here because the instruction being single
514 		 * stepped caused a page fault. We reset the current
515 		 * kprobe and the nip points back to the probe address
516 		 * and allow the page fault handler to continue as a
517 		 * normal page fault.
518 		 */
519 		regs_set_return_ip(regs, (unsigned long)cur->addr);
520 		/* Turn off 'trace' bits */
521 		regs_set_return_msr(regs,
522 			(regs->msr & ~MSR_SINGLESTEP) |
523 			kcb->kprobe_saved_msr);
524 		if (kcb->kprobe_status == KPROBE_REENTER)
525 			restore_previous_kprobe(kcb);
526 		else
527 			reset_current_kprobe();
528 		preempt_enable_no_resched();
529 		break;
530 	case KPROBE_HIT_ACTIVE:
531 	case KPROBE_HIT_SSDONE:
532 		/*
533 		 * In case the user-specified fault handler returned
534 		 * zero, try to fix up.
535 		 */
536 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
537 			regs_set_return_ip(regs, extable_fixup(entry));
538 			return 1;
539 		}
540 
541 		/*
542 		 * fixup_exception() could not handle it,
543 		 * Let do_page_fault() fix it.
544 		 */
545 		break;
546 	default:
547 		break;
548 	}
549 	return 0;
550 }
551 NOKPROBE_SYMBOL(kprobe_fault_handler);
552 
553 static struct kprobe trampoline_p = {
554 	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
555 	.pre_handler = trampoline_probe_handler
556 };
557 
558 int __init arch_init_kprobes(void)
559 {
560 	return register_kprobe(&trampoline_p);
561 }
562 
563 int arch_trampoline_kprobe(struct kprobe *p)
564 {
565 	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
566 		return 1;
567 
568 	return 0;
569 }
570 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
571