xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision e5c86679)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <linux/uaccess.h>
39 
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42 
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44 
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
46 {
47 	int ret = 0;
48 	kprobe_opcode_t insn = *p->addr;
49 
50 	if ((unsigned long)p->addr & 0x03) {
51 		printk("Attempt to register kprobe at an unaligned address\n");
52 		ret = -EINVAL;
53 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
54 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
55 		ret = -EINVAL;
56 	}
57 
58 	/* insn must be on a special executable page on ppc64.  This is
59 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
60 	if (!ret) {
61 		p->ainsn.insn = get_insn_slot();
62 		if (!p->ainsn.insn)
63 			ret = -ENOMEM;
64 	}
65 
66 	if (!ret) {
67 		memcpy(p->ainsn.insn, p->addr,
68 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
69 		p->opcode = *p->addr;
70 		flush_icache_range((unsigned long)p->ainsn.insn,
71 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
72 	}
73 
74 	p->ainsn.boostable = 0;
75 	return ret;
76 }
77 
78 void __kprobes arch_arm_kprobe(struct kprobe *p)
79 {
80 	*p->addr = BREAKPOINT_INSTRUCTION;
81 	flush_icache_range((unsigned long) p->addr,
82 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
83 }
84 
85 void __kprobes arch_disarm_kprobe(struct kprobe *p)
86 {
87 	*p->addr = p->opcode;
88 	flush_icache_range((unsigned long) p->addr,
89 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
90 }
91 
92 void __kprobes arch_remove_kprobe(struct kprobe *p)
93 {
94 	if (p->ainsn.insn) {
95 		free_insn_slot(p->ainsn.insn, 0);
96 		p->ainsn.insn = NULL;
97 	}
98 }
99 
100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
101 {
102 	enable_single_step(regs);
103 
104 	/*
105 	 * On powerpc we should single step on the original
106 	 * instruction even if the probed insn is a trap
107 	 * variant as values in regs could play a part in
108 	 * if the trap is taken or not
109 	 */
110 	regs->nip = (unsigned long)p->ainsn.insn;
111 }
112 
113 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
114 {
115 	kcb->prev_kprobe.kp = kprobe_running();
116 	kcb->prev_kprobe.status = kcb->kprobe_status;
117 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
118 }
119 
120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
121 {
122 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123 	kcb->kprobe_status = kcb->prev_kprobe.status;
124 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
125 }
126 
127 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128 				struct kprobe_ctlblk *kcb)
129 {
130 	__this_cpu_write(current_kprobe, p);
131 	kcb->kprobe_saved_msr = regs->msr;
132 }
133 
134 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135 				      struct pt_regs *regs)
136 {
137 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
138 
139 	/* Replace the return addr with trampoline addr */
140 	regs->link = (unsigned long)kretprobe_trampoline;
141 }
142 
143 int __kprobes kprobe_handler(struct pt_regs *regs)
144 {
145 	struct kprobe *p;
146 	int ret = 0;
147 	unsigned int *addr = (unsigned int *)regs->nip;
148 	struct kprobe_ctlblk *kcb;
149 
150 	if (user_mode(regs))
151 		return 0;
152 
153 	/*
154 	 * We don't want to be preempted for the entire
155 	 * duration of kprobe processing
156 	 */
157 	preempt_disable();
158 	kcb = get_kprobe_ctlblk();
159 
160 	/* Check we're not actually recursing */
161 	if (kprobe_running()) {
162 		p = get_kprobe(addr);
163 		if (p) {
164 			kprobe_opcode_t insn = *p->ainsn.insn;
165 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
166 					is_trap(insn)) {
167 				/* Turn off 'trace' bits */
168 				regs->msr &= ~MSR_SINGLESTEP;
169 				regs->msr |= kcb->kprobe_saved_msr;
170 				goto no_kprobe;
171 			}
172 			/* We have reentered the kprobe_handler(), since
173 			 * another probe was hit while within the handler.
174 			 * We here save the original kprobes variables and
175 			 * just single step on the instruction of the new probe
176 			 * without calling any user handlers.
177 			 */
178 			save_previous_kprobe(kcb);
179 			set_current_kprobe(p, regs, kcb);
180 			kcb->kprobe_saved_msr = regs->msr;
181 			kprobes_inc_nmissed_count(p);
182 			prepare_singlestep(p, regs);
183 			kcb->kprobe_status = KPROBE_REENTER;
184 			return 1;
185 		} else {
186 			if (*addr != BREAKPOINT_INSTRUCTION) {
187 				/* If trap variant, then it belongs not to us */
188 				kprobe_opcode_t cur_insn = *addr;
189 				if (is_trap(cur_insn))
190 		       			goto no_kprobe;
191 				/* The breakpoint instruction was removed by
192 				 * another cpu right after we hit, no further
193 				 * handling of this interrupt is appropriate
194 				 */
195 				ret = 1;
196 				goto no_kprobe;
197 			}
198 			p = __this_cpu_read(current_kprobe);
199 			if (p->break_handler && p->break_handler(p, regs)) {
200 				goto ss_probe;
201 			}
202 		}
203 		goto no_kprobe;
204 	}
205 
206 	p = get_kprobe(addr);
207 	if (!p) {
208 		if (*addr != BREAKPOINT_INSTRUCTION) {
209 			/*
210 			 * PowerPC has multiple variants of the "trap"
211 			 * instruction. If the current instruction is a
212 			 * trap variant, it could belong to someone else
213 			 */
214 			kprobe_opcode_t cur_insn = *addr;
215 			if (is_trap(cur_insn))
216 		       		goto no_kprobe;
217 			/*
218 			 * The breakpoint instruction was removed right
219 			 * after we hit it.  Another cpu has removed
220 			 * either a probepoint or a debugger breakpoint
221 			 * at this address.  In either case, no further
222 			 * handling of this interrupt is appropriate.
223 			 */
224 			ret = 1;
225 		}
226 		/* Not one of ours: let kernel handle it */
227 		goto no_kprobe;
228 	}
229 
230 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
231 	set_current_kprobe(p, regs, kcb);
232 	if (p->pre_handler && p->pre_handler(p, regs))
233 		/* handler has already set things up, so skip ss setup */
234 		return 1;
235 
236 ss_probe:
237 	if (p->ainsn.boostable >= 0) {
238 		unsigned int insn = *p->ainsn.insn;
239 
240 		/* regs->nip is also adjusted if emulate_step returns 1 */
241 		ret = emulate_step(regs, insn);
242 		if (ret > 0) {
243 			/*
244 			 * Once this instruction has been boosted
245 			 * successfully, set the boostable flag
246 			 */
247 			if (unlikely(p->ainsn.boostable == 0))
248 				p->ainsn.boostable = 1;
249 
250 			if (p->post_handler)
251 				p->post_handler(p, regs, 0);
252 
253 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
254 			reset_current_kprobe();
255 			preempt_enable_no_resched();
256 			return 1;
257 		} else if (ret < 0) {
258 			/*
259 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
260 			 * So, we should never get here... but, its still
261 			 * good to catch them, just in case...
262 			 */
263 			printk("Can't step on instruction %x\n", insn);
264 			BUG();
265 		} else if (ret == 0)
266 			/* This instruction can't be boosted */
267 			p->ainsn.boostable = -1;
268 	}
269 	prepare_singlestep(p, regs);
270 	kcb->kprobe_status = KPROBE_HIT_SS;
271 	return 1;
272 
273 no_kprobe:
274 	preempt_enable_no_resched();
275 	return ret;
276 }
277 
278 /*
279  * Function return probe trampoline:
280  * 	- init_kprobes() establishes a probepoint here
281  * 	- When the probed function returns, this probe
282  * 		causes the handlers to fire
283  */
284 asm(".global kretprobe_trampoline\n"
285 	".type kretprobe_trampoline, @function\n"
286 	"kretprobe_trampoline:\n"
287 	"nop\n"
288 	"blr\n"
289 	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
290 
291 /*
292  * Called when the probe at kretprobe trampoline is hit
293  */
294 static int __kprobes trampoline_probe_handler(struct kprobe *p,
295 						struct pt_regs *regs)
296 {
297 	struct kretprobe_instance *ri = NULL;
298 	struct hlist_head *head, empty_rp;
299 	struct hlist_node *tmp;
300 	unsigned long flags, orig_ret_address = 0;
301 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
302 
303 	INIT_HLIST_HEAD(&empty_rp);
304 	kretprobe_hash_lock(current, &head, &flags);
305 
306 	/*
307 	 * It is possible to have multiple instances associated with a given
308 	 * task either because an multiple functions in the call path
309 	 * have a return probe installed on them, and/or more than one return
310 	 * return probe was registered for a target function.
311 	 *
312 	 * We can handle this because:
313 	 *     - instances are always inserted at the head of the list
314 	 *     - when multiple return probes are registered for the same
315 	 *       function, the first instance's ret_addr will point to the
316 	 *       real return address, and all the rest will point to
317 	 *       kretprobe_trampoline
318 	 */
319 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
320 		if (ri->task != current)
321 			/* another task is sharing our hash bucket */
322 			continue;
323 
324 		if (ri->rp && ri->rp->handler)
325 			ri->rp->handler(ri, regs);
326 
327 		orig_ret_address = (unsigned long)ri->ret_addr;
328 		recycle_rp_inst(ri, &empty_rp);
329 
330 		if (orig_ret_address != trampoline_address)
331 			/*
332 			 * This is the real return address. Any other
333 			 * instances associated with this task are for
334 			 * other calls deeper on the call stack
335 			 */
336 			break;
337 	}
338 
339 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
340 	regs->nip = orig_ret_address;
341 	/*
342 	 * Make LR point to the orig_ret_address.
343 	 * When the 'nop' inside the kretprobe_trampoline
344 	 * is optimized, we can do a 'blr' after executing the
345 	 * detour buffer code.
346 	 */
347 	regs->link = orig_ret_address;
348 
349 	reset_current_kprobe();
350 	kretprobe_hash_unlock(current, &flags);
351 	preempt_enable_no_resched();
352 
353 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
354 		hlist_del(&ri->hlist);
355 		kfree(ri);
356 	}
357 	/*
358 	 * By returning a non-zero value, we are telling
359 	 * kprobe_handler() that we don't want the post_handler
360 	 * to run (and have re-enabled preemption)
361 	 */
362 	return 1;
363 }
364 
365 /*
366  * Called after single-stepping.  p->addr is the address of the
367  * instruction whose first byte has been replaced by the "breakpoint"
368  * instruction.  To avoid the SMP problems that can occur when we
369  * temporarily put back the original opcode to single-step, we
370  * single-stepped a copy of the instruction.  The address of this
371  * copy is p->ainsn.insn.
372  */
373 int __kprobes kprobe_post_handler(struct pt_regs *regs)
374 {
375 	struct kprobe *cur = kprobe_running();
376 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 
378 	if (!cur || user_mode(regs))
379 		return 0;
380 
381 	/* make sure we got here for instruction we have a kprobe on */
382 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
383 		return 0;
384 
385 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
386 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
387 		cur->post_handler(cur, regs, 0);
388 	}
389 
390 	/* Adjust nip to after the single-stepped instruction */
391 	regs->nip = (unsigned long)cur->addr + 4;
392 	regs->msr |= kcb->kprobe_saved_msr;
393 
394 	/*Restore back the original saved kprobes variables and continue. */
395 	if (kcb->kprobe_status == KPROBE_REENTER) {
396 		restore_previous_kprobe(kcb);
397 		goto out;
398 	}
399 	reset_current_kprobe();
400 out:
401 	preempt_enable_no_resched();
402 
403 	/*
404 	 * if somebody else is singlestepping across a probe point, msr
405 	 * will have DE/SE set, in which case, continue the remaining processing
406 	 * of do_debug, as if this is not a probe hit.
407 	 */
408 	if (regs->msr & MSR_SINGLESTEP)
409 		return 0;
410 
411 	return 1;
412 }
413 
414 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
415 {
416 	struct kprobe *cur = kprobe_running();
417 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
418 	const struct exception_table_entry *entry;
419 
420 	switch(kcb->kprobe_status) {
421 	case KPROBE_HIT_SS:
422 	case KPROBE_REENTER:
423 		/*
424 		 * We are here because the instruction being single
425 		 * stepped caused a page fault. We reset the current
426 		 * kprobe and the nip points back to the probe address
427 		 * and allow the page fault handler to continue as a
428 		 * normal page fault.
429 		 */
430 		regs->nip = (unsigned long)cur->addr;
431 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
432 		regs->msr |= kcb->kprobe_saved_msr;
433 		if (kcb->kprobe_status == KPROBE_REENTER)
434 			restore_previous_kprobe(kcb);
435 		else
436 			reset_current_kprobe();
437 		preempt_enable_no_resched();
438 		break;
439 	case KPROBE_HIT_ACTIVE:
440 	case KPROBE_HIT_SSDONE:
441 		/*
442 		 * We increment the nmissed count for accounting,
443 		 * we can also use npre/npostfault count for accounting
444 		 * these specific fault cases.
445 		 */
446 		kprobes_inc_nmissed_count(cur);
447 
448 		/*
449 		 * We come here because instructions in the pre/post
450 		 * handler caused the page_fault, this could happen
451 		 * if handler tries to access user space by
452 		 * copy_from_user(), get_user() etc. Let the
453 		 * user-specified handler try to fix it first.
454 		 */
455 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
456 			return 1;
457 
458 		/*
459 		 * In case the user-specified fault handler returned
460 		 * zero, try to fix up.
461 		 */
462 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
463 			regs->nip = extable_fixup(entry);
464 			return 1;
465 		}
466 
467 		/*
468 		 * fixup_exception() could not handle it,
469 		 * Let do_page_fault() fix it.
470 		 */
471 		break;
472 	default:
473 		break;
474 	}
475 	return 0;
476 }
477 
478 unsigned long arch_deref_entry_point(void *entry)
479 {
480 	return ppc_global_function_entry(entry);
481 }
482 
483 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
484 {
485 	struct jprobe *jp = container_of(p, struct jprobe, kp);
486 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
487 
488 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
489 
490 	/* setup return addr to the jprobe handler routine */
491 	regs->nip = arch_deref_entry_point(jp->entry);
492 #ifdef PPC64_ELF_ABI_v2
493 	regs->gpr[12] = (unsigned long)jp->entry;
494 #elif defined(PPC64_ELF_ABI_v1)
495 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
496 #endif
497 
498 	return 1;
499 }
500 
501 void __used __kprobes jprobe_return(void)
502 {
503 	asm volatile("trap" ::: "memory");
504 }
505 
506 static void __used __kprobes jprobe_return_end(void)
507 {
508 };
509 
510 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
511 {
512 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
513 
514 	/*
515 	 * FIXME - we should ideally be validating that we got here 'cos
516 	 * of the "trap" in jprobe_return() above, before restoring the
517 	 * saved regs...
518 	 */
519 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
520 	preempt_enable_no_resched();
521 	return 1;
522 }
523 
524 static struct kprobe trampoline_p = {
525 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
526 	.pre_handler = trampoline_probe_handler
527 };
528 
529 int __init arch_init_kprobes(void)
530 {
531 	return register_kprobe(&trampoline_p);
532 }
533 
534 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
535 {
536 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
537 		return 1;
538 
539 	return 0;
540 }
541