xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision 7fe2f639)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/cacheflush.h>
36 #include <asm/sstep.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 
40 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
41 #define MSR_SINGLESTEP	(MSR_DE)
42 #else
43 #define MSR_SINGLESTEP	(MSR_SE)
44 #endif
45 
46 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
47 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
48 
49 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
50 
51 int __kprobes arch_prepare_kprobe(struct kprobe *p)
52 {
53 	int ret = 0;
54 	kprobe_opcode_t insn = *p->addr;
55 
56 	if ((unsigned long)p->addr & 0x03) {
57 		printk("Attempt to register kprobe at an unaligned address\n");
58 		ret = -EINVAL;
59 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
60 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
61 		ret = -EINVAL;
62 	}
63 
64 	/* insn must be on a special executable page on ppc64.  This is
65 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
66 	if (!ret) {
67 		p->ainsn.insn = get_insn_slot();
68 		if (!p->ainsn.insn)
69 			ret = -ENOMEM;
70 	}
71 
72 	if (!ret) {
73 		memcpy(p->ainsn.insn, p->addr,
74 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
75 		p->opcode = *p->addr;
76 		flush_icache_range((unsigned long)p->ainsn.insn,
77 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
78 	}
79 
80 	p->ainsn.boostable = 0;
81 	return ret;
82 }
83 
84 void __kprobes arch_arm_kprobe(struct kprobe *p)
85 {
86 	*p->addr = BREAKPOINT_INSTRUCTION;
87 	flush_icache_range((unsigned long) p->addr,
88 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
89 }
90 
91 void __kprobes arch_disarm_kprobe(struct kprobe *p)
92 {
93 	*p->addr = p->opcode;
94 	flush_icache_range((unsigned long) p->addr,
95 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
96 }
97 
98 void __kprobes arch_remove_kprobe(struct kprobe *p)
99 {
100 	if (p->ainsn.insn) {
101 		free_insn_slot(p->ainsn.insn, 0);
102 		p->ainsn.insn = NULL;
103 	}
104 }
105 
106 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
107 {
108 	/* We turn off async exceptions to ensure that the single step will
109 	 * be for the instruction we have the kprobe on, if we dont its
110 	 * possible we'd get the single step reported for an exception handler
111 	 * like Decrementer or External Interrupt */
112 	regs->msr &= ~MSR_EE;
113 	regs->msr |= MSR_SINGLESTEP;
114 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
115 	regs->msr &= ~MSR_CE;
116 	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
117 #ifdef CONFIG_PPC_47x
118 	isync();
119 #endif
120 #endif
121 
122 	/*
123 	 * On powerpc we should single step on the original
124 	 * instruction even if the probed insn is a trap
125 	 * variant as values in regs could play a part in
126 	 * if the trap is taken or not
127 	 */
128 	regs->nip = (unsigned long)p->ainsn.insn;
129 }
130 
131 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
132 {
133 	kcb->prev_kprobe.kp = kprobe_running();
134 	kcb->prev_kprobe.status = kcb->kprobe_status;
135 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
136 }
137 
138 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
139 {
140 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
141 	kcb->kprobe_status = kcb->prev_kprobe.status;
142 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
143 }
144 
145 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
146 				struct kprobe_ctlblk *kcb)
147 {
148 	__get_cpu_var(current_kprobe) = p;
149 	kcb->kprobe_saved_msr = regs->msr;
150 }
151 
152 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
153 				      struct pt_regs *regs)
154 {
155 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
156 
157 	/* Replace the return addr with trampoline addr */
158 	regs->link = (unsigned long)kretprobe_trampoline;
159 }
160 
161 static int __kprobes kprobe_handler(struct pt_regs *regs)
162 {
163 	struct kprobe *p;
164 	int ret = 0;
165 	unsigned int *addr = (unsigned int *)regs->nip;
166 	struct kprobe_ctlblk *kcb;
167 
168 	/*
169 	 * We don't want to be preempted for the entire
170 	 * duration of kprobe processing
171 	 */
172 	preempt_disable();
173 	kcb = get_kprobe_ctlblk();
174 
175 	/* Check we're not actually recursing */
176 	if (kprobe_running()) {
177 		p = get_kprobe(addr);
178 		if (p) {
179 			kprobe_opcode_t insn = *p->ainsn.insn;
180 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
181 					is_trap(insn)) {
182 				/* Turn off 'trace' bits */
183 				regs->msr &= ~MSR_SINGLESTEP;
184 				regs->msr |= kcb->kprobe_saved_msr;
185 				goto no_kprobe;
186 			}
187 			/* We have reentered the kprobe_handler(), since
188 			 * another probe was hit while within the handler.
189 			 * We here save the original kprobes variables and
190 			 * just single step on the instruction of the new probe
191 			 * without calling any user handlers.
192 			 */
193 			save_previous_kprobe(kcb);
194 			set_current_kprobe(p, regs, kcb);
195 			kcb->kprobe_saved_msr = regs->msr;
196 			kprobes_inc_nmissed_count(p);
197 			prepare_singlestep(p, regs);
198 			kcb->kprobe_status = KPROBE_REENTER;
199 			return 1;
200 		} else {
201 			if (*addr != BREAKPOINT_INSTRUCTION) {
202 				/* If trap variant, then it belongs not to us */
203 				kprobe_opcode_t cur_insn = *addr;
204 				if (is_trap(cur_insn))
205 		       			goto no_kprobe;
206 				/* The breakpoint instruction was removed by
207 				 * another cpu right after we hit, no further
208 				 * handling of this interrupt is appropriate
209 				 */
210 				ret = 1;
211 				goto no_kprobe;
212 			}
213 			p = __get_cpu_var(current_kprobe);
214 			if (p->break_handler && p->break_handler(p, regs)) {
215 				goto ss_probe;
216 			}
217 		}
218 		goto no_kprobe;
219 	}
220 
221 	p = get_kprobe(addr);
222 	if (!p) {
223 		if (*addr != BREAKPOINT_INSTRUCTION) {
224 			/*
225 			 * PowerPC has multiple variants of the "trap"
226 			 * instruction. If the current instruction is a
227 			 * trap variant, it could belong to someone else
228 			 */
229 			kprobe_opcode_t cur_insn = *addr;
230 			if (is_trap(cur_insn))
231 		       		goto no_kprobe;
232 			/*
233 			 * The breakpoint instruction was removed right
234 			 * after we hit it.  Another cpu has removed
235 			 * either a probepoint or a debugger breakpoint
236 			 * at this address.  In either case, no further
237 			 * handling of this interrupt is appropriate.
238 			 */
239 			ret = 1;
240 		}
241 		/* Not one of ours: let kernel handle it */
242 		goto no_kprobe;
243 	}
244 
245 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
246 	set_current_kprobe(p, regs, kcb);
247 	if (p->pre_handler && p->pre_handler(p, regs))
248 		/* handler has already set things up, so skip ss setup */
249 		return 1;
250 
251 ss_probe:
252 	if (p->ainsn.boostable >= 0) {
253 		unsigned int insn = *p->ainsn.insn;
254 
255 		/* regs->nip is also adjusted if emulate_step returns 1 */
256 		ret = emulate_step(regs, insn);
257 		if (ret > 0) {
258 			/*
259 			 * Once this instruction has been boosted
260 			 * successfully, set the boostable flag
261 			 */
262 			if (unlikely(p->ainsn.boostable == 0))
263 				p->ainsn.boostable = 1;
264 
265 			if (p->post_handler)
266 				p->post_handler(p, regs, 0);
267 
268 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
269 			reset_current_kprobe();
270 			preempt_enable_no_resched();
271 			return 1;
272 		} else if (ret < 0) {
273 			/*
274 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
275 			 * So, we should never get here... but, its still
276 			 * good to catch them, just in case...
277 			 */
278 			printk("Can't step on instruction %x\n", insn);
279 			BUG();
280 		} else if (ret == 0)
281 			/* This instruction can't be boosted */
282 			p->ainsn.boostable = -1;
283 	}
284 	prepare_singlestep(p, regs);
285 	kcb->kprobe_status = KPROBE_HIT_SS;
286 	return 1;
287 
288 no_kprobe:
289 	preempt_enable_no_resched();
290 	return ret;
291 }
292 
293 /*
294  * Function return probe trampoline:
295  * 	- init_kprobes() establishes a probepoint here
296  * 	- When the probed function returns, this probe
297  * 		causes the handlers to fire
298  */
299 static void __used kretprobe_trampoline_holder(void)
300 {
301 	asm volatile(".global kretprobe_trampoline\n"
302 			"kretprobe_trampoline:\n"
303 			"nop\n");
304 }
305 
306 /*
307  * Called when the probe at kretprobe trampoline is hit
308  */
309 static int __kprobes trampoline_probe_handler(struct kprobe *p,
310 						struct pt_regs *regs)
311 {
312 	struct kretprobe_instance *ri = NULL;
313 	struct hlist_head *head, empty_rp;
314 	struct hlist_node *node, *tmp;
315 	unsigned long flags, orig_ret_address = 0;
316 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
317 
318 	INIT_HLIST_HEAD(&empty_rp);
319 	kretprobe_hash_lock(current, &head, &flags);
320 
321 	/*
322 	 * It is possible to have multiple instances associated with a given
323 	 * task either because an multiple functions in the call path
324 	 * have a return probe installed on them, and/or more than one return
325 	 * return probe was registered for a target function.
326 	 *
327 	 * We can handle this because:
328 	 *     - instances are always inserted at the head of the list
329 	 *     - when multiple return probes are registered for the same
330 	 *       function, the first instance's ret_addr will point to the
331 	 *       real return address, and all the rest will point to
332 	 *       kretprobe_trampoline
333 	 */
334 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
335 		if (ri->task != current)
336 			/* another task is sharing our hash bucket */
337 			continue;
338 
339 		if (ri->rp && ri->rp->handler)
340 			ri->rp->handler(ri, regs);
341 
342 		orig_ret_address = (unsigned long)ri->ret_addr;
343 		recycle_rp_inst(ri, &empty_rp);
344 
345 		if (orig_ret_address != trampoline_address)
346 			/*
347 			 * This is the real return address. Any other
348 			 * instances associated with this task are for
349 			 * other calls deeper on the call stack
350 			 */
351 			break;
352 	}
353 
354 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
355 	regs->nip = orig_ret_address;
356 
357 	reset_current_kprobe();
358 	kretprobe_hash_unlock(current, &flags);
359 	preempt_enable_no_resched();
360 
361 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
362 		hlist_del(&ri->hlist);
363 		kfree(ri);
364 	}
365 	/*
366 	 * By returning a non-zero value, we are telling
367 	 * kprobe_handler() that we don't want the post_handler
368 	 * to run (and have re-enabled preemption)
369 	 */
370 	return 1;
371 }
372 
373 /*
374  * Called after single-stepping.  p->addr is the address of the
375  * instruction whose first byte has been replaced by the "breakpoint"
376  * instruction.  To avoid the SMP problems that can occur when we
377  * temporarily put back the original opcode to single-step, we
378  * single-stepped a copy of the instruction.  The address of this
379  * copy is p->ainsn.insn.
380  */
381 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
382 {
383 	struct kprobe *cur = kprobe_running();
384 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
385 
386 	if (!cur)
387 		return 0;
388 
389 	/* make sure we got here for instruction we have a kprobe on */
390 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
391 		return 0;
392 
393 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
394 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
395 		cur->post_handler(cur, regs, 0);
396 	}
397 
398 	/* Adjust nip to after the single-stepped instruction */
399 	regs->nip = (unsigned long)cur->addr + 4;
400 	regs->msr |= kcb->kprobe_saved_msr;
401 
402 	/*Restore back the original saved kprobes variables and continue. */
403 	if (kcb->kprobe_status == KPROBE_REENTER) {
404 		restore_previous_kprobe(kcb);
405 		goto out;
406 	}
407 	reset_current_kprobe();
408 out:
409 	preempt_enable_no_resched();
410 
411 	/*
412 	 * if somebody else is singlestepping across a probe point, msr
413 	 * will have DE/SE set, in which case, continue the remaining processing
414 	 * of do_debug, as if this is not a probe hit.
415 	 */
416 	if (regs->msr & MSR_SINGLESTEP)
417 		return 0;
418 
419 	return 1;
420 }
421 
422 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
423 {
424 	struct kprobe *cur = kprobe_running();
425 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
426 	const struct exception_table_entry *entry;
427 
428 	switch(kcb->kprobe_status) {
429 	case KPROBE_HIT_SS:
430 	case KPROBE_REENTER:
431 		/*
432 		 * We are here because the instruction being single
433 		 * stepped caused a page fault. We reset the current
434 		 * kprobe and the nip points back to the probe address
435 		 * and allow the page fault handler to continue as a
436 		 * normal page fault.
437 		 */
438 		regs->nip = (unsigned long)cur->addr;
439 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
440 		regs->msr |= kcb->kprobe_saved_msr;
441 		if (kcb->kprobe_status == KPROBE_REENTER)
442 			restore_previous_kprobe(kcb);
443 		else
444 			reset_current_kprobe();
445 		preempt_enable_no_resched();
446 		break;
447 	case KPROBE_HIT_ACTIVE:
448 	case KPROBE_HIT_SSDONE:
449 		/*
450 		 * We increment the nmissed count for accounting,
451 		 * we can also use npre/npostfault count for accouting
452 		 * these specific fault cases.
453 		 */
454 		kprobes_inc_nmissed_count(cur);
455 
456 		/*
457 		 * We come here because instructions in the pre/post
458 		 * handler caused the page_fault, this could happen
459 		 * if handler tries to access user space by
460 		 * copy_from_user(), get_user() etc. Let the
461 		 * user-specified handler try to fix it first.
462 		 */
463 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
464 			return 1;
465 
466 		/*
467 		 * In case the user-specified fault handler returned
468 		 * zero, try to fix up.
469 		 */
470 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
471 			regs->nip = entry->fixup;
472 			return 1;
473 		}
474 
475 		/*
476 		 * fixup_exception() could not handle it,
477 		 * Let do_page_fault() fix it.
478 		 */
479 		break;
480 	default:
481 		break;
482 	}
483 	return 0;
484 }
485 
486 /*
487  * Wrapper routine to for handling exceptions.
488  */
489 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
490 				       unsigned long val, void *data)
491 {
492 	struct die_args *args = (struct die_args *)data;
493 	int ret = NOTIFY_DONE;
494 
495 	if (args->regs && user_mode(args->regs))
496 		return ret;
497 
498 	switch (val) {
499 	case DIE_BPT:
500 		if (kprobe_handler(args->regs))
501 			ret = NOTIFY_STOP;
502 		break;
503 	case DIE_SSTEP:
504 		if (post_kprobe_handler(args->regs))
505 			ret = NOTIFY_STOP;
506 		break;
507 	default:
508 		break;
509 	}
510 	return ret;
511 }
512 
513 #ifdef CONFIG_PPC64
514 unsigned long arch_deref_entry_point(void *entry)
515 {
516 	return ((func_descr_t *)entry)->entry;
517 }
518 #endif
519 
520 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
521 {
522 	struct jprobe *jp = container_of(p, struct jprobe, kp);
523 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
524 
525 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
526 
527 	/* setup return addr to the jprobe handler routine */
528 	regs->nip = arch_deref_entry_point(jp->entry);
529 #ifdef CONFIG_PPC64
530 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
531 #endif
532 
533 	return 1;
534 }
535 
536 void __used __kprobes jprobe_return(void)
537 {
538 	asm volatile("trap" ::: "memory");
539 }
540 
541 static void __used __kprobes jprobe_return_end(void)
542 {
543 };
544 
545 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
546 {
547 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
548 
549 	/*
550 	 * FIXME - we should ideally be validating that we got here 'cos
551 	 * of the "trap" in jprobe_return() above, before restoring the
552 	 * saved regs...
553 	 */
554 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
555 	preempt_enable_no_resched();
556 	return 1;
557 }
558 
559 static struct kprobe trampoline_p = {
560 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
561 	.pre_handler = trampoline_probe_handler
562 };
563 
564 int __init arch_init_kprobes(void)
565 {
566 	return register_kprobe(&trampoline_p);
567 }
568 
569 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
570 {
571 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
572 		return 1;
573 
574 	return 0;
575 }
576