1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <linux/kdebug.h> 34 #include <asm/cacheflush.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 int __kprobes arch_prepare_kprobe(struct kprobe *p) 42 { 43 int ret = 0; 44 kprobe_opcode_t insn = *p->addr; 45 46 if ((unsigned long)p->addr & 0x03) { 47 printk("Attempt to register kprobe at an unaligned address\n"); 48 ret = -EINVAL; 49 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 50 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 51 ret = -EINVAL; 52 } 53 54 /* insn must be on a special executable page on ppc64 */ 55 if (!ret) { 56 p->ainsn.insn = get_insn_slot(); 57 if (!p->ainsn.insn) 58 ret = -ENOMEM; 59 } 60 61 if (!ret) { 62 memcpy(p->ainsn.insn, p->addr, 63 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 64 p->opcode = *p->addr; 65 flush_icache_range((unsigned long)p->ainsn.insn, 66 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 67 } 68 69 p->ainsn.boostable = 0; 70 return ret; 71 } 72 73 void __kprobes arch_arm_kprobe(struct kprobe *p) 74 { 75 *p->addr = BREAKPOINT_INSTRUCTION; 76 flush_icache_range((unsigned long) p->addr, 77 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 78 } 79 80 void __kprobes arch_disarm_kprobe(struct kprobe *p) 81 { 82 *p->addr = p->opcode; 83 flush_icache_range((unsigned long) p->addr, 84 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 85 } 86 87 void __kprobes arch_remove_kprobe(struct kprobe *p) 88 { 89 mutex_lock(&kprobe_mutex); 90 free_insn_slot(p->ainsn.insn, 0); 91 mutex_unlock(&kprobe_mutex); 92 } 93 94 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 95 { 96 regs->msr |= MSR_SE; 97 98 /* 99 * On powerpc we should single step on the original 100 * instruction even if the probed insn is a trap 101 * variant as values in regs could play a part in 102 * if the trap is taken or not 103 */ 104 regs->nip = (unsigned long)p->ainsn.insn; 105 } 106 107 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 108 { 109 kcb->prev_kprobe.kp = kprobe_running(); 110 kcb->prev_kprobe.status = kcb->kprobe_status; 111 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 112 } 113 114 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 115 { 116 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 117 kcb->kprobe_status = kcb->prev_kprobe.status; 118 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 119 } 120 121 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 122 struct kprobe_ctlblk *kcb) 123 { 124 __get_cpu_var(current_kprobe) = p; 125 kcb->kprobe_saved_msr = regs->msr; 126 } 127 128 /* Called with kretprobe_lock held */ 129 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 130 struct pt_regs *regs) 131 { 132 ri->ret_addr = (kprobe_opcode_t *)regs->link; 133 134 /* Replace the return addr with trampoline addr */ 135 regs->link = (unsigned long)kretprobe_trampoline; 136 } 137 138 static int __kprobes kprobe_handler(struct pt_regs *regs) 139 { 140 struct kprobe *p; 141 int ret = 0; 142 unsigned int *addr = (unsigned int *)regs->nip; 143 struct kprobe_ctlblk *kcb; 144 145 /* 146 * We don't want to be preempted for the entire 147 * duration of kprobe processing 148 */ 149 preempt_disable(); 150 kcb = get_kprobe_ctlblk(); 151 152 /* Check we're not actually recursing */ 153 if (kprobe_running()) { 154 p = get_kprobe(addr); 155 if (p) { 156 kprobe_opcode_t insn = *p->ainsn.insn; 157 if (kcb->kprobe_status == KPROBE_HIT_SS && 158 is_trap(insn)) { 159 regs->msr &= ~MSR_SE; 160 regs->msr |= kcb->kprobe_saved_msr; 161 goto no_kprobe; 162 } 163 /* We have reentered the kprobe_handler(), since 164 * another probe was hit while within the handler. 165 * We here save the original kprobes variables and 166 * just single step on the instruction of the new probe 167 * without calling any user handlers. 168 */ 169 save_previous_kprobe(kcb); 170 set_current_kprobe(p, regs, kcb); 171 kcb->kprobe_saved_msr = regs->msr; 172 kprobes_inc_nmissed_count(p); 173 prepare_singlestep(p, regs); 174 kcb->kprobe_status = KPROBE_REENTER; 175 return 1; 176 } else { 177 if (*addr != BREAKPOINT_INSTRUCTION) { 178 /* If trap variant, then it belongs not to us */ 179 kprobe_opcode_t cur_insn = *addr; 180 if (is_trap(cur_insn)) 181 goto no_kprobe; 182 /* The breakpoint instruction was removed by 183 * another cpu right after we hit, no further 184 * handling of this interrupt is appropriate 185 */ 186 ret = 1; 187 goto no_kprobe; 188 } 189 p = __get_cpu_var(current_kprobe); 190 if (p->break_handler && p->break_handler(p, regs)) { 191 goto ss_probe; 192 } 193 } 194 goto no_kprobe; 195 } 196 197 p = get_kprobe(addr); 198 if (!p) { 199 if (*addr != BREAKPOINT_INSTRUCTION) { 200 /* 201 * PowerPC has multiple variants of the "trap" 202 * instruction. If the current instruction is a 203 * trap variant, it could belong to someone else 204 */ 205 kprobe_opcode_t cur_insn = *addr; 206 if (is_trap(cur_insn)) 207 goto no_kprobe; 208 /* 209 * The breakpoint instruction was removed right 210 * after we hit it. Another cpu has removed 211 * either a probepoint or a debugger breakpoint 212 * at this address. In either case, no further 213 * handling of this interrupt is appropriate. 214 */ 215 ret = 1; 216 } 217 /* Not one of ours: let kernel handle it */ 218 goto no_kprobe; 219 } 220 221 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 222 set_current_kprobe(p, regs, kcb); 223 if (p->pre_handler && p->pre_handler(p, regs)) 224 /* handler has already set things up, so skip ss setup */ 225 return 1; 226 227 ss_probe: 228 if (p->ainsn.boostable >= 0) { 229 unsigned int insn = *p->ainsn.insn; 230 231 /* regs->nip is also adjusted if emulate_step returns 1 */ 232 ret = emulate_step(regs, insn); 233 if (ret > 0) { 234 /* 235 * Once this instruction has been boosted 236 * successfully, set the boostable flag 237 */ 238 if (unlikely(p->ainsn.boostable == 0)) 239 p->ainsn.boostable = 1; 240 241 if (p->post_handler) 242 p->post_handler(p, regs, 0); 243 244 kcb->kprobe_status = KPROBE_HIT_SSDONE; 245 reset_current_kprobe(); 246 preempt_enable_no_resched(); 247 return 1; 248 } else if (ret < 0) { 249 /* 250 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 251 * So, we should never get here... but, its still 252 * good to catch them, just in case... 253 */ 254 printk("Can't step on instruction %x\n", insn); 255 BUG(); 256 } else if (ret == 0) 257 /* This instruction can't be boosted */ 258 p->ainsn.boostable = -1; 259 } 260 prepare_singlestep(p, regs); 261 kcb->kprobe_status = KPROBE_HIT_SS; 262 return 1; 263 264 no_kprobe: 265 preempt_enable_no_resched(); 266 return ret; 267 } 268 269 /* 270 * Function return probe trampoline: 271 * - init_kprobes() establishes a probepoint here 272 * - When the probed function returns, this probe 273 * causes the handlers to fire 274 */ 275 void kretprobe_trampoline_holder(void) 276 { 277 asm volatile(".global kretprobe_trampoline\n" 278 "kretprobe_trampoline:\n" 279 "nop\n"); 280 } 281 282 /* 283 * Called when the probe at kretprobe trampoline is hit 284 */ 285 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 286 { 287 struct kretprobe_instance *ri = NULL; 288 struct hlist_head *head, empty_rp; 289 struct hlist_node *node, *tmp; 290 unsigned long flags, orig_ret_address = 0; 291 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 292 293 INIT_HLIST_HEAD(&empty_rp); 294 spin_lock_irqsave(&kretprobe_lock, flags); 295 head = kretprobe_inst_table_head(current); 296 297 /* 298 * It is possible to have multiple instances associated with a given 299 * task either because an multiple functions in the call path 300 * have a return probe installed on them, and/or more then one return 301 * return probe was registered for a target function. 302 * 303 * We can handle this because: 304 * - instances are always inserted at the head of the list 305 * - when multiple return probes are registered for the same 306 * function, the first instance's ret_addr will point to the 307 * real return address, and all the rest will point to 308 * kretprobe_trampoline 309 */ 310 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 311 if (ri->task != current) 312 /* another task is sharing our hash bucket */ 313 continue; 314 315 if (ri->rp && ri->rp->handler) 316 ri->rp->handler(ri, regs); 317 318 orig_ret_address = (unsigned long)ri->ret_addr; 319 recycle_rp_inst(ri, &empty_rp); 320 321 if (orig_ret_address != trampoline_address) 322 /* 323 * This is the real return address. Any other 324 * instances associated with this task are for 325 * other calls deeper on the call stack 326 */ 327 break; 328 } 329 330 kretprobe_assert(ri, orig_ret_address, trampoline_address); 331 regs->nip = orig_ret_address; 332 333 reset_current_kprobe(); 334 spin_unlock_irqrestore(&kretprobe_lock, flags); 335 preempt_enable_no_resched(); 336 337 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 338 hlist_del(&ri->hlist); 339 kfree(ri); 340 } 341 /* 342 * By returning a non-zero value, we are telling 343 * kprobe_handler() that we don't want the post_handler 344 * to run (and have re-enabled preemption) 345 */ 346 return 1; 347 } 348 349 /* 350 * Called after single-stepping. p->addr is the address of the 351 * instruction whose first byte has been replaced by the "breakpoint" 352 * instruction. To avoid the SMP problems that can occur when we 353 * temporarily put back the original opcode to single-step, we 354 * single-stepped a copy of the instruction. The address of this 355 * copy is p->ainsn.insn. 356 */ 357 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 358 { 359 int ret; 360 unsigned int insn = *p->ainsn.insn; 361 362 regs->nip = (unsigned long)p->addr; 363 ret = emulate_step(regs, insn); 364 if (ret == 0) 365 regs->nip = (unsigned long)p->addr + 4; 366 } 367 368 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 369 { 370 struct kprobe *cur = kprobe_running(); 371 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 372 373 if (!cur) 374 return 0; 375 376 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 377 kcb->kprobe_status = KPROBE_HIT_SSDONE; 378 cur->post_handler(cur, regs, 0); 379 } 380 381 resume_execution(cur, regs); 382 regs->msr |= kcb->kprobe_saved_msr; 383 384 /*Restore back the original saved kprobes variables and continue. */ 385 if (kcb->kprobe_status == KPROBE_REENTER) { 386 restore_previous_kprobe(kcb); 387 goto out; 388 } 389 reset_current_kprobe(); 390 out: 391 preempt_enable_no_resched(); 392 393 /* 394 * if somebody else is singlestepping across a probe point, msr 395 * will have SE set, in which case, continue the remaining processing 396 * of do_debug, as if this is not a probe hit. 397 */ 398 if (regs->msr & MSR_SE) 399 return 0; 400 401 return 1; 402 } 403 404 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 405 { 406 struct kprobe *cur = kprobe_running(); 407 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 408 const struct exception_table_entry *entry; 409 410 switch(kcb->kprobe_status) { 411 case KPROBE_HIT_SS: 412 case KPROBE_REENTER: 413 /* 414 * We are here because the instruction being single 415 * stepped caused a page fault. We reset the current 416 * kprobe and the nip points back to the probe address 417 * and allow the page fault handler to continue as a 418 * normal page fault. 419 */ 420 regs->nip = (unsigned long)cur->addr; 421 regs->msr &= ~MSR_SE; 422 regs->msr |= kcb->kprobe_saved_msr; 423 if (kcb->kprobe_status == KPROBE_REENTER) 424 restore_previous_kprobe(kcb); 425 else 426 reset_current_kprobe(); 427 preempt_enable_no_resched(); 428 break; 429 case KPROBE_HIT_ACTIVE: 430 case KPROBE_HIT_SSDONE: 431 /* 432 * We increment the nmissed count for accounting, 433 * we can also use npre/npostfault count for accouting 434 * these specific fault cases. 435 */ 436 kprobes_inc_nmissed_count(cur); 437 438 /* 439 * We come here because instructions in the pre/post 440 * handler caused the page_fault, this could happen 441 * if handler tries to access user space by 442 * copy_from_user(), get_user() etc. Let the 443 * user-specified handler try to fix it first. 444 */ 445 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 446 return 1; 447 448 /* 449 * In case the user-specified fault handler returned 450 * zero, try to fix up. 451 */ 452 if ((entry = search_exception_tables(regs->nip)) != NULL) { 453 regs->nip = entry->fixup; 454 return 1; 455 } 456 457 /* 458 * fixup_exception() could not handle it, 459 * Let do_page_fault() fix it. 460 */ 461 break; 462 default: 463 break; 464 } 465 return 0; 466 } 467 468 /* 469 * Wrapper routine to for handling exceptions. 470 */ 471 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 472 unsigned long val, void *data) 473 { 474 struct die_args *args = (struct die_args *)data; 475 int ret = NOTIFY_DONE; 476 477 if (args->regs && user_mode(args->regs)) 478 return ret; 479 480 switch (val) { 481 case DIE_BPT: 482 if (kprobe_handler(args->regs)) 483 ret = NOTIFY_STOP; 484 break; 485 case DIE_SSTEP: 486 if (post_kprobe_handler(args->regs)) 487 ret = NOTIFY_STOP; 488 break; 489 default: 490 break; 491 } 492 return ret; 493 } 494 495 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 496 { 497 struct jprobe *jp = container_of(p, struct jprobe, kp); 498 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 499 500 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 501 502 /* setup return addr to the jprobe handler routine */ 503 #ifdef CONFIG_PPC64 504 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); 505 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 506 #else 507 regs->nip = (unsigned long)jp->entry; 508 #endif 509 510 return 1; 511 } 512 513 void __kprobes jprobe_return(void) 514 { 515 asm volatile("trap" ::: "memory"); 516 } 517 518 void __kprobes jprobe_return_end(void) 519 { 520 }; 521 522 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 523 { 524 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 525 526 /* 527 * FIXME - we should ideally be validating that we got here 'cos 528 * of the "trap" in jprobe_return() above, before restoring the 529 * saved regs... 530 */ 531 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 532 preempt_enable_no_resched(); 533 return 1; 534 } 535 536 static struct kprobe trampoline_p = { 537 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 538 .pre_handler = trampoline_probe_handler 539 }; 540 541 int __init arch_init_kprobes(void) 542 { 543 return register_kprobe(&trampoline_p); 544 } 545 546 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 547 { 548 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 549 return 1; 550 551 return 0; 552 } 553