xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision 64c70b1c)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 int __kprobes arch_prepare_kprobe(struct kprobe *p)
42 {
43 	int ret = 0;
44 	kprobe_opcode_t insn = *p->addr;
45 
46 	if ((unsigned long)p->addr & 0x03) {
47 		printk("Attempt to register kprobe at an unaligned address\n");
48 		ret = -EINVAL;
49 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
50 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
51 		ret = -EINVAL;
52 	}
53 
54 	/* insn must be on a special executable page on ppc64 */
55 	if (!ret) {
56 		p->ainsn.insn = get_insn_slot();
57 		if (!p->ainsn.insn)
58 			ret = -ENOMEM;
59 	}
60 
61 	if (!ret) {
62 		memcpy(p->ainsn.insn, p->addr,
63 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64 		p->opcode = *p->addr;
65 		flush_icache_range((unsigned long)p->ainsn.insn,
66 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
67 	}
68 
69 	p->ainsn.boostable = 0;
70 	return ret;
71 }
72 
73 void __kprobes arch_arm_kprobe(struct kprobe *p)
74 {
75 	*p->addr = BREAKPOINT_INSTRUCTION;
76 	flush_icache_range((unsigned long) p->addr,
77 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 }
79 
80 void __kprobes arch_disarm_kprobe(struct kprobe *p)
81 {
82 	*p->addr = p->opcode;
83 	flush_icache_range((unsigned long) p->addr,
84 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 }
86 
87 void __kprobes arch_remove_kprobe(struct kprobe *p)
88 {
89 	mutex_lock(&kprobe_mutex);
90 	free_insn_slot(p->ainsn.insn, 0);
91 	mutex_unlock(&kprobe_mutex);
92 }
93 
94 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
95 {
96 	regs->msr |= MSR_SE;
97 
98 	/*
99 	 * On powerpc we should single step on the original
100 	 * instruction even if the probed insn is a trap
101 	 * variant as values in regs could play a part in
102 	 * if the trap is taken or not
103 	 */
104 	regs->nip = (unsigned long)p->ainsn.insn;
105 }
106 
107 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
108 {
109 	kcb->prev_kprobe.kp = kprobe_running();
110 	kcb->prev_kprobe.status = kcb->kprobe_status;
111 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
112 }
113 
114 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
115 {
116 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
117 	kcb->kprobe_status = kcb->prev_kprobe.status;
118 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
119 }
120 
121 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
122 				struct kprobe_ctlblk *kcb)
123 {
124 	__get_cpu_var(current_kprobe) = p;
125 	kcb->kprobe_saved_msr = regs->msr;
126 }
127 
128 /* Called with kretprobe_lock held */
129 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
130 				      struct pt_regs *regs)
131 {
132 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
133 
134 	/* Replace the return addr with trampoline addr */
135 	regs->link = (unsigned long)kretprobe_trampoline;
136 }
137 
138 static int __kprobes kprobe_handler(struct pt_regs *regs)
139 {
140 	struct kprobe *p;
141 	int ret = 0;
142 	unsigned int *addr = (unsigned int *)regs->nip;
143 	struct kprobe_ctlblk *kcb;
144 
145 	/*
146 	 * We don't want to be preempted for the entire
147 	 * duration of kprobe processing
148 	 */
149 	preempt_disable();
150 	kcb = get_kprobe_ctlblk();
151 
152 	/* Check we're not actually recursing */
153 	if (kprobe_running()) {
154 		p = get_kprobe(addr);
155 		if (p) {
156 			kprobe_opcode_t insn = *p->ainsn.insn;
157 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
158 					is_trap(insn)) {
159 				regs->msr &= ~MSR_SE;
160 				regs->msr |= kcb->kprobe_saved_msr;
161 				goto no_kprobe;
162 			}
163 			/* We have reentered the kprobe_handler(), since
164 			 * another probe was hit while within the handler.
165 			 * We here save the original kprobes variables and
166 			 * just single step on the instruction of the new probe
167 			 * without calling any user handlers.
168 			 */
169 			save_previous_kprobe(kcb);
170 			set_current_kprobe(p, regs, kcb);
171 			kcb->kprobe_saved_msr = regs->msr;
172 			kprobes_inc_nmissed_count(p);
173 			prepare_singlestep(p, regs);
174 			kcb->kprobe_status = KPROBE_REENTER;
175 			return 1;
176 		} else {
177 			if (*addr != BREAKPOINT_INSTRUCTION) {
178 				/* If trap variant, then it belongs not to us */
179 				kprobe_opcode_t cur_insn = *addr;
180 				if (is_trap(cur_insn))
181 		       			goto no_kprobe;
182 				/* The breakpoint instruction was removed by
183 				 * another cpu right after we hit, no further
184 				 * handling of this interrupt is appropriate
185 				 */
186 				ret = 1;
187 				goto no_kprobe;
188 			}
189 			p = __get_cpu_var(current_kprobe);
190 			if (p->break_handler && p->break_handler(p, regs)) {
191 				goto ss_probe;
192 			}
193 		}
194 		goto no_kprobe;
195 	}
196 
197 	p = get_kprobe(addr);
198 	if (!p) {
199 		if (*addr != BREAKPOINT_INSTRUCTION) {
200 			/*
201 			 * PowerPC has multiple variants of the "trap"
202 			 * instruction. If the current instruction is a
203 			 * trap variant, it could belong to someone else
204 			 */
205 			kprobe_opcode_t cur_insn = *addr;
206 			if (is_trap(cur_insn))
207 		       		goto no_kprobe;
208 			/*
209 			 * The breakpoint instruction was removed right
210 			 * after we hit it.  Another cpu has removed
211 			 * either a probepoint or a debugger breakpoint
212 			 * at this address.  In either case, no further
213 			 * handling of this interrupt is appropriate.
214 			 */
215 			ret = 1;
216 		}
217 		/* Not one of ours: let kernel handle it */
218 		goto no_kprobe;
219 	}
220 
221 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
222 	set_current_kprobe(p, regs, kcb);
223 	if (p->pre_handler && p->pre_handler(p, regs))
224 		/* handler has already set things up, so skip ss setup */
225 		return 1;
226 
227 ss_probe:
228 	if (p->ainsn.boostable >= 0) {
229 		unsigned int insn = *p->ainsn.insn;
230 
231 		/* regs->nip is also adjusted if emulate_step returns 1 */
232 		ret = emulate_step(regs, insn);
233 		if (ret > 0) {
234 			/*
235 			 * Once this instruction has been boosted
236 			 * successfully, set the boostable flag
237 			 */
238 			if (unlikely(p->ainsn.boostable == 0))
239 				p->ainsn.boostable = 1;
240 
241 			if (p->post_handler)
242 				p->post_handler(p, regs, 0);
243 
244 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
245 			reset_current_kprobe();
246 			preempt_enable_no_resched();
247 			return 1;
248 		} else if (ret < 0) {
249 			/*
250 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
251 			 * So, we should never get here... but, its still
252 			 * good to catch them, just in case...
253 			 */
254 			printk("Can't step on instruction %x\n", insn);
255 			BUG();
256 		} else if (ret == 0)
257 			/* This instruction can't be boosted */
258 			p->ainsn.boostable = -1;
259 	}
260 	prepare_singlestep(p, regs);
261 	kcb->kprobe_status = KPROBE_HIT_SS;
262 	return 1;
263 
264 no_kprobe:
265 	preempt_enable_no_resched();
266 	return ret;
267 }
268 
269 /*
270  * Function return probe trampoline:
271  * 	- init_kprobes() establishes a probepoint here
272  * 	- When the probed function returns, this probe
273  * 		causes the handlers to fire
274  */
275 void kretprobe_trampoline_holder(void)
276 {
277 	asm volatile(".global kretprobe_trampoline\n"
278 			"kretprobe_trampoline:\n"
279 			"nop\n");
280 }
281 
282 /*
283  * Called when the probe at kretprobe trampoline is hit
284  */
285 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
286 {
287 	struct kretprobe_instance *ri = NULL;
288 	struct hlist_head *head, empty_rp;
289 	struct hlist_node *node, *tmp;
290 	unsigned long flags, orig_ret_address = 0;
291 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
292 
293 	INIT_HLIST_HEAD(&empty_rp);
294 	spin_lock_irqsave(&kretprobe_lock, flags);
295 	head = kretprobe_inst_table_head(current);
296 
297 	/*
298 	 * It is possible to have multiple instances associated with a given
299 	 * task either because an multiple functions in the call path
300 	 * have a return probe installed on them, and/or more then one return
301 	 * return probe was registered for a target function.
302 	 *
303 	 * We can handle this because:
304 	 *     - instances are always inserted at the head of the list
305 	 *     - when multiple return probes are registered for the same
306 	 *       function, the first instance's ret_addr will point to the
307 	 *       real return address, and all the rest will point to
308 	 *       kretprobe_trampoline
309 	 */
310 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
311 		if (ri->task != current)
312 			/* another task is sharing our hash bucket */
313 			continue;
314 
315 		if (ri->rp && ri->rp->handler)
316 			ri->rp->handler(ri, regs);
317 
318 		orig_ret_address = (unsigned long)ri->ret_addr;
319 		recycle_rp_inst(ri, &empty_rp);
320 
321 		if (orig_ret_address != trampoline_address)
322 			/*
323 			 * This is the real return address. Any other
324 			 * instances associated with this task are for
325 			 * other calls deeper on the call stack
326 			 */
327 			break;
328 	}
329 
330 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
331 	regs->nip = orig_ret_address;
332 
333 	reset_current_kprobe();
334 	spin_unlock_irqrestore(&kretprobe_lock, flags);
335 	preempt_enable_no_resched();
336 
337 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
338 		hlist_del(&ri->hlist);
339 		kfree(ri);
340 	}
341 	/*
342 	 * By returning a non-zero value, we are telling
343 	 * kprobe_handler() that we don't want the post_handler
344 	 * to run (and have re-enabled preemption)
345 	 */
346 	return 1;
347 }
348 
349 /*
350  * Called after single-stepping.  p->addr is the address of the
351  * instruction whose first byte has been replaced by the "breakpoint"
352  * instruction.  To avoid the SMP problems that can occur when we
353  * temporarily put back the original opcode to single-step, we
354  * single-stepped a copy of the instruction.  The address of this
355  * copy is p->ainsn.insn.
356  */
357 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
358 {
359 	int ret;
360 	unsigned int insn = *p->ainsn.insn;
361 
362 	regs->nip = (unsigned long)p->addr;
363 	ret = emulate_step(regs, insn);
364 	if (ret == 0)
365 		regs->nip = (unsigned long)p->addr + 4;
366 }
367 
368 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
369 {
370 	struct kprobe *cur = kprobe_running();
371 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372 
373 	if (!cur)
374 		return 0;
375 
376 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
377 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
378 		cur->post_handler(cur, regs, 0);
379 	}
380 
381 	resume_execution(cur, regs);
382 	regs->msr |= kcb->kprobe_saved_msr;
383 
384 	/*Restore back the original saved kprobes variables and continue. */
385 	if (kcb->kprobe_status == KPROBE_REENTER) {
386 		restore_previous_kprobe(kcb);
387 		goto out;
388 	}
389 	reset_current_kprobe();
390 out:
391 	preempt_enable_no_resched();
392 
393 	/*
394 	 * if somebody else is singlestepping across a probe point, msr
395 	 * will have SE set, in which case, continue the remaining processing
396 	 * of do_debug, as if this is not a probe hit.
397 	 */
398 	if (regs->msr & MSR_SE)
399 		return 0;
400 
401 	return 1;
402 }
403 
404 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
405 {
406 	struct kprobe *cur = kprobe_running();
407 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408 	const struct exception_table_entry *entry;
409 
410 	switch(kcb->kprobe_status) {
411 	case KPROBE_HIT_SS:
412 	case KPROBE_REENTER:
413 		/*
414 		 * We are here because the instruction being single
415 		 * stepped caused a page fault. We reset the current
416 		 * kprobe and the nip points back to the probe address
417 		 * and allow the page fault handler to continue as a
418 		 * normal page fault.
419 		 */
420 		regs->nip = (unsigned long)cur->addr;
421 		regs->msr &= ~MSR_SE;
422 		regs->msr |= kcb->kprobe_saved_msr;
423 		if (kcb->kprobe_status == KPROBE_REENTER)
424 			restore_previous_kprobe(kcb);
425 		else
426 			reset_current_kprobe();
427 		preempt_enable_no_resched();
428 		break;
429 	case KPROBE_HIT_ACTIVE:
430 	case KPROBE_HIT_SSDONE:
431 		/*
432 		 * We increment the nmissed count for accounting,
433 		 * we can also use npre/npostfault count for accouting
434 		 * these specific fault cases.
435 		 */
436 		kprobes_inc_nmissed_count(cur);
437 
438 		/*
439 		 * We come here because instructions in the pre/post
440 		 * handler caused the page_fault, this could happen
441 		 * if handler tries to access user space by
442 		 * copy_from_user(), get_user() etc. Let the
443 		 * user-specified handler try to fix it first.
444 		 */
445 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
446 			return 1;
447 
448 		/*
449 		 * In case the user-specified fault handler returned
450 		 * zero, try to fix up.
451 		 */
452 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
453 			regs->nip = entry->fixup;
454 			return 1;
455 		}
456 
457 		/*
458 		 * fixup_exception() could not handle it,
459 		 * Let do_page_fault() fix it.
460 		 */
461 		break;
462 	default:
463 		break;
464 	}
465 	return 0;
466 }
467 
468 /*
469  * Wrapper routine to for handling exceptions.
470  */
471 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
472 				       unsigned long val, void *data)
473 {
474 	struct die_args *args = (struct die_args *)data;
475 	int ret = NOTIFY_DONE;
476 
477 	if (args->regs && user_mode(args->regs))
478 		return ret;
479 
480 	switch (val) {
481 	case DIE_BPT:
482 		if (kprobe_handler(args->regs))
483 			ret = NOTIFY_STOP;
484 		break;
485 	case DIE_SSTEP:
486 		if (post_kprobe_handler(args->regs))
487 			ret = NOTIFY_STOP;
488 		break;
489 	default:
490 		break;
491 	}
492 	return ret;
493 }
494 
495 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
496 {
497 	struct jprobe *jp = container_of(p, struct jprobe, kp);
498 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
499 
500 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
501 
502 	/* setup return addr to the jprobe handler routine */
503 #ifdef CONFIG_PPC64
504 	regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
505 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
506 #else
507 	regs->nip = (unsigned long)jp->entry;
508 #endif
509 
510 	return 1;
511 }
512 
513 void __kprobes jprobe_return(void)
514 {
515 	asm volatile("trap" ::: "memory");
516 }
517 
518 void __kprobes jprobe_return_end(void)
519 {
520 };
521 
522 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
523 {
524 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
525 
526 	/*
527 	 * FIXME - we should ideally be validating that we got here 'cos
528 	 * of the "trap" in jprobe_return() above, before restoring the
529 	 * saved regs...
530 	 */
531 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
532 	preempt_enable_no_resched();
533 	return 1;
534 }
535 
536 static struct kprobe trampoline_p = {
537 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
538 	.pre_handler = trampoline_probe_handler
539 };
540 
541 int __init arch_init_kprobes(void)
542 {
543 	return register_kprobe(&trampoline_p);
544 }
545 
546 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
547 {
548 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
549 		return 1;
550 
551 	return 0;
552 }
553