xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *		for PPC64
14  */
15 
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <asm/code-patching.h>
23 #include <asm/cacheflush.h>
24 #include <asm/sstep.h>
25 #include <asm/sections.h>
26 #include <asm/inst.h>
27 #include <linux/uaccess.h>
28 
29 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
31 
32 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
33 
34 bool arch_within_kprobe_blacklist(unsigned long addr)
35 {
36 	return  (addr >= (unsigned long)__kprobes_text_start &&
37 		 addr < (unsigned long)__kprobes_text_end) ||
38 		(addr >= (unsigned long)_stext &&
39 		 addr < (unsigned long)__head_end);
40 }
41 
42 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
43 {
44 	kprobe_opcode_t *addr = NULL;
45 
46 #ifdef PPC64_ELF_ABI_v2
47 	/* PPC64 ABIv2 needs local entry point */
48 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
49 	if (addr && !offset) {
50 #ifdef CONFIG_KPROBES_ON_FTRACE
51 		unsigned long faddr;
52 		/*
53 		 * Per livepatch.h, ftrace location is always within the first
54 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
55 		 */
56 		faddr = ftrace_location_range((unsigned long)addr,
57 					      (unsigned long)addr + 16);
58 		if (faddr)
59 			addr = (kprobe_opcode_t *)faddr;
60 		else
61 #endif
62 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
63 	}
64 #elif defined(PPC64_ELF_ABI_v1)
65 	/*
66 	 * 64bit powerpc ABIv1 uses function descriptors:
67 	 * - Check for the dot variant of the symbol first.
68 	 * - If that fails, try looking up the symbol provided.
69 	 *
70 	 * This ensures we always get to the actual symbol and not
71 	 * the descriptor.
72 	 *
73 	 * Also handle <module:symbol> format.
74 	 */
75 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
76 	bool dot_appended = false;
77 	const char *c;
78 	ssize_t ret = 0;
79 	int len = 0;
80 
81 	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
82 		c++;
83 		len = c - name;
84 		memcpy(dot_name, name, len);
85 	} else
86 		c = name;
87 
88 	if (*c != '\0' && *c != '.') {
89 		dot_name[len++] = '.';
90 		dot_appended = true;
91 	}
92 	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
93 	if (ret > 0)
94 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
95 
96 	/* Fallback to the original non-dot symbol lookup */
97 	if (!addr && dot_appended)
98 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
99 #else
100 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101 #endif
102 
103 	return addr;
104 }
105 
106 int arch_prepare_kprobe(struct kprobe *p)
107 {
108 	int ret = 0;
109 	struct kprobe *prev;
110 	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->addr);
111 	struct ppc_inst prefix = ppc_inst_read((struct ppc_inst *)(p->addr - 1));
112 
113 	if ((unsigned long)p->addr & 0x03) {
114 		printk("Attempt to register kprobe at an unaligned address\n");
115 		ret = -EINVAL;
116 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
117 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
118 		ret = -EINVAL;
119 	} else if (ppc_inst_prefixed(prefix)) {
120 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
121 		ret = -EINVAL;
122 	}
123 	preempt_disable();
124 	prev = get_kprobe(p->addr - 1);
125 	preempt_enable_no_resched();
126 	if (prev &&
127 	    ppc_inst_prefixed(ppc_inst_read((struct ppc_inst *)prev->ainsn.insn))) {
128 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
129 		ret = -EINVAL;
130 	}
131 
132 	/* insn must be on a special executable page on ppc64.  This is
133 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
134 	if (!ret) {
135 		p->ainsn.insn = get_insn_slot();
136 		if (!p->ainsn.insn)
137 			ret = -ENOMEM;
138 	}
139 
140 	if (!ret) {
141 		patch_instruction((struct ppc_inst *)p->ainsn.insn, insn);
142 		p->opcode = ppc_inst_val(insn);
143 	}
144 
145 	p->ainsn.boostable = 0;
146 	return ret;
147 }
148 NOKPROBE_SYMBOL(arch_prepare_kprobe);
149 
150 void arch_arm_kprobe(struct kprobe *p)
151 {
152 	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(BREAKPOINT_INSTRUCTION));
153 }
154 NOKPROBE_SYMBOL(arch_arm_kprobe);
155 
156 void arch_disarm_kprobe(struct kprobe *p)
157 {
158 	patch_instruction((struct ppc_inst *)p->addr, ppc_inst(p->opcode));
159 }
160 NOKPROBE_SYMBOL(arch_disarm_kprobe);
161 
162 void arch_remove_kprobe(struct kprobe *p)
163 {
164 	if (p->ainsn.insn) {
165 		free_insn_slot(p->ainsn.insn, 0);
166 		p->ainsn.insn = NULL;
167 	}
168 }
169 NOKPROBE_SYMBOL(arch_remove_kprobe);
170 
171 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
172 {
173 	enable_single_step(regs);
174 
175 	/*
176 	 * On powerpc we should single step on the original
177 	 * instruction even if the probed insn is a trap
178 	 * variant as values in regs could play a part in
179 	 * if the trap is taken or not
180 	 */
181 	regs->nip = (unsigned long)p->ainsn.insn;
182 }
183 
184 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
185 {
186 	kcb->prev_kprobe.kp = kprobe_running();
187 	kcb->prev_kprobe.status = kcb->kprobe_status;
188 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
189 }
190 
191 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
192 {
193 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
194 	kcb->kprobe_status = kcb->prev_kprobe.status;
195 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
196 }
197 
198 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
199 				struct kprobe_ctlblk *kcb)
200 {
201 	__this_cpu_write(current_kprobe, p);
202 	kcb->kprobe_saved_msr = regs->msr;
203 }
204 
205 bool arch_kprobe_on_func_entry(unsigned long offset)
206 {
207 #ifdef PPC64_ELF_ABI_v2
208 #ifdef CONFIG_KPROBES_ON_FTRACE
209 	return offset <= 16;
210 #else
211 	return offset <= 8;
212 #endif
213 #else
214 	return !offset;
215 #endif
216 }
217 
218 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
219 {
220 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
221 
222 	/* Replace the return addr with trampoline addr */
223 	regs->link = (unsigned long)kretprobe_trampoline;
224 }
225 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
226 
227 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
228 {
229 	int ret;
230 	struct ppc_inst insn = ppc_inst_read((struct ppc_inst *)p->ainsn.insn);
231 
232 	/* regs->nip is also adjusted if emulate_step returns 1 */
233 	ret = emulate_step(regs, insn);
234 	if (ret > 0) {
235 		/*
236 		 * Once this instruction has been boosted
237 		 * successfully, set the boostable flag
238 		 */
239 		if (unlikely(p->ainsn.boostable == 0))
240 			p->ainsn.boostable = 1;
241 	} else if (ret < 0) {
242 		/*
243 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
244 		 * So, we should never get here... but, its still
245 		 * good to catch them, just in case...
246 		 */
247 		printk("Can't step on instruction %s\n", ppc_inst_as_str(insn));
248 		BUG();
249 	} else {
250 		/*
251 		 * If we haven't previously emulated this instruction, then it
252 		 * can't be boosted. Note it down so we don't try to do so again.
253 		 *
254 		 * If, however, we had emulated this instruction in the past,
255 		 * then this is just an error with the current run (for
256 		 * instance, exceptions due to a load/store). We return 0 so
257 		 * that this is now single-stepped, but continue to try
258 		 * emulating it in subsequent probe hits.
259 		 */
260 		if (unlikely(p->ainsn.boostable != 1))
261 			p->ainsn.boostable = -1;
262 	}
263 
264 	return ret;
265 }
266 NOKPROBE_SYMBOL(try_to_emulate);
267 
268 int kprobe_handler(struct pt_regs *regs)
269 {
270 	struct kprobe *p;
271 	int ret = 0;
272 	unsigned int *addr = (unsigned int *)regs->nip;
273 	struct kprobe_ctlblk *kcb;
274 
275 	if (user_mode(regs))
276 		return 0;
277 
278 	if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))
279 		return 0;
280 
281 	/*
282 	 * We don't want to be preempted for the entire
283 	 * duration of kprobe processing
284 	 */
285 	preempt_disable();
286 	kcb = get_kprobe_ctlblk();
287 
288 	p = get_kprobe(addr);
289 	if (!p) {
290 		unsigned int instr;
291 
292 		if (get_kernel_nofault(instr, addr))
293 			goto no_kprobe;
294 
295 		if (instr != BREAKPOINT_INSTRUCTION) {
296 			/*
297 			 * PowerPC has multiple variants of the "trap"
298 			 * instruction. If the current instruction is a
299 			 * trap variant, it could belong to someone else
300 			 */
301 			if (is_trap(instr))
302 				goto no_kprobe;
303 			/*
304 			 * The breakpoint instruction was removed right
305 			 * after we hit it.  Another cpu has removed
306 			 * either a probepoint or a debugger breakpoint
307 			 * at this address.  In either case, no further
308 			 * handling of this interrupt is appropriate.
309 			 */
310 			ret = 1;
311 		}
312 		/* Not one of ours: let kernel handle it */
313 		goto no_kprobe;
314 	}
315 
316 	/* Check we're not actually recursing */
317 	if (kprobe_running()) {
318 		kprobe_opcode_t insn = *p->ainsn.insn;
319 		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
320 			/* Turn off 'trace' bits */
321 			regs->msr &= ~MSR_SINGLESTEP;
322 			regs->msr |= kcb->kprobe_saved_msr;
323 			goto no_kprobe;
324 		}
325 
326 		/*
327 		 * We have reentered the kprobe_handler(), since another probe
328 		 * was hit while within the handler. We here save the original
329 		 * kprobes variables and just single step on the instruction of
330 		 * the new probe without calling any user handlers.
331 		 */
332 		save_previous_kprobe(kcb);
333 		set_current_kprobe(p, regs, kcb);
334 		kprobes_inc_nmissed_count(p);
335 		kcb->kprobe_status = KPROBE_REENTER;
336 		if (p->ainsn.boostable >= 0) {
337 			ret = try_to_emulate(p, regs);
338 
339 			if (ret > 0) {
340 				restore_previous_kprobe(kcb);
341 				preempt_enable_no_resched();
342 				return 1;
343 			}
344 		}
345 		prepare_singlestep(p, regs);
346 		return 1;
347 	}
348 
349 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
350 	set_current_kprobe(p, regs, kcb);
351 	if (p->pre_handler && p->pre_handler(p, regs)) {
352 		/* handler changed execution path, so skip ss setup */
353 		reset_current_kprobe();
354 		preempt_enable_no_resched();
355 		return 1;
356 	}
357 
358 	if (p->ainsn.boostable >= 0) {
359 		ret = try_to_emulate(p, regs);
360 
361 		if (ret > 0) {
362 			if (p->post_handler)
363 				p->post_handler(p, regs, 0);
364 
365 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
366 			reset_current_kprobe();
367 			preempt_enable_no_resched();
368 			return 1;
369 		}
370 	}
371 	prepare_singlestep(p, regs);
372 	kcb->kprobe_status = KPROBE_HIT_SS;
373 	return 1;
374 
375 no_kprobe:
376 	preempt_enable_no_resched();
377 	return ret;
378 }
379 NOKPROBE_SYMBOL(kprobe_handler);
380 
381 /*
382  * Function return probe trampoline:
383  * 	- init_kprobes() establishes a probepoint here
384  * 	- When the probed function returns, this probe
385  * 		causes the handlers to fire
386  */
387 asm(".global kretprobe_trampoline\n"
388 	".type kretprobe_trampoline, @function\n"
389 	"kretprobe_trampoline:\n"
390 	"nop\n"
391 	"blr\n"
392 	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
393 
394 /*
395  * Called when the probe at kretprobe trampoline is hit
396  */
397 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
398 {
399 	struct kretprobe_instance *ri = NULL;
400 	struct hlist_head *head, empty_rp;
401 	struct hlist_node *tmp;
402 	unsigned long flags, orig_ret_address = 0;
403 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
404 
405 	INIT_HLIST_HEAD(&empty_rp);
406 	kretprobe_hash_lock(current, &head, &flags);
407 
408 	/*
409 	 * It is possible to have multiple instances associated with a given
410 	 * task either because an multiple functions in the call path
411 	 * have a return probe installed on them, and/or more than one return
412 	 * return probe was registered for a target function.
413 	 *
414 	 * We can handle this because:
415 	 *     - instances are always inserted at the head of the list
416 	 *     - when multiple return probes are registered for the same
417 	 *       function, the first instance's ret_addr will point to the
418 	 *       real return address, and all the rest will point to
419 	 *       kretprobe_trampoline
420 	 */
421 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422 		if (ri->task != current)
423 			/* another task is sharing our hash bucket */
424 			continue;
425 
426 		if (ri->rp && ri->rp->handler)
427 			ri->rp->handler(ri, regs);
428 
429 		orig_ret_address = (unsigned long)ri->ret_addr;
430 		recycle_rp_inst(ri, &empty_rp);
431 
432 		if (orig_ret_address != trampoline_address)
433 			/*
434 			 * This is the real return address. Any other
435 			 * instances associated with this task are for
436 			 * other calls deeper on the call stack
437 			 */
438 			break;
439 	}
440 
441 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
442 
443 	/*
444 	 * We get here through one of two paths:
445 	 * 1. by taking a trap -> kprobe_handler() -> here
446 	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
447 	 *
448 	 * When going back through (1), we need regs->nip to be setup properly
449 	 * as it is used to determine the return address from the trap.
450 	 * For (2), since nip is not honoured with optprobes, we instead setup
451 	 * the link register properly so that the subsequent 'blr' in
452 	 * kretprobe_trampoline jumps back to the right instruction.
453 	 *
454 	 * For nip, we should set the address to the previous instruction since
455 	 * we end up emulating it in kprobe_handler(), which increments the nip
456 	 * again.
457 	 */
458 	regs->nip = orig_ret_address - 4;
459 	regs->link = orig_ret_address;
460 
461 	kretprobe_hash_unlock(current, &flags);
462 
463 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
464 		hlist_del(&ri->hlist);
465 		kfree(ri);
466 	}
467 
468 	return 0;
469 }
470 NOKPROBE_SYMBOL(trampoline_probe_handler);
471 
472 /*
473  * Called after single-stepping.  p->addr is the address of the
474  * instruction whose first byte has been replaced by the "breakpoint"
475  * instruction.  To avoid the SMP problems that can occur when we
476  * temporarily put back the original opcode to single-step, we
477  * single-stepped a copy of the instruction.  The address of this
478  * copy is p->ainsn.insn.
479  */
480 int kprobe_post_handler(struct pt_regs *regs)
481 {
482 	int len;
483 	struct kprobe *cur = kprobe_running();
484 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 
486 	if (!cur || user_mode(regs))
487 		return 0;
488 
489 	len = ppc_inst_len(ppc_inst_read((struct ppc_inst *)cur->ainsn.insn));
490 	/* make sure we got here for instruction we have a kprobe on */
491 	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
492 		return 0;
493 
494 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
495 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
496 		cur->post_handler(cur, regs, 0);
497 	}
498 
499 	/* Adjust nip to after the single-stepped instruction */
500 	regs->nip = (unsigned long)cur->addr + len;
501 	regs->msr |= kcb->kprobe_saved_msr;
502 
503 	/*Restore back the original saved kprobes variables and continue. */
504 	if (kcb->kprobe_status == KPROBE_REENTER) {
505 		restore_previous_kprobe(kcb);
506 		goto out;
507 	}
508 	reset_current_kprobe();
509 out:
510 	preempt_enable_no_resched();
511 
512 	/*
513 	 * if somebody else is singlestepping across a probe point, msr
514 	 * will have DE/SE set, in which case, continue the remaining processing
515 	 * of do_debug, as if this is not a probe hit.
516 	 */
517 	if (regs->msr & MSR_SINGLESTEP)
518 		return 0;
519 
520 	return 1;
521 }
522 NOKPROBE_SYMBOL(kprobe_post_handler);
523 
524 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
525 {
526 	struct kprobe *cur = kprobe_running();
527 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528 	const struct exception_table_entry *entry;
529 
530 	switch(kcb->kprobe_status) {
531 	case KPROBE_HIT_SS:
532 	case KPROBE_REENTER:
533 		/*
534 		 * We are here because the instruction being single
535 		 * stepped caused a page fault. We reset the current
536 		 * kprobe and the nip points back to the probe address
537 		 * and allow the page fault handler to continue as a
538 		 * normal page fault.
539 		 */
540 		regs->nip = (unsigned long)cur->addr;
541 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
542 		regs->msr |= kcb->kprobe_saved_msr;
543 		if (kcb->kprobe_status == KPROBE_REENTER)
544 			restore_previous_kprobe(kcb);
545 		else
546 			reset_current_kprobe();
547 		preempt_enable_no_resched();
548 		break;
549 	case KPROBE_HIT_ACTIVE:
550 	case KPROBE_HIT_SSDONE:
551 		/*
552 		 * We increment the nmissed count for accounting,
553 		 * we can also use npre/npostfault count for accounting
554 		 * these specific fault cases.
555 		 */
556 		kprobes_inc_nmissed_count(cur);
557 
558 		/*
559 		 * We come here because instructions in the pre/post
560 		 * handler caused the page_fault, this could happen
561 		 * if handler tries to access user space by
562 		 * copy_from_user(), get_user() etc. Let the
563 		 * user-specified handler try to fix it first.
564 		 */
565 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
566 			return 1;
567 
568 		/*
569 		 * In case the user-specified fault handler returned
570 		 * zero, try to fix up.
571 		 */
572 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
573 			regs->nip = extable_fixup(entry);
574 			return 1;
575 		}
576 
577 		/*
578 		 * fixup_exception() could not handle it,
579 		 * Let do_page_fault() fix it.
580 		 */
581 		break;
582 	default:
583 		break;
584 	}
585 	return 0;
586 }
587 NOKPROBE_SYMBOL(kprobe_fault_handler);
588 
589 unsigned long arch_deref_entry_point(void *entry)
590 {
591 #ifdef PPC64_ELF_ABI_v1
592 	if (!kernel_text_address((unsigned long)entry))
593 		return ppc_global_function_entry(entry);
594 	else
595 #endif
596 		return (unsigned long)entry;
597 }
598 NOKPROBE_SYMBOL(arch_deref_entry_point);
599 
600 static struct kprobe trampoline_p = {
601 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
602 	.pre_handler = trampoline_probe_handler
603 };
604 
605 int __init arch_init_kprobes(void)
606 {
607 	return register_kprobe(&trampoline_p);
608 }
609 
610 int arch_trampoline_kprobe(struct kprobe *p)
611 {
612 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
613 		return 1;
614 
615 	return 0;
616 }
617 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
618