xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision 545e4006)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 
39 #ifdef CONFIG_BOOKE
40 #define MSR_SINGLESTEP	(MSR_DE)
41 #else
42 #define MSR_SINGLESTEP	(MSR_SE)
43 #endif
44 
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
47 
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
49 
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
51 {
52 	int ret = 0;
53 	kprobe_opcode_t insn = *p->addr;
54 
55 	if ((unsigned long)p->addr & 0x03) {
56 		printk("Attempt to register kprobe at an unaligned address\n");
57 		ret = -EINVAL;
58 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
59 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
60 		ret = -EINVAL;
61 	}
62 
63 	/* insn must be on a special executable page on ppc64.  This is
64 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
65 	if (!ret) {
66 		p->ainsn.insn = get_insn_slot();
67 		if (!p->ainsn.insn)
68 			ret = -ENOMEM;
69 	}
70 
71 	if (!ret) {
72 		memcpy(p->ainsn.insn, p->addr,
73 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74 		p->opcode = *p->addr;
75 		flush_icache_range((unsigned long)p->ainsn.insn,
76 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
77 	}
78 
79 	p->ainsn.boostable = 0;
80 	return ret;
81 }
82 
83 void __kprobes arch_arm_kprobe(struct kprobe *p)
84 {
85 	*p->addr = BREAKPOINT_INSTRUCTION;
86 	flush_icache_range((unsigned long) p->addr,
87 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
88 }
89 
90 void __kprobes arch_disarm_kprobe(struct kprobe *p)
91 {
92 	*p->addr = p->opcode;
93 	flush_icache_range((unsigned long) p->addr,
94 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
95 }
96 
97 void __kprobes arch_remove_kprobe(struct kprobe *p)
98 {
99 	mutex_lock(&kprobe_mutex);
100 	free_insn_slot(p->ainsn.insn, 0);
101 	mutex_unlock(&kprobe_mutex);
102 }
103 
104 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
105 {
106 	/* We turn off async exceptions to ensure that the single step will
107 	 * be for the instruction we have the kprobe on, if we dont its
108 	 * possible we'd get the single step reported for an exception handler
109 	 * like Decrementer or External Interrupt */
110 	regs->msr &= ~MSR_EE;
111 	regs->msr |= MSR_SINGLESTEP;
112 #ifdef CONFIG_BOOKE
113 	regs->msr &= ~MSR_CE;
114 	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
115 #endif
116 
117 	/*
118 	 * On powerpc we should single step on the original
119 	 * instruction even if the probed insn is a trap
120 	 * variant as values in regs could play a part in
121 	 * if the trap is taken or not
122 	 */
123 	regs->nip = (unsigned long)p->ainsn.insn;
124 }
125 
126 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
127 {
128 	kcb->prev_kprobe.kp = kprobe_running();
129 	kcb->prev_kprobe.status = kcb->kprobe_status;
130 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
131 }
132 
133 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
134 {
135 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
136 	kcb->kprobe_status = kcb->prev_kprobe.status;
137 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
138 }
139 
140 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
141 				struct kprobe_ctlblk *kcb)
142 {
143 	__get_cpu_var(current_kprobe) = p;
144 	kcb->kprobe_saved_msr = regs->msr;
145 }
146 
147 /* Called with kretprobe_lock held */
148 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
149 				      struct pt_regs *regs)
150 {
151 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
152 
153 	/* Replace the return addr with trampoline addr */
154 	regs->link = (unsigned long)kretprobe_trampoline;
155 }
156 
157 static int __kprobes kprobe_handler(struct pt_regs *regs)
158 {
159 	struct kprobe *p;
160 	int ret = 0;
161 	unsigned int *addr = (unsigned int *)regs->nip;
162 	struct kprobe_ctlblk *kcb;
163 
164 	/*
165 	 * We don't want to be preempted for the entire
166 	 * duration of kprobe processing
167 	 */
168 	preempt_disable();
169 	kcb = get_kprobe_ctlblk();
170 
171 	/* Check we're not actually recursing */
172 	if (kprobe_running()) {
173 		p = get_kprobe(addr);
174 		if (p) {
175 			kprobe_opcode_t insn = *p->ainsn.insn;
176 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
177 					is_trap(insn)) {
178 				/* Turn off 'trace' bits */
179 				regs->msr &= ~MSR_SINGLESTEP;
180 				regs->msr |= kcb->kprobe_saved_msr;
181 				goto no_kprobe;
182 			}
183 			/* We have reentered the kprobe_handler(), since
184 			 * another probe was hit while within the handler.
185 			 * We here save the original kprobes variables and
186 			 * just single step on the instruction of the new probe
187 			 * without calling any user handlers.
188 			 */
189 			save_previous_kprobe(kcb);
190 			set_current_kprobe(p, regs, kcb);
191 			kcb->kprobe_saved_msr = regs->msr;
192 			kprobes_inc_nmissed_count(p);
193 			prepare_singlestep(p, regs);
194 			kcb->kprobe_status = KPROBE_REENTER;
195 			return 1;
196 		} else {
197 			if (*addr != BREAKPOINT_INSTRUCTION) {
198 				/* If trap variant, then it belongs not to us */
199 				kprobe_opcode_t cur_insn = *addr;
200 				if (is_trap(cur_insn))
201 		       			goto no_kprobe;
202 				/* The breakpoint instruction was removed by
203 				 * another cpu right after we hit, no further
204 				 * handling of this interrupt is appropriate
205 				 */
206 				ret = 1;
207 				goto no_kprobe;
208 			}
209 			p = __get_cpu_var(current_kprobe);
210 			if (p->break_handler && p->break_handler(p, regs)) {
211 				goto ss_probe;
212 			}
213 		}
214 		goto no_kprobe;
215 	}
216 
217 	p = get_kprobe(addr);
218 	if (!p) {
219 		if (*addr != BREAKPOINT_INSTRUCTION) {
220 			/*
221 			 * PowerPC has multiple variants of the "trap"
222 			 * instruction. If the current instruction is a
223 			 * trap variant, it could belong to someone else
224 			 */
225 			kprobe_opcode_t cur_insn = *addr;
226 			if (is_trap(cur_insn))
227 		       		goto no_kprobe;
228 			/*
229 			 * The breakpoint instruction was removed right
230 			 * after we hit it.  Another cpu has removed
231 			 * either a probepoint or a debugger breakpoint
232 			 * at this address.  In either case, no further
233 			 * handling of this interrupt is appropriate.
234 			 */
235 			ret = 1;
236 		}
237 		/* Not one of ours: let kernel handle it */
238 		goto no_kprobe;
239 	}
240 
241 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
242 	set_current_kprobe(p, regs, kcb);
243 	if (p->pre_handler && p->pre_handler(p, regs))
244 		/* handler has already set things up, so skip ss setup */
245 		return 1;
246 
247 ss_probe:
248 	if (p->ainsn.boostable >= 0) {
249 		unsigned int insn = *p->ainsn.insn;
250 
251 		/* regs->nip is also adjusted if emulate_step returns 1 */
252 		ret = emulate_step(regs, insn);
253 		if (ret > 0) {
254 			/*
255 			 * Once this instruction has been boosted
256 			 * successfully, set the boostable flag
257 			 */
258 			if (unlikely(p->ainsn.boostable == 0))
259 				p->ainsn.boostable = 1;
260 
261 			if (p->post_handler)
262 				p->post_handler(p, regs, 0);
263 
264 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
265 			reset_current_kprobe();
266 			preempt_enable_no_resched();
267 			return 1;
268 		} else if (ret < 0) {
269 			/*
270 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
271 			 * So, we should never get here... but, its still
272 			 * good to catch them, just in case...
273 			 */
274 			printk("Can't step on instruction %x\n", insn);
275 			BUG();
276 		} else if (ret == 0)
277 			/* This instruction can't be boosted */
278 			p->ainsn.boostable = -1;
279 	}
280 	prepare_singlestep(p, regs);
281 	kcb->kprobe_status = KPROBE_HIT_SS;
282 	return 1;
283 
284 no_kprobe:
285 	preempt_enable_no_resched();
286 	return ret;
287 }
288 
289 /*
290  * Function return probe trampoline:
291  * 	- init_kprobes() establishes a probepoint here
292  * 	- When the probed function returns, this probe
293  * 		causes the handlers to fire
294  */
295 static void __used kretprobe_trampoline_holder(void)
296 {
297 	asm volatile(".global kretprobe_trampoline\n"
298 			"kretprobe_trampoline:\n"
299 			"nop\n");
300 }
301 
302 /*
303  * Called when the probe at kretprobe trampoline is hit
304  */
305 static int __kprobes trampoline_probe_handler(struct kprobe *p,
306 						struct pt_regs *regs)
307 {
308 	struct kretprobe_instance *ri = NULL;
309 	struct hlist_head *head, empty_rp;
310 	struct hlist_node *node, *tmp;
311 	unsigned long flags, orig_ret_address = 0;
312 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
313 
314 	INIT_HLIST_HEAD(&empty_rp);
315 	spin_lock_irqsave(&kretprobe_lock, flags);
316 	head = kretprobe_inst_table_head(current);
317 
318 	/*
319 	 * It is possible to have multiple instances associated with a given
320 	 * task either because an multiple functions in the call path
321 	 * have a return probe installed on them, and/or more then one return
322 	 * return probe was registered for a target function.
323 	 *
324 	 * We can handle this because:
325 	 *     - instances are always inserted at the head of the list
326 	 *     - when multiple return probes are registered for the same
327 	 *       function, the first instance's ret_addr will point to the
328 	 *       real return address, and all the rest will point to
329 	 *       kretprobe_trampoline
330 	 */
331 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
332 		if (ri->task != current)
333 			/* another task is sharing our hash bucket */
334 			continue;
335 
336 		if (ri->rp && ri->rp->handler)
337 			ri->rp->handler(ri, regs);
338 
339 		orig_ret_address = (unsigned long)ri->ret_addr;
340 		recycle_rp_inst(ri, &empty_rp);
341 
342 		if (orig_ret_address != trampoline_address)
343 			/*
344 			 * This is the real return address. Any other
345 			 * instances associated with this task are for
346 			 * other calls deeper on the call stack
347 			 */
348 			break;
349 	}
350 
351 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
352 	regs->nip = orig_ret_address;
353 
354 	reset_current_kprobe();
355 	spin_unlock_irqrestore(&kretprobe_lock, flags);
356 	preempt_enable_no_resched();
357 
358 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
359 		hlist_del(&ri->hlist);
360 		kfree(ri);
361 	}
362 	/*
363 	 * By returning a non-zero value, we are telling
364 	 * kprobe_handler() that we don't want the post_handler
365 	 * to run (and have re-enabled preemption)
366 	 */
367 	return 1;
368 }
369 
370 /*
371  * Called after single-stepping.  p->addr is the address of the
372  * instruction whose first byte has been replaced by the "breakpoint"
373  * instruction.  To avoid the SMP problems that can occur when we
374  * temporarily put back the original opcode to single-step, we
375  * single-stepped a copy of the instruction.  The address of this
376  * copy is p->ainsn.insn.
377  */
378 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
379 {
380 	int ret;
381 	unsigned int insn = *p->ainsn.insn;
382 
383 	regs->nip = (unsigned long)p->addr;
384 	ret = emulate_step(regs, insn);
385 	if (ret == 0)
386 		regs->nip = (unsigned long)p->addr + 4;
387 }
388 
389 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
390 {
391 	struct kprobe *cur = kprobe_running();
392 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393 
394 	if (!cur)
395 		return 0;
396 
397 	/* make sure we got here for instruction we have a kprobe on */
398 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
399 		return 0;
400 
401 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
402 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
403 		cur->post_handler(cur, regs, 0);
404 	}
405 
406 	resume_execution(cur, regs);
407 	regs->msr |= kcb->kprobe_saved_msr;
408 
409 	/*Restore back the original saved kprobes variables and continue. */
410 	if (kcb->kprobe_status == KPROBE_REENTER) {
411 		restore_previous_kprobe(kcb);
412 		goto out;
413 	}
414 	reset_current_kprobe();
415 out:
416 	preempt_enable_no_resched();
417 
418 	/*
419 	 * if somebody else is singlestepping across a probe point, msr
420 	 * will have DE/SE set, in which case, continue the remaining processing
421 	 * of do_debug, as if this is not a probe hit.
422 	 */
423 	if (regs->msr & MSR_SINGLESTEP)
424 		return 0;
425 
426 	return 1;
427 }
428 
429 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
430 {
431 	struct kprobe *cur = kprobe_running();
432 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
433 	const struct exception_table_entry *entry;
434 
435 	switch(kcb->kprobe_status) {
436 	case KPROBE_HIT_SS:
437 	case KPROBE_REENTER:
438 		/*
439 		 * We are here because the instruction being single
440 		 * stepped caused a page fault. We reset the current
441 		 * kprobe and the nip points back to the probe address
442 		 * and allow the page fault handler to continue as a
443 		 * normal page fault.
444 		 */
445 		regs->nip = (unsigned long)cur->addr;
446 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
447 		regs->msr |= kcb->kprobe_saved_msr;
448 		if (kcb->kprobe_status == KPROBE_REENTER)
449 			restore_previous_kprobe(kcb);
450 		else
451 			reset_current_kprobe();
452 		preempt_enable_no_resched();
453 		break;
454 	case KPROBE_HIT_ACTIVE:
455 	case KPROBE_HIT_SSDONE:
456 		/*
457 		 * We increment the nmissed count for accounting,
458 		 * we can also use npre/npostfault count for accouting
459 		 * these specific fault cases.
460 		 */
461 		kprobes_inc_nmissed_count(cur);
462 
463 		/*
464 		 * We come here because instructions in the pre/post
465 		 * handler caused the page_fault, this could happen
466 		 * if handler tries to access user space by
467 		 * copy_from_user(), get_user() etc. Let the
468 		 * user-specified handler try to fix it first.
469 		 */
470 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
471 			return 1;
472 
473 		/*
474 		 * In case the user-specified fault handler returned
475 		 * zero, try to fix up.
476 		 */
477 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
478 			regs->nip = entry->fixup;
479 			return 1;
480 		}
481 
482 		/*
483 		 * fixup_exception() could not handle it,
484 		 * Let do_page_fault() fix it.
485 		 */
486 		break;
487 	default:
488 		break;
489 	}
490 	return 0;
491 }
492 
493 /*
494  * Wrapper routine to for handling exceptions.
495  */
496 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
497 				       unsigned long val, void *data)
498 {
499 	struct die_args *args = (struct die_args *)data;
500 	int ret = NOTIFY_DONE;
501 
502 	if (args->regs && user_mode(args->regs))
503 		return ret;
504 
505 	switch (val) {
506 	case DIE_BPT:
507 		if (kprobe_handler(args->regs))
508 			ret = NOTIFY_STOP;
509 		break;
510 	case DIE_SSTEP:
511 		if (post_kprobe_handler(args->regs))
512 			ret = NOTIFY_STOP;
513 		break;
514 	default:
515 		break;
516 	}
517 	return ret;
518 }
519 
520 #ifdef CONFIG_PPC64
521 unsigned long arch_deref_entry_point(void *entry)
522 {
523 	return ((func_descr_t *)entry)->entry;
524 }
525 #endif
526 
527 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
528 {
529 	struct jprobe *jp = container_of(p, struct jprobe, kp);
530 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
531 
532 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
533 
534 	/* setup return addr to the jprobe handler routine */
535 	regs->nip = arch_deref_entry_point(jp->entry);
536 #ifdef CONFIG_PPC64
537 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
538 #endif
539 
540 	return 1;
541 }
542 
543 void __used __kprobes jprobe_return(void)
544 {
545 	asm volatile("trap" ::: "memory");
546 }
547 
548 static void __used __kprobes jprobe_return_end(void)
549 {
550 };
551 
552 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
553 {
554 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
555 
556 	/*
557 	 * FIXME - we should ideally be validating that we got here 'cos
558 	 * of the "trap" in jprobe_return() above, before restoring the
559 	 * saved regs...
560 	 */
561 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
562 	preempt_enable_no_resched();
563 	return 1;
564 }
565 
566 static struct kprobe trampoline_p = {
567 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
568 	.pre_handler = trampoline_probe_handler
569 };
570 
571 int __init arch_init_kprobes(void)
572 {
573 	return register_kprobe(&trampoline_p);
574 }
575 
576 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
577 {
578 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
579 		return 1;
580 
581 	return 0;
582 }
583