xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision 2359ccdd)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/sections.h>
39 #include <linux/uaccess.h>
40 
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45 
46 bool arch_within_kprobe_blacklist(unsigned long addr)
47 {
48 	return  (addr >= (unsigned long)__kprobes_text_start &&
49 		 addr < (unsigned long)__kprobes_text_end) ||
50 		(addr >= (unsigned long)_stext &&
51 		 addr < (unsigned long)__head_end);
52 }
53 
54 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
55 {
56 	kprobe_opcode_t *addr = NULL;
57 
58 #ifdef PPC64_ELF_ABI_v2
59 	/* PPC64 ABIv2 needs local entry point */
60 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
61 	if (addr && !offset) {
62 #ifdef CONFIG_KPROBES_ON_FTRACE
63 		unsigned long faddr;
64 		/*
65 		 * Per livepatch.h, ftrace location is always within the first
66 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
67 		 */
68 		faddr = ftrace_location_range((unsigned long)addr,
69 					      (unsigned long)addr + 16);
70 		if (faddr)
71 			addr = (kprobe_opcode_t *)faddr;
72 		else
73 #endif
74 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
75 	}
76 #elif defined(PPC64_ELF_ABI_v1)
77 	/*
78 	 * 64bit powerpc ABIv1 uses function descriptors:
79 	 * - Check for the dot variant of the symbol first.
80 	 * - If that fails, try looking up the symbol provided.
81 	 *
82 	 * This ensures we always get to the actual symbol and not
83 	 * the descriptor.
84 	 *
85 	 * Also handle <module:symbol> format.
86 	 */
87 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
88 	bool dot_appended = false;
89 	const char *c;
90 	ssize_t ret = 0;
91 	int len = 0;
92 
93 	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
94 		c++;
95 		len = c - name;
96 		memcpy(dot_name, name, len);
97 	} else
98 		c = name;
99 
100 	if (*c != '\0' && *c != '.') {
101 		dot_name[len++] = '.';
102 		dot_appended = true;
103 	}
104 	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
105 	if (ret > 0)
106 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
107 
108 	/* Fallback to the original non-dot symbol lookup */
109 	if (!addr && dot_appended)
110 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
111 #else
112 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
113 #endif
114 
115 	return addr;
116 }
117 
118 int arch_prepare_kprobe(struct kprobe *p)
119 {
120 	int ret = 0;
121 	kprobe_opcode_t insn = *p->addr;
122 
123 	if ((unsigned long)p->addr & 0x03) {
124 		printk("Attempt to register kprobe at an unaligned address\n");
125 		ret = -EINVAL;
126 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
127 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
128 		ret = -EINVAL;
129 	}
130 
131 	/* insn must be on a special executable page on ppc64.  This is
132 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
133 	if (!ret) {
134 		p->ainsn.insn = get_insn_slot();
135 		if (!p->ainsn.insn)
136 			ret = -ENOMEM;
137 	}
138 
139 	if (!ret) {
140 		memcpy(p->ainsn.insn, p->addr,
141 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
142 		p->opcode = *p->addr;
143 		flush_icache_range((unsigned long)p->ainsn.insn,
144 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
145 	}
146 
147 	p->ainsn.boostable = 0;
148 	return ret;
149 }
150 NOKPROBE_SYMBOL(arch_prepare_kprobe);
151 
152 void arch_arm_kprobe(struct kprobe *p)
153 {
154 	patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
155 }
156 NOKPROBE_SYMBOL(arch_arm_kprobe);
157 
158 void arch_disarm_kprobe(struct kprobe *p)
159 {
160 	patch_instruction(p->addr, p->opcode);
161 }
162 NOKPROBE_SYMBOL(arch_disarm_kprobe);
163 
164 void arch_remove_kprobe(struct kprobe *p)
165 {
166 	if (p->ainsn.insn) {
167 		free_insn_slot(p->ainsn.insn, 0);
168 		p->ainsn.insn = NULL;
169 	}
170 }
171 NOKPROBE_SYMBOL(arch_remove_kprobe);
172 
173 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
174 {
175 	enable_single_step(regs);
176 
177 	/*
178 	 * On powerpc we should single step on the original
179 	 * instruction even if the probed insn is a trap
180 	 * variant as values in regs could play a part in
181 	 * if the trap is taken or not
182 	 */
183 	regs->nip = (unsigned long)p->ainsn.insn;
184 }
185 
186 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
187 {
188 	kcb->prev_kprobe.kp = kprobe_running();
189 	kcb->prev_kprobe.status = kcb->kprobe_status;
190 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
191 }
192 
193 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
194 {
195 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
196 	kcb->kprobe_status = kcb->prev_kprobe.status;
197 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
198 }
199 
200 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
201 				struct kprobe_ctlblk *kcb)
202 {
203 	__this_cpu_write(current_kprobe, p);
204 	kcb->kprobe_saved_msr = regs->msr;
205 }
206 
207 bool arch_kprobe_on_func_entry(unsigned long offset)
208 {
209 #ifdef PPC64_ELF_ABI_v2
210 #ifdef CONFIG_KPROBES_ON_FTRACE
211 	return offset <= 16;
212 #else
213 	return offset <= 8;
214 #endif
215 #else
216 	return !offset;
217 #endif
218 }
219 
220 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
221 {
222 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
223 
224 	/* Replace the return addr with trampoline addr */
225 	regs->link = (unsigned long)kretprobe_trampoline;
226 }
227 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
228 
229 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
230 {
231 	int ret;
232 	unsigned int insn = *p->ainsn.insn;
233 
234 	/* regs->nip is also adjusted if emulate_step returns 1 */
235 	ret = emulate_step(regs, insn);
236 	if (ret > 0) {
237 		/*
238 		 * Once this instruction has been boosted
239 		 * successfully, set the boostable flag
240 		 */
241 		if (unlikely(p->ainsn.boostable == 0))
242 			p->ainsn.boostable = 1;
243 	} else if (ret < 0) {
244 		/*
245 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
246 		 * So, we should never get here... but, its still
247 		 * good to catch them, just in case...
248 		 */
249 		printk("Can't step on instruction %x\n", insn);
250 		BUG();
251 	} else {
252 		/*
253 		 * If we haven't previously emulated this instruction, then it
254 		 * can't be boosted. Note it down so we don't try to do so again.
255 		 *
256 		 * If, however, we had emulated this instruction in the past,
257 		 * then this is just an error with the current run (for
258 		 * instance, exceptions due to a load/store). We return 0 so
259 		 * that this is now single-stepped, but continue to try
260 		 * emulating it in subsequent probe hits.
261 		 */
262 		if (unlikely(p->ainsn.boostable != 1))
263 			p->ainsn.boostable = -1;
264 	}
265 
266 	return ret;
267 }
268 NOKPROBE_SYMBOL(try_to_emulate);
269 
270 int kprobe_handler(struct pt_regs *regs)
271 {
272 	struct kprobe *p;
273 	int ret = 0;
274 	unsigned int *addr = (unsigned int *)regs->nip;
275 	struct kprobe_ctlblk *kcb;
276 
277 	if (user_mode(regs))
278 		return 0;
279 
280 	/*
281 	 * We don't want to be preempted for the entire
282 	 * duration of kprobe processing
283 	 */
284 	preempt_disable();
285 	kcb = get_kprobe_ctlblk();
286 
287 	/* Check we're not actually recursing */
288 	if (kprobe_running()) {
289 		p = get_kprobe(addr);
290 		if (p) {
291 			kprobe_opcode_t insn = *p->ainsn.insn;
292 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
293 					is_trap(insn)) {
294 				/* Turn off 'trace' bits */
295 				regs->msr &= ~MSR_SINGLESTEP;
296 				regs->msr |= kcb->kprobe_saved_msr;
297 				goto no_kprobe;
298 			}
299 			/* We have reentered the kprobe_handler(), since
300 			 * another probe was hit while within the handler.
301 			 * We here save the original kprobes variables and
302 			 * just single step on the instruction of the new probe
303 			 * without calling any user handlers.
304 			 */
305 			save_previous_kprobe(kcb);
306 			set_current_kprobe(p, regs, kcb);
307 			kprobes_inc_nmissed_count(p);
308 			kcb->kprobe_status = KPROBE_REENTER;
309 			if (p->ainsn.boostable >= 0) {
310 				ret = try_to_emulate(p, regs);
311 
312 				if (ret > 0) {
313 					restore_previous_kprobe(kcb);
314 					preempt_enable_no_resched();
315 					return 1;
316 				}
317 			}
318 			prepare_singlestep(p, regs);
319 			return 1;
320 		} else {
321 			if (*addr != BREAKPOINT_INSTRUCTION) {
322 				/* If trap variant, then it belongs not to us */
323 				kprobe_opcode_t cur_insn = *addr;
324 				if (is_trap(cur_insn))
325 		       			goto no_kprobe;
326 				/* The breakpoint instruction was removed by
327 				 * another cpu right after we hit, no further
328 				 * handling of this interrupt is appropriate
329 				 */
330 				ret = 1;
331 				goto no_kprobe;
332 			}
333 			p = __this_cpu_read(current_kprobe);
334 			if (p->break_handler && p->break_handler(p, regs)) {
335 				if (!skip_singlestep(p, regs, kcb))
336 					goto ss_probe;
337 				ret = 1;
338 			}
339 		}
340 		goto no_kprobe;
341 	}
342 
343 	p = get_kprobe(addr);
344 	if (!p) {
345 		if (*addr != BREAKPOINT_INSTRUCTION) {
346 			/*
347 			 * PowerPC has multiple variants of the "trap"
348 			 * instruction. If the current instruction is a
349 			 * trap variant, it could belong to someone else
350 			 */
351 			kprobe_opcode_t cur_insn = *addr;
352 			if (is_trap(cur_insn))
353 		       		goto no_kprobe;
354 			/*
355 			 * The breakpoint instruction was removed right
356 			 * after we hit it.  Another cpu has removed
357 			 * either a probepoint or a debugger breakpoint
358 			 * at this address.  In either case, no further
359 			 * handling of this interrupt is appropriate.
360 			 */
361 			ret = 1;
362 		}
363 		/* Not one of ours: let kernel handle it */
364 		goto no_kprobe;
365 	}
366 
367 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
368 	set_current_kprobe(p, regs, kcb);
369 	if (p->pre_handler && p->pre_handler(p, regs))
370 		/* handler has already set things up, so skip ss setup */
371 		return 1;
372 
373 ss_probe:
374 	if (p->ainsn.boostable >= 0) {
375 		ret = try_to_emulate(p, regs);
376 
377 		if (ret > 0) {
378 			if (p->post_handler)
379 				p->post_handler(p, regs, 0);
380 
381 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
382 			reset_current_kprobe();
383 			preempt_enable_no_resched();
384 			return 1;
385 		}
386 	}
387 	prepare_singlestep(p, regs);
388 	kcb->kprobe_status = KPROBE_HIT_SS;
389 	return 1;
390 
391 no_kprobe:
392 	preempt_enable_no_resched();
393 	return ret;
394 }
395 NOKPROBE_SYMBOL(kprobe_handler);
396 
397 /*
398  * Function return probe trampoline:
399  * 	- init_kprobes() establishes a probepoint here
400  * 	- When the probed function returns, this probe
401  * 		causes the handlers to fire
402  */
403 asm(".global kretprobe_trampoline\n"
404 	".type kretprobe_trampoline, @function\n"
405 	"kretprobe_trampoline:\n"
406 	"nop\n"
407 	"blr\n"
408 	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
409 
410 /*
411  * Called when the probe at kretprobe trampoline is hit
412  */
413 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
414 {
415 	struct kretprobe_instance *ri = NULL;
416 	struct hlist_head *head, empty_rp;
417 	struct hlist_node *tmp;
418 	unsigned long flags, orig_ret_address = 0;
419 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
420 
421 	INIT_HLIST_HEAD(&empty_rp);
422 	kretprobe_hash_lock(current, &head, &flags);
423 
424 	/*
425 	 * It is possible to have multiple instances associated with a given
426 	 * task either because an multiple functions in the call path
427 	 * have a return probe installed on them, and/or more than one return
428 	 * return probe was registered for a target function.
429 	 *
430 	 * We can handle this because:
431 	 *     - instances are always inserted at the head of the list
432 	 *     - when multiple return probes are registered for the same
433 	 *       function, the first instance's ret_addr will point to the
434 	 *       real return address, and all the rest will point to
435 	 *       kretprobe_trampoline
436 	 */
437 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
438 		if (ri->task != current)
439 			/* another task is sharing our hash bucket */
440 			continue;
441 
442 		if (ri->rp && ri->rp->handler)
443 			ri->rp->handler(ri, regs);
444 
445 		orig_ret_address = (unsigned long)ri->ret_addr;
446 		recycle_rp_inst(ri, &empty_rp);
447 
448 		if (orig_ret_address != trampoline_address)
449 			/*
450 			 * This is the real return address. Any other
451 			 * instances associated with this task are for
452 			 * other calls deeper on the call stack
453 			 */
454 			break;
455 	}
456 
457 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
458 
459 	/*
460 	 * We get here through one of two paths:
461 	 * 1. by taking a trap -> kprobe_handler() -> here
462 	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
463 	 *
464 	 * When going back through (1), we need regs->nip to be setup properly
465 	 * as it is used to determine the return address from the trap.
466 	 * For (2), since nip is not honoured with optprobes, we instead setup
467 	 * the link register properly so that the subsequent 'blr' in
468 	 * kretprobe_trampoline jumps back to the right instruction.
469 	 *
470 	 * For nip, we should set the address to the previous instruction since
471 	 * we end up emulating it in kprobe_handler(), which increments the nip
472 	 * again.
473 	 */
474 	regs->nip = orig_ret_address - 4;
475 	regs->link = orig_ret_address;
476 
477 	kretprobe_hash_unlock(current, &flags);
478 
479 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
480 		hlist_del(&ri->hlist);
481 		kfree(ri);
482 	}
483 
484 	return 0;
485 }
486 NOKPROBE_SYMBOL(trampoline_probe_handler);
487 
488 /*
489  * Called after single-stepping.  p->addr is the address of the
490  * instruction whose first byte has been replaced by the "breakpoint"
491  * instruction.  To avoid the SMP problems that can occur when we
492  * temporarily put back the original opcode to single-step, we
493  * single-stepped a copy of the instruction.  The address of this
494  * copy is p->ainsn.insn.
495  */
496 int kprobe_post_handler(struct pt_regs *regs)
497 {
498 	struct kprobe *cur = kprobe_running();
499 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500 
501 	if (!cur || user_mode(regs))
502 		return 0;
503 
504 	/* make sure we got here for instruction we have a kprobe on */
505 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
506 		return 0;
507 
508 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
509 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
510 		cur->post_handler(cur, regs, 0);
511 	}
512 
513 	/* Adjust nip to after the single-stepped instruction */
514 	regs->nip = (unsigned long)cur->addr + 4;
515 	regs->msr |= kcb->kprobe_saved_msr;
516 
517 	/*Restore back the original saved kprobes variables and continue. */
518 	if (kcb->kprobe_status == KPROBE_REENTER) {
519 		restore_previous_kprobe(kcb);
520 		goto out;
521 	}
522 	reset_current_kprobe();
523 out:
524 	preempt_enable_no_resched();
525 
526 	/*
527 	 * if somebody else is singlestepping across a probe point, msr
528 	 * will have DE/SE set, in which case, continue the remaining processing
529 	 * of do_debug, as if this is not a probe hit.
530 	 */
531 	if (regs->msr & MSR_SINGLESTEP)
532 		return 0;
533 
534 	return 1;
535 }
536 NOKPROBE_SYMBOL(kprobe_post_handler);
537 
538 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
539 {
540 	struct kprobe *cur = kprobe_running();
541 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542 	const struct exception_table_entry *entry;
543 
544 	switch(kcb->kprobe_status) {
545 	case KPROBE_HIT_SS:
546 	case KPROBE_REENTER:
547 		/*
548 		 * We are here because the instruction being single
549 		 * stepped caused a page fault. We reset the current
550 		 * kprobe and the nip points back to the probe address
551 		 * and allow the page fault handler to continue as a
552 		 * normal page fault.
553 		 */
554 		regs->nip = (unsigned long)cur->addr;
555 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
556 		regs->msr |= kcb->kprobe_saved_msr;
557 		if (kcb->kprobe_status == KPROBE_REENTER)
558 			restore_previous_kprobe(kcb);
559 		else
560 			reset_current_kprobe();
561 		preempt_enable_no_resched();
562 		break;
563 	case KPROBE_HIT_ACTIVE:
564 	case KPROBE_HIT_SSDONE:
565 		/*
566 		 * We increment the nmissed count for accounting,
567 		 * we can also use npre/npostfault count for accounting
568 		 * these specific fault cases.
569 		 */
570 		kprobes_inc_nmissed_count(cur);
571 
572 		/*
573 		 * We come here because instructions in the pre/post
574 		 * handler caused the page_fault, this could happen
575 		 * if handler tries to access user space by
576 		 * copy_from_user(), get_user() etc. Let the
577 		 * user-specified handler try to fix it first.
578 		 */
579 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
580 			return 1;
581 
582 		/*
583 		 * In case the user-specified fault handler returned
584 		 * zero, try to fix up.
585 		 */
586 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
587 			regs->nip = extable_fixup(entry);
588 			return 1;
589 		}
590 
591 		/*
592 		 * fixup_exception() could not handle it,
593 		 * Let do_page_fault() fix it.
594 		 */
595 		break;
596 	default:
597 		break;
598 	}
599 	return 0;
600 }
601 NOKPROBE_SYMBOL(kprobe_fault_handler);
602 
603 unsigned long arch_deref_entry_point(void *entry)
604 {
605 #ifdef PPC64_ELF_ABI_v1
606 	if (!kernel_text_address((unsigned long)entry))
607 		return ppc_global_function_entry(entry);
608 	else
609 #endif
610 		return (unsigned long)entry;
611 }
612 NOKPROBE_SYMBOL(arch_deref_entry_point);
613 
614 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615 {
616 	struct jprobe *jp = container_of(p, struct jprobe, kp);
617 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618 
619 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
620 
621 	/* setup return addr to the jprobe handler routine */
622 	regs->nip = arch_deref_entry_point(jp->entry);
623 #ifdef PPC64_ELF_ABI_v2
624 	regs->gpr[12] = (unsigned long)jp->entry;
625 #elif defined(PPC64_ELF_ABI_v1)
626 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
627 #endif
628 
629 	/*
630 	 * jprobes use jprobe_return() which skips the normal return
631 	 * path of the function, and this messes up the accounting of the
632 	 * function graph tracer.
633 	 *
634 	 * Pause function graph tracing while performing the jprobe function.
635 	 */
636 	pause_graph_tracing();
637 
638 	return 1;
639 }
640 NOKPROBE_SYMBOL(setjmp_pre_handler);
641 
642 void __used jprobe_return(void)
643 {
644 	asm volatile("jprobe_return_trap:\n"
645 		     "trap\n"
646 		     ::: "memory");
647 }
648 NOKPROBE_SYMBOL(jprobe_return);
649 
650 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
651 {
652 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
653 
654 	if (regs->nip != ppc_kallsyms_lookup_name("jprobe_return_trap")) {
655 		pr_debug("longjmp_break_handler NIP (0x%lx) does not match jprobe_return_trap (0x%lx)\n",
656 				regs->nip, ppc_kallsyms_lookup_name("jprobe_return_trap"));
657 		return 0;
658 	}
659 
660 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
661 	/* It's OK to start function graph tracing again */
662 	unpause_graph_tracing();
663 	preempt_enable_no_resched();
664 	return 1;
665 }
666 NOKPROBE_SYMBOL(longjmp_break_handler);
667 
668 static struct kprobe trampoline_p = {
669 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
670 	.pre_handler = trampoline_probe_handler
671 };
672 
673 int __init arch_init_kprobes(void)
674 {
675 	return register_kprobe(&trampoline_p);
676 }
677 
678 int arch_trampoline_kprobe(struct kprobe *p)
679 {
680 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
681 		return 1;
682 
683 	return 0;
684 }
685 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
686