1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/extable.h> 33 #include <linux/kdebug.h> 34 #include <linux/slab.h> 35 #include <asm/code-patching.h> 36 #include <asm/cacheflush.h> 37 #include <asm/sstep.h> 38 #include <linux/uaccess.h> 39 40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 42 43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 44 45 int __kprobes arch_prepare_kprobe(struct kprobe *p) 46 { 47 int ret = 0; 48 kprobe_opcode_t insn = *p->addr; 49 50 if ((unsigned long)p->addr & 0x03) { 51 printk("Attempt to register kprobe at an unaligned address\n"); 52 ret = -EINVAL; 53 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 54 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 55 ret = -EINVAL; 56 } 57 58 /* insn must be on a special executable page on ppc64. This is 59 * not explicitly required on ppc32 (right now), but it doesn't hurt */ 60 if (!ret) { 61 p->ainsn.insn = get_insn_slot(); 62 if (!p->ainsn.insn) 63 ret = -ENOMEM; 64 } 65 66 if (!ret) { 67 memcpy(p->ainsn.insn, p->addr, 68 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 69 p->opcode = *p->addr; 70 flush_icache_range((unsigned long)p->ainsn.insn, 71 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 72 } 73 74 p->ainsn.boostable = 0; 75 return ret; 76 } 77 78 void __kprobes arch_arm_kprobe(struct kprobe *p) 79 { 80 *p->addr = BREAKPOINT_INSTRUCTION; 81 flush_icache_range((unsigned long) p->addr, 82 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 83 } 84 85 void __kprobes arch_disarm_kprobe(struct kprobe *p) 86 { 87 *p->addr = p->opcode; 88 flush_icache_range((unsigned long) p->addr, 89 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 90 } 91 92 void __kprobes arch_remove_kprobe(struct kprobe *p) 93 { 94 if (p->ainsn.insn) { 95 free_insn_slot(p->ainsn.insn, 0); 96 p->ainsn.insn = NULL; 97 } 98 } 99 100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 101 { 102 enable_single_step(regs); 103 104 /* 105 * On powerpc we should single step on the original 106 * instruction even if the probed insn is a trap 107 * variant as values in regs could play a part in 108 * if the trap is taken or not 109 */ 110 regs->nip = (unsigned long)p->ainsn.insn; 111 } 112 113 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 114 { 115 kcb->prev_kprobe.kp = kprobe_running(); 116 kcb->prev_kprobe.status = kcb->kprobe_status; 117 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 118 } 119 120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 121 { 122 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 123 kcb->kprobe_status = kcb->prev_kprobe.status; 124 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 125 } 126 127 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 128 struct kprobe_ctlblk *kcb) 129 { 130 __this_cpu_write(current_kprobe, p); 131 kcb->kprobe_saved_msr = regs->msr; 132 } 133 134 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 135 struct pt_regs *regs) 136 { 137 ri->ret_addr = (kprobe_opcode_t *)regs->link; 138 139 /* Replace the return addr with trampoline addr */ 140 regs->link = (unsigned long)kretprobe_trampoline; 141 } 142 143 int __kprobes kprobe_handler(struct pt_regs *regs) 144 { 145 struct kprobe *p; 146 int ret = 0; 147 unsigned int *addr = (unsigned int *)regs->nip; 148 struct kprobe_ctlblk *kcb; 149 150 if (user_mode(regs)) 151 return 0; 152 153 /* 154 * We don't want to be preempted for the entire 155 * duration of kprobe processing 156 */ 157 preempt_disable(); 158 kcb = get_kprobe_ctlblk(); 159 160 /* Check we're not actually recursing */ 161 if (kprobe_running()) { 162 p = get_kprobe(addr); 163 if (p) { 164 kprobe_opcode_t insn = *p->ainsn.insn; 165 if (kcb->kprobe_status == KPROBE_HIT_SS && 166 is_trap(insn)) { 167 /* Turn off 'trace' bits */ 168 regs->msr &= ~MSR_SINGLESTEP; 169 regs->msr |= kcb->kprobe_saved_msr; 170 goto no_kprobe; 171 } 172 /* We have reentered the kprobe_handler(), since 173 * another probe was hit while within the handler. 174 * We here save the original kprobes variables and 175 * just single step on the instruction of the new probe 176 * without calling any user handlers. 177 */ 178 save_previous_kprobe(kcb); 179 set_current_kprobe(p, regs, kcb); 180 kcb->kprobe_saved_msr = regs->msr; 181 kprobes_inc_nmissed_count(p); 182 prepare_singlestep(p, regs); 183 kcb->kprobe_status = KPROBE_REENTER; 184 return 1; 185 } else { 186 if (*addr != BREAKPOINT_INSTRUCTION) { 187 /* If trap variant, then it belongs not to us */ 188 kprobe_opcode_t cur_insn = *addr; 189 if (is_trap(cur_insn)) 190 goto no_kprobe; 191 /* The breakpoint instruction was removed by 192 * another cpu right after we hit, no further 193 * handling of this interrupt is appropriate 194 */ 195 ret = 1; 196 goto no_kprobe; 197 } 198 p = __this_cpu_read(current_kprobe); 199 if (p->break_handler && p->break_handler(p, regs)) { 200 goto ss_probe; 201 } 202 } 203 goto no_kprobe; 204 } 205 206 p = get_kprobe(addr); 207 if (!p) { 208 if (*addr != BREAKPOINT_INSTRUCTION) { 209 /* 210 * PowerPC has multiple variants of the "trap" 211 * instruction. If the current instruction is a 212 * trap variant, it could belong to someone else 213 */ 214 kprobe_opcode_t cur_insn = *addr; 215 if (is_trap(cur_insn)) 216 goto no_kprobe; 217 /* 218 * The breakpoint instruction was removed right 219 * after we hit it. Another cpu has removed 220 * either a probepoint or a debugger breakpoint 221 * at this address. In either case, no further 222 * handling of this interrupt is appropriate. 223 */ 224 ret = 1; 225 } 226 /* Not one of ours: let kernel handle it */ 227 goto no_kprobe; 228 } 229 230 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 231 set_current_kprobe(p, regs, kcb); 232 if (p->pre_handler && p->pre_handler(p, regs)) 233 /* handler has already set things up, so skip ss setup */ 234 return 1; 235 236 ss_probe: 237 if (p->ainsn.boostable >= 0) { 238 unsigned int insn = *p->ainsn.insn; 239 240 /* regs->nip is also adjusted if emulate_step returns 1 */ 241 ret = emulate_step(regs, insn); 242 if (ret > 0) { 243 /* 244 * Once this instruction has been boosted 245 * successfully, set the boostable flag 246 */ 247 if (unlikely(p->ainsn.boostable == 0)) 248 p->ainsn.boostable = 1; 249 250 if (p->post_handler) 251 p->post_handler(p, regs, 0); 252 253 kcb->kprobe_status = KPROBE_HIT_SSDONE; 254 reset_current_kprobe(); 255 preempt_enable_no_resched(); 256 return 1; 257 } else if (ret < 0) { 258 /* 259 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 260 * So, we should never get here... but, its still 261 * good to catch them, just in case... 262 */ 263 printk("Can't step on instruction %x\n", insn); 264 BUG(); 265 } else if (ret == 0) 266 /* This instruction can't be boosted */ 267 p->ainsn.boostable = -1; 268 } 269 prepare_singlestep(p, regs); 270 kcb->kprobe_status = KPROBE_HIT_SS; 271 return 1; 272 273 no_kprobe: 274 preempt_enable_no_resched(); 275 return ret; 276 } 277 278 /* 279 * Function return probe trampoline: 280 * - init_kprobes() establishes a probepoint here 281 * - When the probed function returns, this probe 282 * causes the handlers to fire 283 */ 284 asm(".global kretprobe_trampoline\n" 285 ".type kretprobe_trampoline, @function\n" 286 "kretprobe_trampoline:\n" 287 "nop\n" 288 "blr\n" 289 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"); 290 291 /* 292 * Called when the probe at kretprobe trampoline is hit 293 */ 294 static int __kprobes trampoline_probe_handler(struct kprobe *p, 295 struct pt_regs *regs) 296 { 297 struct kretprobe_instance *ri = NULL; 298 struct hlist_head *head, empty_rp; 299 struct hlist_node *tmp; 300 unsigned long flags, orig_ret_address = 0; 301 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 302 303 INIT_HLIST_HEAD(&empty_rp); 304 kretprobe_hash_lock(current, &head, &flags); 305 306 /* 307 * It is possible to have multiple instances associated with a given 308 * task either because an multiple functions in the call path 309 * have a return probe installed on them, and/or more than one return 310 * return probe was registered for a target function. 311 * 312 * We can handle this because: 313 * - instances are always inserted at the head of the list 314 * - when multiple return probes are registered for the same 315 * function, the first instance's ret_addr will point to the 316 * real return address, and all the rest will point to 317 * kretprobe_trampoline 318 */ 319 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 320 if (ri->task != current) 321 /* another task is sharing our hash bucket */ 322 continue; 323 324 if (ri->rp && ri->rp->handler) 325 ri->rp->handler(ri, regs); 326 327 orig_ret_address = (unsigned long)ri->ret_addr; 328 recycle_rp_inst(ri, &empty_rp); 329 330 if (orig_ret_address != trampoline_address) 331 /* 332 * This is the real return address. Any other 333 * instances associated with this task are for 334 * other calls deeper on the call stack 335 */ 336 break; 337 } 338 339 kretprobe_assert(ri, orig_ret_address, trampoline_address); 340 regs->nip = orig_ret_address; 341 /* 342 * Make LR point to the orig_ret_address. 343 * When the 'nop' inside the kretprobe_trampoline 344 * is optimized, we can do a 'blr' after executing the 345 * detour buffer code. 346 */ 347 regs->link = orig_ret_address; 348 349 reset_current_kprobe(); 350 kretprobe_hash_unlock(current, &flags); 351 preempt_enable_no_resched(); 352 353 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 354 hlist_del(&ri->hlist); 355 kfree(ri); 356 } 357 /* 358 * By returning a non-zero value, we are telling 359 * kprobe_handler() that we don't want the post_handler 360 * to run (and have re-enabled preemption) 361 */ 362 return 1; 363 } 364 365 /* 366 * Called after single-stepping. p->addr is the address of the 367 * instruction whose first byte has been replaced by the "breakpoint" 368 * instruction. To avoid the SMP problems that can occur when we 369 * temporarily put back the original opcode to single-step, we 370 * single-stepped a copy of the instruction. The address of this 371 * copy is p->ainsn.insn. 372 */ 373 int __kprobes kprobe_post_handler(struct pt_regs *regs) 374 { 375 struct kprobe *cur = kprobe_running(); 376 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 377 378 if (!cur || user_mode(regs)) 379 return 0; 380 381 /* make sure we got here for instruction we have a kprobe on */ 382 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) 383 return 0; 384 385 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 386 kcb->kprobe_status = KPROBE_HIT_SSDONE; 387 cur->post_handler(cur, regs, 0); 388 } 389 390 /* Adjust nip to after the single-stepped instruction */ 391 regs->nip = (unsigned long)cur->addr + 4; 392 regs->msr |= kcb->kprobe_saved_msr; 393 394 /*Restore back the original saved kprobes variables and continue. */ 395 if (kcb->kprobe_status == KPROBE_REENTER) { 396 restore_previous_kprobe(kcb); 397 goto out; 398 } 399 reset_current_kprobe(); 400 out: 401 preempt_enable_no_resched(); 402 403 /* 404 * if somebody else is singlestepping across a probe point, msr 405 * will have DE/SE set, in which case, continue the remaining processing 406 * of do_debug, as if this is not a probe hit. 407 */ 408 if (regs->msr & MSR_SINGLESTEP) 409 return 0; 410 411 return 1; 412 } 413 414 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 415 { 416 struct kprobe *cur = kprobe_running(); 417 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 418 const struct exception_table_entry *entry; 419 420 switch(kcb->kprobe_status) { 421 case KPROBE_HIT_SS: 422 case KPROBE_REENTER: 423 /* 424 * We are here because the instruction being single 425 * stepped caused a page fault. We reset the current 426 * kprobe and the nip points back to the probe address 427 * and allow the page fault handler to continue as a 428 * normal page fault. 429 */ 430 regs->nip = (unsigned long)cur->addr; 431 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ 432 regs->msr |= kcb->kprobe_saved_msr; 433 if (kcb->kprobe_status == KPROBE_REENTER) 434 restore_previous_kprobe(kcb); 435 else 436 reset_current_kprobe(); 437 preempt_enable_no_resched(); 438 break; 439 case KPROBE_HIT_ACTIVE: 440 case KPROBE_HIT_SSDONE: 441 /* 442 * We increment the nmissed count for accounting, 443 * we can also use npre/npostfault count for accounting 444 * these specific fault cases. 445 */ 446 kprobes_inc_nmissed_count(cur); 447 448 /* 449 * We come here because instructions in the pre/post 450 * handler caused the page_fault, this could happen 451 * if handler tries to access user space by 452 * copy_from_user(), get_user() etc. Let the 453 * user-specified handler try to fix it first. 454 */ 455 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 456 return 1; 457 458 /* 459 * In case the user-specified fault handler returned 460 * zero, try to fix up. 461 */ 462 if ((entry = search_exception_tables(regs->nip)) != NULL) { 463 regs->nip = extable_fixup(entry); 464 return 1; 465 } 466 467 /* 468 * fixup_exception() could not handle it, 469 * Let do_page_fault() fix it. 470 */ 471 break; 472 default: 473 break; 474 } 475 return 0; 476 } 477 478 unsigned long arch_deref_entry_point(void *entry) 479 { 480 return ppc_global_function_entry(entry); 481 } 482 483 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 484 { 485 struct jprobe *jp = container_of(p, struct jprobe, kp); 486 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 487 488 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 489 490 /* setup return addr to the jprobe handler routine */ 491 regs->nip = arch_deref_entry_point(jp->entry); 492 #ifdef PPC64_ELF_ABI_v2 493 regs->gpr[12] = (unsigned long)jp->entry; 494 #elif defined(PPC64_ELF_ABI_v1) 495 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 496 #endif 497 498 return 1; 499 } 500 501 void __used __kprobes jprobe_return(void) 502 { 503 asm volatile("trap" ::: "memory"); 504 } 505 506 static void __used __kprobes jprobe_return_end(void) 507 { 508 }; 509 510 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 511 { 512 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 513 514 /* 515 * FIXME - we should ideally be validating that we got here 'cos 516 * of the "trap" in jprobe_return() above, before restoring the 517 * saved regs... 518 */ 519 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 520 preempt_enable_no_resched(); 521 return 1; 522 } 523 524 static struct kprobe trampoline_p = { 525 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 526 .pre_handler = trampoline_probe_handler 527 }; 528 529 int __init arch_init_kprobes(void) 530 { 531 return register_kprobe(&trampoline_p); 532 } 533 534 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 535 { 536 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 537 return 1; 538 539 return 0; 540 } 541