1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation ( includes contributions from 9 * Rusty Russell). 10 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 11 * interface to access function arguments. 12 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 13 * for PPC64 14 */ 15 16 #include <linux/kprobes.h> 17 #include <linux/ptrace.h> 18 #include <linux/preempt.h> 19 #include <linux/extable.h> 20 #include <linux/kdebug.h> 21 #include <linux/slab.h> 22 #include <asm/code-patching.h> 23 #include <asm/cacheflush.h> 24 #include <asm/sstep.h> 25 #include <asm/sections.h> 26 #include <linux/uaccess.h> 27 28 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 29 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 30 31 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 32 33 bool arch_within_kprobe_blacklist(unsigned long addr) 34 { 35 return (addr >= (unsigned long)__kprobes_text_start && 36 addr < (unsigned long)__kprobes_text_end) || 37 (addr >= (unsigned long)_stext && 38 addr < (unsigned long)__head_end); 39 } 40 41 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset) 42 { 43 kprobe_opcode_t *addr = NULL; 44 45 #ifdef PPC64_ELF_ABI_v2 46 /* PPC64 ABIv2 needs local entry point */ 47 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); 48 if (addr && !offset) { 49 #ifdef CONFIG_KPROBES_ON_FTRACE 50 unsigned long faddr; 51 /* 52 * Per livepatch.h, ftrace location is always within the first 53 * 16 bytes of a function on powerpc with -mprofile-kernel. 54 */ 55 faddr = ftrace_location_range((unsigned long)addr, 56 (unsigned long)addr + 16); 57 if (faddr) 58 addr = (kprobe_opcode_t *)faddr; 59 else 60 #endif 61 addr = (kprobe_opcode_t *)ppc_function_entry(addr); 62 } 63 #elif defined(PPC64_ELF_ABI_v1) 64 /* 65 * 64bit powerpc ABIv1 uses function descriptors: 66 * - Check for the dot variant of the symbol first. 67 * - If that fails, try looking up the symbol provided. 68 * 69 * This ensures we always get to the actual symbol and not 70 * the descriptor. 71 * 72 * Also handle <module:symbol> format. 73 */ 74 char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN]; 75 bool dot_appended = false; 76 const char *c; 77 ssize_t ret = 0; 78 int len = 0; 79 80 if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) { 81 c++; 82 len = c - name; 83 memcpy(dot_name, name, len); 84 } else 85 c = name; 86 87 if (*c != '\0' && *c != '.') { 88 dot_name[len++] = '.'; 89 dot_appended = true; 90 } 91 ret = strscpy(dot_name + len, c, KSYM_NAME_LEN); 92 if (ret > 0) 93 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name); 94 95 /* Fallback to the original non-dot symbol lookup */ 96 if (!addr && dot_appended) 97 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); 98 #else 99 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); 100 #endif 101 102 return addr; 103 } 104 105 int arch_prepare_kprobe(struct kprobe *p) 106 { 107 int ret = 0; 108 kprobe_opcode_t insn = *p->addr; 109 110 if ((unsigned long)p->addr & 0x03) { 111 printk("Attempt to register kprobe at an unaligned address\n"); 112 ret = -EINVAL; 113 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 114 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 115 ret = -EINVAL; 116 } 117 118 /* insn must be on a special executable page on ppc64. This is 119 * not explicitly required on ppc32 (right now), but it doesn't hurt */ 120 if (!ret) { 121 p->ainsn.insn = get_insn_slot(); 122 if (!p->ainsn.insn) 123 ret = -ENOMEM; 124 } 125 126 if (!ret) { 127 memcpy(p->ainsn.insn, p->addr, 128 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 129 p->opcode = *p->addr; 130 flush_icache_range((unsigned long)p->ainsn.insn, 131 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 132 } 133 134 p->ainsn.boostable = 0; 135 return ret; 136 } 137 NOKPROBE_SYMBOL(arch_prepare_kprobe); 138 139 void arch_arm_kprobe(struct kprobe *p) 140 { 141 patch_instruction(p->addr, BREAKPOINT_INSTRUCTION); 142 } 143 NOKPROBE_SYMBOL(arch_arm_kprobe); 144 145 void arch_disarm_kprobe(struct kprobe *p) 146 { 147 patch_instruction(p->addr, p->opcode); 148 } 149 NOKPROBE_SYMBOL(arch_disarm_kprobe); 150 151 void arch_remove_kprobe(struct kprobe *p) 152 { 153 if (p->ainsn.insn) { 154 free_insn_slot(p->ainsn.insn, 0); 155 p->ainsn.insn = NULL; 156 } 157 } 158 NOKPROBE_SYMBOL(arch_remove_kprobe); 159 160 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 161 { 162 enable_single_step(regs); 163 164 /* 165 * On powerpc we should single step on the original 166 * instruction even if the probed insn is a trap 167 * variant as values in regs could play a part in 168 * if the trap is taken or not 169 */ 170 regs->nip = (unsigned long)p->ainsn.insn; 171 } 172 173 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) 174 { 175 kcb->prev_kprobe.kp = kprobe_running(); 176 kcb->prev_kprobe.status = kcb->kprobe_status; 177 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 178 } 179 180 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) 181 { 182 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 183 kcb->kprobe_status = kcb->prev_kprobe.status; 184 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 185 } 186 187 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 188 struct kprobe_ctlblk *kcb) 189 { 190 __this_cpu_write(current_kprobe, p); 191 kcb->kprobe_saved_msr = regs->msr; 192 } 193 194 bool arch_kprobe_on_func_entry(unsigned long offset) 195 { 196 #ifdef PPC64_ELF_ABI_v2 197 #ifdef CONFIG_KPROBES_ON_FTRACE 198 return offset <= 16; 199 #else 200 return offset <= 8; 201 #endif 202 #else 203 return !offset; 204 #endif 205 } 206 207 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 208 { 209 ri->ret_addr = (kprobe_opcode_t *)regs->link; 210 211 /* Replace the return addr with trampoline addr */ 212 regs->link = (unsigned long)kretprobe_trampoline; 213 } 214 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 215 216 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs) 217 { 218 int ret; 219 unsigned int insn = *p->ainsn.insn; 220 221 /* regs->nip is also adjusted if emulate_step returns 1 */ 222 ret = emulate_step(regs, insn); 223 if (ret > 0) { 224 /* 225 * Once this instruction has been boosted 226 * successfully, set the boostable flag 227 */ 228 if (unlikely(p->ainsn.boostable == 0)) 229 p->ainsn.boostable = 1; 230 } else if (ret < 0) { 231 /* 232 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 233 * So, we should never get here... but, its still 234 * good to catch them, just in case... 235 */ 236 printk("Can't step on instruction %x\n", insn); 237 BUG(); 238 } else { 239 /* 240 * If we haven't previously emulated this instruction, then it 241 * can't be boosted. Note it down so we don't try to do so again. 242 * 243 * If, however, we had emulated this instruction in the past, 244 * then this is just an error with the current run (for 245 * instance, exceptions due to a load/store). We return 0 so 246 * that this is now single-stepped, but continue to try 247 * emulating it in subsequent probe hits. 248 */ 249 if (unlikely(p->ainsn.boostable != 1)) 250 p->ainsn.boostable = -1; 251 } 252 253 return ret; 254 } 255 NOKPROBE_SYMBOL(try_to_emulate); 256 257 int kprobe_handler(struct pt_regs *regs) 258 { 259 struct kprobe *p; 260 int ret = 0; 261 unsigned int *addr = (unsigned int *)regs->nip; 262 struct kprobe_ctlblk *kcb; 263 264 if (user_mode(regs)) 265 return 0; 266 267 if (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)) 268 return 0; 269 270 /* 271 * We don't want to be preempted for the entire 272 * duration of kprobe processing 273 */ 274 preempt_disable(); 275 kcb = get_kprobe_ctlblk(); 276 277 p = get_kprobe(addr); 278 if (!p) { 279 if (*addr != BREAKPOINT_INSTRUCTION) { 280 /* 281 * PowerPC has multiple variants of the "trap" 282 * instruction. If the current instruction is a 283 * trap variant, it could belong to someone else 284 */ 285 kprobe_opcode_t cur_insn = *addr; 286 if (is_trap(cur_insn)) 287 goto no_kprobe; 288 /* 289 * The breakpoint instruction was removed right 290 * after we hit it. Another cpu has removed 291 * either a probepoint or a debugger breakpoint 292 * at this address. In either case, no further 293 * handling of this interrupt is appropriate. 294 */ 295 ret = 1; 296 } 297 /* Not one of ours: let kernel handle it */ 298 goto no_kprobe; 299 } 300 301 /* Check we're not actually recursing */ 302 if (kprobe_running()) { 303 kprobe_opcode_t insn = *p->ainsn.insn; 304 if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) { 305 /* Turn off 'trace' bits */ 306 regs->msr &= ~MSR_SINGLESTEP; 307 regs->msr |= kcb->kprobe_saved_msr; 308 goto no_kprobe; 309 } 310 311 /* 312 * We have reentered the kprobe_handler(), since another probe 313 * was hit while within the handler. We here save the original 314 * kprobes variables and just single step on the instruction of 315 * the new probe without calling any user handlers. 316 */ 317 save_previous_kprobe(kcb); 318 set_current_kprobe(p, regs, kcb); 319 kprobes_inc_nmissed_count(p); 320 kcb->kprobe_status = KPROBE_REENTER; 321 if (p->ainsn.boostable >= 0) { 322 ret = try_to_emulate(p, regs); 323 324 if (ret > 0) { 325 restore_previous_kprobe(kcb); 326 preempt_enable_no_resched(); 327 return 1; 328 } 329 } 330 prepare_singlestep(p, regs); 331 return 1; 332 } 333 334 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 335 set_current_kprobe(p, regs, kcb); 336 if (p->pre_handler && p->pre_handler(p, regs)) { 337 /* handler changed execution path, so skip ss setup */ 338 reset_current_kprobe(); 339 preempt_enable_no_resched(); 340 return 1; 341 } 342 343 if (p->ainsn.boostable >= 0) { 344 ret = try_to_emulate(p, regs); 345 346 if (ret > 0) { 347 if (p->post_handler) 348 p->post_handler(p, regs, 0); 349 350 kcb->kprobe_status = KPROBE_HIT_SSDONE; 351 reset_current_kprobe(); 352 preempt_enable_no_resched(); 353 return 1; 354 } 355 } 356 prepare_singlestep(p, regs); 357 kcb->kprobe_status = KPROBE_HIT_SS; 358 return 1; 359 360 no_kprobe: 361 preempt_enable_no_resched(); 362 return ret; 363 } 364 NOKPROBE_SYMBOL(kprobe_handler); 365 366 /* 367 * Function return probe trampoline: 368 * - init_kprobes() establishes a probepoint here 369 * - When the probed function returns, this probe 370 * causes the handlers to fire 371 */ 372 asm(".global kretprobe_trampoline\n" 373 ".type kretprobe_trampoline, @function\n" 374 "kretprobe_trampoline:\n" 375 "nop\n" 376 "blr\n" 377 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"); 378 379 /* 380 * Called when the probe at kretprobe trampoline is hit 381 */ 382 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 383 { 384 struct kretprobe_instance *ri = NULL; 385 struct hlist_head *head, empty_rp; 386 struct hlist_node *tmp; 387 unsigned long flags, orig_ret_address = 0; 388 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 389 390 INIT_HLIST_HEAD(&empty_rp); 391 kretprobe_hash_lock(current, &head, &flags); 392 393 /* 394 * It is possible to have multiple instances associated with a given 395 * task either because an multiple functions in the call path 396 * have a return probe installed on them, and/or more than one return 397 * return probe was registered for a target function. 398 * 399 * We can handle this because: 400 * - instances are always inserted at the head of the list 401 * - when multiple return probes are registered for the same 402 * function, the first instance's ret_addr will point to the 403 * real return address, and all the rest will point to 404 * kretprobe_trampoline 405 */ 406 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 407 if (ri->task != current) 408 /* another task is sharing our hash bucket */ 409 continue; 410 411 if (ri->rp && ri->rp->handler) 412 ri->rp->handler(ri, regs); 413 414 orig_ret_address = (unsigned long)ri->ret_addr; 415 recycle_rp_inst(ri, &empty_rp); 416 417 if (orig_ret_address != trampoline_address) 418 /* 419 * This is the real return address. Any other 420 * instances associated with this task are for 421 * other calls deeper on the call stack 422 */ 423 break; 424 } 425 426 kretprobe_assert(ri, orig_ret_address, trampoline_address); 427 428 /* 429 * We get here through one of two paths: 430 * 1. by taking a trap -> kprobe_handler() -> here 431 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here 432 * 433 * When going back through (1), we need regs->nip to be setup properly 434 * as it is used to determine the return address from the trap. 435 * For (2), since nip is not honoured with optprobes, we instead setup 436 * the link register properly so that the subsequent 'blr' in 437 * kretprobe_trampoline jumps back to the right instruction. 438 * 439 * For nip, we should set the address to the previous instruction since 440 * we end up emulating it in kprobe_handler(), which increments the nip 441 * again. 442 */ 443 regs->nip = orig_ret_address - 4; 444 regs->link = orig_ret_address; 445 446 kretprobe_hash_unlock(current, &flags); 447 448 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 449 hlist_del(&ri->hlist); 450 kfree(ri); 451 } 452 453 return 0; 454 } 455 NOKPROBE_SYMBOL(trampoline_probe_handler); 456 457 /* 458 * Called after single-stepping. p->addr is the address of the 459 * instruction whose first byte has been replaced by the "breakpoint" 460 * instruction. To avoid the SMP problems that can occur when we 461 * temporarily put back the original opcode to single-step, we 462 * single-stepped a copy of the instruction. The address of this 463 * copy is p->ainsn.insn. 464 */ 465 int kprobe_post_handler(struct pt_regs *regs) 466 { 467 struct kprobe *cur = kprobe_running(); 468 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 469 470 if (!cur || user_mode(regs)) 471 return 0; 472 473 /* make sure we got here for instruction we have a kprobe on */ 474 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) 475 return 0; 476 477 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 478 kcb->kprobe_status = KPROBE_HIT_SSDONE; 479 cur->post_handler(cur, regs, 0); 480 } 481 482 /* Adjust nip to after the single-stepped instruction */ 483 regs->nip = (unsigned long)cur->addr + 4; 484 regs->msr |= kcb->kprobe_saved_msr; 485 486 /*Restore back the original saved kprobes variables and continue. */ 487 if (kcb->kprobe_status == KPROBE_REENTER) { 488 restore_previous_kprobe(kcb); 489 goto out; 490 } 491 reset_current_kprobe(); 492 out: 493 preempt_enable_no_resched(); 494 495 /* 496 * if somebody else is singlestepping across a probe point, msr 497 * will have DE/SE set, in which case, continue the remaining processing 498 * of do_debug, as if this is not a probe hit. 499 */ 500 if (regs->msr & MSR_SINGLESTEP) 501 return 0; 502 503 return 1; 504 } 505 NOKPROBE_SYMBOL(kprobe_post_handler); 506 507 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 508 { 509 struct kprobe *cur = kprobe_running(); 510 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 511 const struct exception_table_entry *entry; 512 513 switch(kcb->kprobe_status) { 514 case KPROBE_HIT_SS: 515 case KPROBE_REENTER: 516 /* 517 * We are here because the instruction being single 518 * stepped caused a page fault. We reset the current 519 * kprobe and the nip points back to the probe address 520 * and allow the page fault handler to continue as a 521 * normal page fault. 522 */ 523 regs->nip = (unsigned long)cur->addr; 524 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ 525 regs->msr |= kcb->kprobe_saved_msr; 526 if (kcb->kprobe_status == KPROBE_REENTER) 527 restore_previous_kprobe(kcb); 528 else 529 reset_current_kprobe(); 530 preempt_enable_no_resched(); 531 break; 532 case KPROBE_HIT_ACTIVE: 533 case KPROBE_HIT_SSDONE: 534 /* 535 * We increment the nmissed count for accounting, 536 * we can also use npre/npostfault count for accounting 537 * these specific fault cases. 538 */ 539 kprobes_inc_nmissed_count(cur); 540 541 /* 542 * We come here because instructions in the pre/post 543 * handler caused the page_fault, this could happen 544 * if handler tries to access user space by 545 * copy_from_user(), get_user() etc. Let the 546 * user-specified handler try to fix it first. 547 */ 548 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 549 return 1; 550 551 /* 552 * In case the user-specified fault handler returned 553 * zero, try to fix up. 554 */ 555 if ((entry = search_exception_tables(regs->nip)) != NULL) { 556 regs->nip = extable_fixup(entry); 557 return 1; 558 } 559 560 /* 561 * fixup_exception() could not handle it, 562 * Let do_page_fault() fix it. 563 */ 564 break; 565 default: 566 break; 567 } 568 return 0; 569 } 570 NOKPROBE_SYMBOL(kprobe_fault_handler); 571 572 unsigned long arch_deref_entry_point(void *entry) 573 { 574 #ifdef PPC64_ELF_ABI_v1 575 if (!kernel_text_address((unsigned long)entry)) 576 return ppc_global_function_entry(entry); 577 else 578 #endif 579 return (unsigned long)entry; 580 } 581 NOKPROBE_SYMBOL(arch_deref_entry_point); 582 583 static struct kprobe trampoline_p = { 584 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 585 .pre_handler = trampoline_probe_handler 586 }; 587 588 int __init arch_init_kprobes(void) 589 { 590 return register_kprobe(&trampoline_p); 591 } 592 593 int arch_trampoline_kprobe(struct kprobe *p) 594 { 595 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 596 return 1; 597 598 return 0; 599 } 600 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 601