1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation 4 * 5 * Rewrite, cleanup, new allocation schemes, virtual merging: 6 * Copyright (C) 2004 Olof Johansson, IBM Corporation 7 * and Ben. Herrenschmidt, IBM Corporation 8 * 9 * Dynamic DMA mapping support, bus-independent parts. 10 */ 11 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/mm.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/bitmap.h> 21 #include <linux/iommu-helper.h> 22 #include <linux/crash_dump.h> 23 #include <linux/hash.h> 24 #include <linux/fault-inject.h> 25 #include <linux/pci.h> 26 #include <linux/iommu.h> 27 #include <linux/sched.h> 28 #include <linux/debugfs.h> 29 #include <asm/io.h> 30 #include <asm/iommu.h> 31 #include <asm/pci-bridge.h> 32 #include <asm/machdep.h> 33 #include <asm/kdump.h> 34 #include <asm/fadump.h> 35 #include <asm/vio.h> 36 #include <asm/tce.h> 37 #include <asm/mmu_context.h> 38 #include <asm/ppc-pci.h> 39 40 #define DBG(...) 41 42 #ifdef CONFIG_IOMMU_DEBUGFS 43 static int iommu_debugfs_weight_get(void *data, u64 *val) 44 { 45 struct iommu_table *tbl = data; 46 *val = bitmap_weight(tbl->it_map, tbl->it_size); 47 return 0; 48 } 49 DEFINE_DEBUGFS_ATTRIBUTE(iommu_debugfs_fops_weight, iommu_debugfs_weight_get, NULL, "%llu\n"); 50 51 static void iommu_debugfs_add(struct iommu_table *tbl) 52 { 53 char name[10]; 54 struct dentry *liobn_entry; 55 56 sprintf(name, "%08lx", tbl->it_index); 57 liobn_entry = debugfs_create_dir(name, iommu_debugfs_dir); 58 59 debugfs_create_file_unsafe("weight", 0400, liobn_entry, tbl, &iommu_debugfs_fops_weight); 60 debugfs_create_ulong("it_size", 0400, liobn_entry, &tbl->it_size); 61 debugfs_create_ulong("it_page_shift", 0400, liobn_entry, &tbl->it_page_shift); 62 debugfs_create_ulong("it_reserved_start", 0400, liobn_entry, &tbl->it_reserved_start); 63 debugfs_create_ulong("it_reserved_end", 0400, liobn_entry, &tbl->it_reserved_end); 64 debugfs_create_ulong("it_indirect_levels", 0400, liobn_entry, &tbl->it_indirect_levels); 65 debugfs_create_ulong("it_level_size", 0400, liobn_entry, &tbl->it_level_size); 66 } 67 68 static void iommu_debugfs_del(struct iommu_table *tbl) 69 { 70 char name[10]; 71 72 sprintf(name, "%08lx", tbl->it_index); 73 debugfs_lookup_and_remove(name, iommu_debugfs_dir); 74 } 75 #else 76 static void iommu_debugfs_add(struct iommu_table *tbl){} 77 static void iommu_debugfs_del(struct iommu_table *tbl){} 78 #endif 79 80 static int novmerge; 81 82 static void __iommu_free(struct iommu_table *, dma_addr_t, unsigned int); 83 84 static int __init setup_iommu(char *str) 85 { 86 if (!strcmp(str, "novmerge")) 87 novmerge = 1; 88 else if (!strcmp(str, "vmerge")) 89 novmerge = 0; 90 return 1; 91 } 92 93 __setup("iommu=", setup_iommu); 94 95 static DEFINE_PER_CPU(unsigned int, iommu_pool_hash); 96 97 /* 98 * We precalculate the hash to avoid doing it on every allocation. 99 * 100 * The hash is important to spread CPUs across all the pools. For example, 101 * on a POWER7 with 4 way SMT we want interrupts on the primary threads and 102 * with 4 pools all primary threads would map to the same pool. 103 */ 104 static int __init setup_iommu_pool_hash(void) 105 { 106 unsigned int i; 107 108 for_each_possible_cpu(i) 109 per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS); 110 111 return 0; 112 } 113 subsys_initcall(setup_iommu_pool_hash); 114 115 #ifdef CONFIG_FAIL_IOMMU 116 117 static DECLARE_FAULT_ATTR(fail_iommu); 118 119 static int __init setup_fail_iommu(char *str) 120 { 121 return setup_fault_attr(&fail_iommu, str); 122 } 123 __setup("fail_iommu=", setup_fail_iommu); 124 125 static bool should_fail_iommu(struct device *dev) 126 { 127 return dev->archdata.fail_iommu && should_fail(&fail_iommu, 1); 128 } 129 130 static int __init fail_iommu_debugfs(void) 131 { 132 struct dentry *dir = fault_create_debugfs_attr("fail_iommu", 133 NULL, &fail_iommu); 134 135 return PTR_ERR_OR_ZERO(dir); 136 } 137 late_initcall(fail_iommu_debugfs); 138 139 static ssize_t fail_iommu_show(struct device *dev, 140 struct device_attribute *attr, char *buf) 141 { 142 return sprintf(buf, "%d\n", dev->archdata.fail_iommu); 143 } 144 145 static ssize_t fail_iommu_store(struct device *dev, 146 struct device_attribute *attr, const char *buf, 147 size_t count) 148 { 149 int i; 150 151 if (count > 0 && sscanf(buf, "%d", &i) > 0) 152 dev->archdata.fail_iommu = (i == 0) ? 0 : 1; 153 154 return count; 155 } 156 157 static DEVICE_ATTR_RW(fail_iommu); 158 159 static int fail_iommu_bus_notify(struct notifier_block *nb, 160 unsigned long action, void *data) 161 { 162 struct device *dev = data; 163 164 if (action == BUS_NOTIFY_ADD_DEVICE) { 165 if (device_create_file(dev, &dev_attr_fail_iommu)) 166 pr_warn("Unable to create IOMMU fault injection sysfs " 167 "entries\n"); 168 } else if (action == BUS_NOTIFY_DEL_DEVICE) { 169 device_remove_file(dev, &dev_attr_fail_iommu); 170 } 171 172 return 0; 173 } 174 175 /* 176 * PCI and VIO buses need separate notifier_block structs, since they're linked 177 * list nodes. Sharing a notifier_block would mean that any notifiers later 178 * registered for PCI buses would also get called by VIO buses and vice versa. 179 */ 180 static struct notifier_block fail_iommu_pci_bus_notifier = { 181 .notifier_call = fail_iommu_bus_notify 182 }; 183 184 #ifdef CONFIG_IBMVIO 185 static struct notifier_block fail_iommu_vio_bus_notifier = { 186 .notifier_call = fail_iommu_bus_notify 187 }; 188 #endif 189 190 static int __init fail_iommu_setup(void) 191 { 192 #ifdef CONFIG_PCI 193 bus_register_notifier(&pci_bus_type, &fail_iommu_pci_bus_notifier); 194 #endif 195 #ifdef CONFIG_IBMVIO 196 bus_register_notifier(&vio_bus_type, &fail_iommu_vio_bus_notifier); 197 #endif 198 199 return 0; 200 } 201 /* 202 * Must execute after PCI and VIO subsystem have initialised but before 203 * devices are probed. 204 */ 205 arch_initcall(fail_iommu_setup); 206 #else 207 static inline bool should_fail_iommu(struct device *dev) 208 { 209 return false; 210 } 211 #endif 212 213 static unsigned long iommu_range_alloc(struct device *dev, 214 struct iommu_table *tbl, 215 unsigned long npages, 216 unsigned long *handle, 217 unsigned long mask, 218 unsigned int align_order) 219 { 220 unsigned long n, end, start; 221 unsigned long limit; 222 int largealloc = npages > 15; 223 int pass = 0; 224 unsigned long align_mask; 225 unsigned long flags; 226 unsigned int pool_nr; 227 struct iommu_pool *pool; 228 229 align_mask = (1ull << align_order) - 1; 230 231 /* This allocator was derived from x86_64's bit string search */ 232 233 /* Sanity check */ 234 if (unlikely(npages == 0)) { 235 if (printk_ratelimit()) 236 WARN_ON(1); 237 return DMA_MAPPING_ERROR; 238 } 239 240 if (should_fail_iommu(dev)) 241 return DMA_MAPPING_ERROR; 242 243 /* 244 * We don't need to disable preemption here because any CPU can 245 * safely use any IOMMU pool. 246 */ 247 pool_nr = raw_cpu_read(iommu_pool_hash) & (tbl->nr_pools - 1); 248 249 if (largealloc) 250 pool = &(tbl->large_pool); 251 else 252 pool = &(tbl->pools[pool_nr]); 253 254 spin_lock_irqsave(&(pool->lock), flags); 255 256 again: 257 if ((pass == 0) && handle && *handle && 258 (*handle >= pool->start) && (*handle < pool->end)) 259 start = *handle; 260 else 261 start = pool->hint; 262 263 limit = pool->end; 264 265 /* The case below can happen if we have a small segment appended 266 * to a large, or when the previous alloc was at the very end of 267 * the available space. If so, go back to the initial start. 268 */ 269 if (start >= limit) 270 start = pool->start; 271 272 if (limit + tbl->it_offset > mask) { 273 limit = mask - tbl->it_offset + 1; 274 /* If we're constrained on address range, first try 275 * at the masked hint to avoid O(n) search complexity, 276 * but on second pass, start at 0 in pool 0. 277 */ 278 if ((start & mask) >= limit || pass > 0) { 279 spin_unlock(&(pool->lock)); 280 pool = &(tbl->pools[0]); 281 spin_lock(&(pool->lock)); 282 start = pool->start; 283 } else { 284 start &= mask; 285 } 286 } 287 288 n = iommu_area_alloc(tbl->it_map, limit, start, npages, tbl->it_offset, 289 dma_get_seg_boundary_nr_pages(dev, tbl->it_page_shift), 290 align_mask); 291 if (n == -1) { 292 if (likely(pass == 0)) { 293 /* First try the pool from the start */ 294 pool->hint = pool->start; 295 pass++; 296 goto again; 297 298 } else if (pass <= tbl->nr_pools) { 299 /* Now try scanning all the other pools */ 300 spin_unlock(&(pool->lock)); 301 pool_nr = (pool_nr + 1) & (tbl->nr_pools - 1); 302 pool = &tbl->pools[pool_nr]; 303 spin_lock(&(pool->lock)); 304 pool->hint = pool->start; 305 pass++; 306 goto again; 307 308 } else if (pass == tbl->nr_pools + 1) { 309 /* Last resort: try largepool */ 310 spin_unlock(&pool->lock); 311 pool = &tbl->large_pool; 312 spin_lock(&pool->lock); 313 pool->hint = pool->start; 314 pass++; 315 goto again; 316 317 } else { 318 /* Give up */ 319 spin_unlock_irqrestore(&(pool->lock), flags); 320 return DMA_MAPPING_ERROR; 321 } 322 } 323 324 end = n + npages; 325 326 /* Bump the hint to a new block for small allocs. */ 327 if (largealloc) { 328 /* Don't bump to new block to avoid fragmentation */ 329 pool->hint = end; 330 } else { 331 /* Overflow will be taken care of at the next allocation */ 332 pool->hint = (end + tbl->it_blocksize - 1) & 333 ~(tbl->it_blocksize - 1); 334 } 335 336 /* Update handle for SG allocations */ 337 if (handle) 338 *handle = end; 339 340 spin_unlock_irqrestore(&(pool->lock), flags); 341 342 return n; 343 } 344 345 static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl, 346 void *page, unsigned int npages, 347 enum dma_data_direction direction, 348 unsigned long mask, unsigned int align_order, 349 unsigned long attrs) 350 { 351 unsigned long entry; 352 dma_addr_t ret = DMA_MAPPING_ERROR; 353 int build_fail; 354 355 entry = iommu_range_alloc(dev, tbl, npages, NULL, mask, align_order); 356 357 if (unlikely(entry == DMA_MAPPING_ERROR)) 358 return DMA_MAPPING_ERROR; 359 360 entry += tbl->it_offset; /* Offset into real TCE table */ 361 ret = entry << tbl->it_page_shift; /* Set the return dma address */ 362 363 /* Put the TCEs in the HW table */ 364 build_fail = tbl->it_ops->set(tbl, entry, npages, 365 (unsigned long)page & 366 IOMMU_PAGE_MASK(tbl), direction, attrs); 367 368 /* tbl->it_ops->set() only returns non-zero for transient errors. 369 * Clean up the table bitmap in this case and return 370 * DMA_MAPPING_ERROR. For all other errors the functionality is 371 * not altered. 372 */ 373 if (unlikely(build_fail)) { 374 __iommu_free(tbl, ret, npages); 375 return DMA_MAPPING_ERROR; 376 } 377 378 /* Flush/invalidate TLB caches if necessary */ 379 if (tbl->it_ops->flush) 380 tbl->it_ops->flush(tbl); 381 382 /* Make sure updates are seen by hardware */ 383 mb(); 384 385 return ret; 386 } 387 388 static bool iommu_free_check(struct iommu_table *tbl, dma_addr_t dma_addr, 389 unsigned int npages) 390 { 391 unsigned long entry, free_entry; 392 393 entry = dma_addr >> tbl->it_page_shift; 394 free_entry = entry - tbl->it_offset; 395 396 if (((free_entry + npages) > tbl->it_size) || 397 (entry < tbl->it_offset)) { 398 if (printk_ratelimit()) { 399 printk(KERN_INFO "iommu_free: invalid entry\n"); 400 printk(KERN_INFO "\tentry = 0x%lx\n", entry); 401 printk(KERN_INFO "\tdma_addr = 0x%llx\n", (u64)dma_addr); 402 printk(KERN_INFO "\tTable = 0x%llx\n", (u64)tbl); 403 printk(KERN_INFO "\tbus# = 0x%llx\n", (u64)tbl->it_busno); 404 printk(KERN_INFO "\tsize = 0x%llx\n", (u64)tbl->it_size); 405 printk(KERN_INFO "\tstartOff = 0x%llx\n", (u64)tbl->it_offset); 406 printk(KERN_INFO "\tindex = 0x%llx\n", (u64)tbl->it_index); 407 WARN_ON(1); 408 } 409 410 return false; 411 } 412 413 return true; 414 } 415 416 static struct iommu_pool *get_pool(struct iommu_table *tbl, 417 unsigned long entry) 418 { 419 struct iommu_pool *p; 420 unsigned long largepool_start = tbl->large_pool.start; 421 422 /* The large pool is the last pool at the top of the table */ 423 if (entry >= largepool_start) { 424 p = &tbl->large_pool; 425 } else { 426 unsigned int pool_nr = entry / tbl->poolsize; 427 428 BUG_ON(pool_nr > tbl->nr_pools); 429 p = &tbl->pools[pool_nr]; 430 } 431 432 return p; 433 } 434 435 static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, 436 unsigned int npages) 437 { 438 unsigned long entry, free_entry; 439 unsigned long flags; 440 struct iommu_pool *pool; 441 442 entry = dma_addr >> tbl->it_page_shift; 443 free_entry = entry - tbl->it_offset; 444 445 pool = get_pool(tbl, free_entry); 446 447 if (!iommu_free_check(tbl, dma_addr, npages)) 448 return; 449 450 tbl->it_ops->clear(tbl, entry, npages); 451 452 spin_lock_irqsave(&(pool->lock), flags); 453 bitmap_clear(tbl->it_map, free_entry, npages); 454 spin_unlock_irqrestore(&(pool->lock), flags); 455 } 456 457 static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, 458 unsigned int npages) 459 { 460 __iommu_free(tbl, dma_addr, npages); 461 462 /* Make sure TLB cache is flushed if the HW needs it. We do 463 * not do an mb() here on purpose, it is not needed on any of 464 * the current platforms. 465 */ 466 if (tbl->it_ops->flush) 467 tbl->it_ops->flush(tbl); 468 } 469 470 int ppc_iommu_map_sg(struct device *dev, struct iommu_table *tbl, 471 struct scatterlist *sglist, int nelems, 472 unsigned long mask, enum dma_data_direction direction, 473 unsigned long attrs) 474 { 475 dma_addr_t dma_next = 0, dma_addr; 476 struct scatterlist *s, *outs, *segstart; 477 int outcount, incount, i, build_fail = 0; 478 unsigned int align; 479 unsigned long handle; 480 unsigned int max_seg_size; 481 482 BUG_ON(direction == DMA_NONE); 483 484 if ((nelems == 0) || !tbl) 485 return -EINVAL; 486 487 outs = s = segstart = &sglist[0]; 488 outcount = 1; 489 incount = nelems; 490 handle = 0; 491 492 /* Init first segment length for backout at failure */ 493 outs->dma_length = 0; 494 495 DBG("sg mapping %d elements:\n", nelems); 496 497 max_seg_size = dma_get_max_seg_size(dev); 498 for_each_sg(sglist, s, nelems, i) { 499 unsigned long vaddr, npages, entry, slen; 500 501 slen = s->length; 502 /* Sanity check */ 503 if (slen == 0) { 504 dma_next = 0; 505 continue; 506 } 507 /* Allocate iommu entries for that segment */ 508 vaddr = (unsigned long) sg_virt(s); 509 npages = iommu_num_pages(vaddr, slen, IOMMU_PAGE_SIZE(tbl)); 510 align = 0; 511 if (tbl->it_page_shift < PAGE_SHIFT && slen >= PAGE_SIZE && 512 (vaddr & ~PAGE_MASK) == 0) 513 align = PAGE_SHIFT - tbl->it_page_shift; 514 entry = iommu_range_alloc(dev, tbl, npages, &handle, 515 mask >> tbl->it_page_shift, align); 516 517 DBG(" - vaddr: %lx, size: %lx\n", vaddr, slen); 518 519 /* Handle failure */ 520 if (unlikely(entry == DMA_MAPPING_ERROR)) { 521 if (!(attrs & DMA_ATTR_NO_WARN) && 522 printk_ratelimit()) 523 dev_info(dev, "iommu_alloc failed, tbl %p " 524 "vaddr %lx npages %lu\n", tbl, vaddr, 525 npages); 526 goto failure; 527 } 528 529 /* Convert entry to a dma_addr_t */ 530 entry += tbl->it_offset; 531 dma_addr = entry << tbl->it_page_shift; 532 dma_addr |= (vaddr & ~IOMMU_PAGE_MASK(tbl)); 533 534 DBG(" - %lu pages, entry: %lx, dma_addr: %lx\n", 535 npages, entry, dma_addr); 536 537 /* Insert into HW table */ 538 build_fail = tbl->it_ops->set(tbl, entry, npages, 539 vaddr & IOMMU_PAGE_MASK(tbl), 540 direction, attrs); 541 if(unlikely(build_fail)) 542 goto failure; 543 544 /* If we are in an open segment, try merging */ 545 if (segstart != s) { 546 DBG(" - trying merge...\n"); 547 /* We cannot merge if: 548 * - allocated dma_addr isn't contiguous to previous allocation 549 */ 550 if (novmerge || (dma_addr != dma_next) || 551 (outs->dma_length + s->length > max_seg_size)) { 552 /* Can't merge: create a new segment */ 553 segstart = s; 554 outcount++; 555 outs = sg_next(outs); 556 DBG(" can't merge, new segment.\n"); 557 } else { 558 outs->dma_length += s->length; 559 DBG(" merged, new len: %ux\n", outs->dma_length); 560 } 561 } 562 563 if (segstart == s) { 564 /* This is a new segment, fill entries */ 565 DBG(" - filling new segment.\n"); 566 outs->dma_address = dma_addr; 567 outs->dma_length = slen; 568 } 569 570 /* Calculate next page pointer for contiguous check */ 571 dma_next = dma_addr + slen; 572 573 DBG(" - dma next is: %lx\n", dma_next); 574 } 575 576 /* Flush/invalidate TLB caches if necessary */ 577 if (tbl->it_ops->flush) 578 tbl->it_ops->flush(tbl); 579 580 DBG("mapped %d elements:\n", outcount); 581 582 /* For the sake of ppc_iommu_unmap_sg, we clear out the length in the 583 * next entry of the sglist if we didn't fill the list completely 584 */ 585 if (outcount < incount) { 586 outs = sg_next(outs); 587 outs->dma_length = 0; 588 } 589 590 /* Make sure updates are seen by hardware */ 591 mb(); 592 593 return outcount; 594 595 failure: 596 for_each_sg(sglist, s, nelems, i) { 597 if (s->dma_length != 0) { 598 unsigned long vaddr, npages; 599 600 vaddr = s->dma_address & IOMMU_PAGE_MASK(tbl); 601 npages = iommu_num_pages(s->dma_address, s->dma_length, 602 IOMMU_PAGE_SIZE(tbl)); 603 __iommu_free(tbl, vaddr, npages); 604 s->dma_length = 0; 605 } 606 if (s == outs) 607 break; 608 } 609 return -EIO; 610 } 611 612 613 void ppc_iommu_unmap_sg(struct iommu_table *tbl, struct scatterlist *sglist, 614 int nelems, enum dma_data_direction direction, 615 unsigned long attrs) 616 { 617 struct scatterlist *sg; 618 619 BUG_ON(direction == DMA_NONE); 620 621 if (!tbl) 622 return; 623 624 sg = sglist; 625 while (nelems--) { 626 unsigned int npages; 627 dma_addr_t dma_handle = sg->dma_address; 628 629 if (sg->dma_length == 0) 630 break; 631 npages = iommu_num_pages(dma_handle, sg->dma_length, 632 IOMMU_PAGE_SIZE(tbl)); 633 __iommu_free(tbl, dma_handle, npages); 634 sg = sg_next(sg); 635 } 636 637 /* Flush/invalidate TLBs if necessary. As for iommu_free(), we 638 * do not do an mb() here, the affected platforms do not need it 639 * when freeing. 640 */ 641 if (tbl->it_ops->flush) 642 tbl->it_ops->flush(tbl); 643 } 644 645 static void iommu_table_clear(struct iommu_table *tbl) 646 { 647 /* 648 * In case of firmware assisted dump system goes through clean 649 * reboot process at the time of system crash. Hence it's safe to 650 * clear the TCE entries if firmware assisted dump is active. 651 */ 652 if (!is_kdump_kernel() || is_fadump_active()) { 653 /* Clear the table in case firmware left allocations in it */ 654 tbl->it_ops->clear(tbl, tbl->it_offset, tbl->it_size); 655 return; 656 } 657 658 #ifdef CONFIG_CRASH_DUMP 659 if (tbl->it_ops->get) { 660 unsigned long index, tceval, tcecount = 0; 661 662 /* Reserve the existing mappings left by the first kernel. */ 663 for (index = 0; index < tbl->it_size; index++) { 664 tceval = tbl->it_ops->get(tbl, index + tbl->it_offset); 665 /* 666 * Freed TCE entry contains 0x7fffffffffffffff on JS20 667 */ 668 if (tceval && (tceval != 0x7fffffffffffffffUL)) { 669 __set_bit(index, tbl->it_map); 670 tcecount++; 671 } 672 } 673 674 if ((tbl->it_size - tcecount) < KDUMP_MIN_TCE_ENTRIES) { 675 printk(KERN_WARNING "TCE table is full; freeing "); 676 printk(KERN_WARNING "%d entries for the kdump boot\n", 677 KDUMP_MIN_TCE_ENTRIES); 678 for (index = tbl->it_size - KDUMP_MIN_TCE_ENTRIES; 679 index < tbl->it_size; index++) 680 __clear_bit(index, tbl->it_map); 681 } 682 } 683 #endif 684 } 685 686 static void iommu_table_reserve_pages(struct iommu_table *tbl, 687 unsigned long res_start, unsigned long res_end) 688 { 689 int i; 690 691 WARN_ON_ONCE(res_end < res_start); 692 /* 693 * Reserve page 0 so it will not be used for any mappings. 694 * This avoids buggy drivers that consider page 0 to be invalid 695 * to crash the machine or even lose data. 696 */ 697 if (tbl->it_offset == 0) 698 set_bit(0, tbl->it_map); 699 700 if (res_start < tbl->it_offset) 701 res_start = tbl->it_offset; 702 703 if (res_end > (tbl->it_offset + tbl->it_size)) 704 res_end = tbl->it_offset + tbl->it_size; 705 706 /* Check if res_start..res_end is a valid range in the table */ 707 if (res_start >= res_end) { 708 tbl->it_reserved_start = tbl->it_offset; 709 tbl->it_reserved_end = tbl->it_offset; 710 return; 711 } 712 713 tbl->it_reserved_start = res_start; 714 tbl->it_reserved_end = res_end; 715 716 for (i = tbl->it_reserved_start; i < tbl->it_reserved_end; ++i) 717 set_bit(i - tbl->it_offset, tbl->it_map); 718 } 719 720 /* 721 * Build a iommu_table structure. This contains a bit map which 722 * is used to manage allocation of the tce space. 723 */ 724 struct iommu_table *iommu_init_table(struct iommu_table *tbl, int nid, 725 unsigned long res_start, unsigned long res_end) 726 { 727 unsigned long sz; 728 static int welcomed = 0; 729 unsigned int i; 730 struct iommu_pool *p; 731 732 BUG_ON(!tbl->it_ops); 733 734 /* number of bytes needed for the bitmap */ 735 sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long); 736 737 tbl->it_map = vzalloc_node(sz, nid); 738 if (!tbl->it_map) { 739 pr_err("%s: Can't allocate %ld bytes\n", __func__, sz); 740 return NULL; 741 } 742 743 iommu_table_reserve_pages(tbl, res_start, res_end); 744 745 /* We only split the IOMMU table if we have 1GB or more of space */ 746 if ((tbl->it_size << tbl->it_page_shift) >= (1UL * 1024 * 1024 * 1024)) 747 tbl->nr_pools = IOMMU_NR_POOLS; 748 else 749 tbl->nr_pools = 1; 750 751 /* We reserve the top 1/4 of the table for large allocations */ 752 tbl->poolsize = (tbl->it_size * 3 / 4) / tbl->nr_pools; 753 754 for (i = 0; i < tbl->nr_pools; i++) { 755 p = &tbl->pools[i]; 756 spin_lock_init(&(p->lock)); 757 p->start = tbl->poolsize * i; 758 p->hint = p->start; 759 p->end = p->start + tbl->poolsize; 760 } 761 762 p = &tbl->large_pool; 763 spin_lock_init(&(p->lock)); 764 p->start = tbl->poolsize * i; 765 p->hint = p->start; 766 p->end = tbl->it_size; 767 768 iommu_table_clear(tbl); 769 770 if (!welcomed) { 771 printk(KERN_INFO "IOMMU table initialized, virtual merging %s\n", 772 novmerge ? "disabled" : "enabled"); 773 welcomed = 1; 774 } 775 776 iommu_debugfs_add(tbl); 777 778 return tbl; 779 } 780 781 bool iommu_table_in_use(struct iommu_table *tbl) 782 { 783 unsigned long start = 0, end; 784 785 /* ignore reserved bit0 */ 786 if (tbl->it_offset == 0) 787 start = 1; 788 789 /* Simple case with no reserved MMIO32 region */ 790 if (!tbl->it_reserved_start && !tbl->it_reserved_end) 791 return find_next_bit(tbl->it_map, tbl->it_size, start) != tbl->it_size; 792 793 end = tbl->it_reserved_start - tbl->it_offset; 794 if (find_next_bit(tbl->it_map, end, start) != end) 795 return true; 796 797 start = tbl->it_reserved_end - tbl->it_offset; 798 end = tbl->it_size; 799 return find_next_bit(tbl->it_map, end, start) != end; 800 } 801 802 static void iommu_table_free(struct kref *kref) 803 { 804 struct iommu_table *tbl; 805 806 tbl = container_of(kref, struct iommu_table, it_kref); 807 808 if (tbl->it_ops->free) 809 tbl->it_ops->free(tbl); 810 811 if (!tbl->it_map) { 812 kfree(tbl); 813 return; 814 } 815 816 iommu_debugfs_del(tbl); 817 818 /* verify that table contains no entries */ 819 if (iommu_table_in_use(tbl)) 820 pr_warn("%s: Unexpected TCEs\n", __func__); 821 822 /* free bitmap */ 823 vfree(tbl->it_map); 824 825 /* free table */ 826 kfree(tbl); 827 } 828 829 struct iommu_table *iommu_tce_table_get(struct iommu_table *tbl) 830 { 831 if (kref_get_unless_zero(&tbl->it_kref)) 832 return tbl; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL_GPL(iommu_tce_table_get); 837 838 int iommu_tce_table_put(struct iommu_table *tbl) 839 { 840 if (WARN_ON(!tbl)) 841 return 0; 842 843 return kref_put(&tbl->it_kref, iommu_table_free); 844 } 845 EXPORT_SYMBOL_GPL(iommu_tce_table_put); 846 847 /* Creates TCEs for a user provided buffer. The user buffer must be 848 * contiguous real kernel storage (not vmalloc). The address passed here 849 * comprises a page address and offset into that page. The dma_addr_t 850 * returned will point to the same byte within the page as was passed in. 851 */ 852 dma_addr_t iommu_map_page(struct device *dev, struct iommu_table *tbl, 853 struct page *page, unsigned long offset, size_t size, 854 unsigned long mask, enum dma_data_direction direction, 855 unsigned long attrs) 856 { 857 dma_addr_t dma_handle = DMA_MAPPING_ERROR; 858 void *vaddr; 859 unsigned long uaddr; 860 unsigned int npages, align; 861 862 BUG_ON(direction == DMA_NONE); 863 864 vaddr = page_address(page) + offset; 865 uaddr = (unsigned long)vaddr; 866 867 if (tbl) { 868 npages = iommu_num_pages(uaddr, size, IOMMU_PAGE_SIZE(tbl)); 869 align = 0; 870 if (tbl->it_page_shift < PAGE_SHIFT && size >= PAGE_SIZE && 871 ((unsigned long)vaddr & ~PAGE_MASK) == 0) 872 align = PAGE_SHIFT - tbl->it_page_shift; 873 874 dma_handle = iommu_alloc(dev, tbl, vaddr, npages, direction, 875 mask >> tbl->it_page_shift, align, 876 attrs); 877 if (dma_handle == DMA_MAPPING_ERROR) { 878 if (!(attrs & DMA_ATTR_NO_WARN) && 879 printk_ratelimit()) { 880 dev_info(dev, "iommu_alloc failed, tbl %p " 881 "vaddr %p npages %d\n", tbl, vaddr, 882 npages); 883 } 884 } else 885 dma_handle |= (uaddr & ~IOMMU_PAGE_MASK(tbl)); 886 } 887 888 return dma_handle; 889 } 890 891 void iommu_unmap_page(struct iommu_table *tbl, dma_addr_t dma_handle, 892 size_t size, enum dma_data_direction direction, 893 unsigned long attrs) 894 { 895 unsigned int npages; 896 897 BUG_ON(direction == DMA_NONE); 898 899 if (tbl) { 900 npages = iommu_num_pages(dma_handle, size, 901 IOMMU_PAGE_SIZE(tbl)); 902 iommu_free(tbl, dma_handle, npages); 903 } 904 } 905 906 /* Allocates a contiguous real buffer and creates mappings over it. 907 * Returns the virtual address of the buffer and sets dma_handle 908 * to the dma address (mapping) of the first page. 909 */ 910 void *iommu_alloc_coherent(struct device *dev, struct iommu_table *tbl, 911 size_t size, dma_addr_t *dma_handle, 912 unsigned long mask, gfp_t flag, int node) 913 { 914 void *ret = NULL; 915 dma_addr_t mapping; 916 unsigned int order; 917 unsigned int nio_pages, io_order; 918 struct page *page; 919 int tcesize = (1 << tbl->it_page_shift); 920 921 size = PAGE_ALIGN(size); 922 order = get_order(size); 923 924 /* 925 * Client asked for way too much space. This is checked later 926 * anyway. It is easier to debug here for the drivers than in 927 * the tce tables. 928 */ 929 if (order >= IOMAP_MAX_ORDER) { 930 dev_info(dev, "iommu_alloc_consistent size too large: 0x%lx\n", 931 size); 932 return NULL; 933 } 934 935 if (!tbl) 936 return NULL; 937 938 /* Alloc enough pages (and possibly more) */ 939 page = alloc_pages_node(node, flag, order); 940 if (!page) 941 return NULL; 942 ret = page_address(page); 943 memset(ret, 0, size); 944 945 /* Set up tces to cover the allocated range */ 946 nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift; 947 948 io_order = get_iommu_order(size, tbl); 949 mapping = iommu_alloc(dev, tbl, ret, nio_pages, DMA_BIDIRECTIONAL, 950 mask >> tbl->it_page_shift, io_order, 0); 951 if (mapping == DMA_MAPPING_ERROR) { 952 free_pages((unsigned long)ret, order); 953 return NULL; 954 } 955 956 *dma_handle = mapping | ((u64)ret & (tcesize - 1)); 957 return ret; 958 } 959 960 void iommu_free_coherent(struct iommu_table *tbl, size_t size, 961 void *vaddr, dma_addr_t dma_handle) 962 { 963 if (tbl) { 964 unsigned int nio_pages; 965 966 size = PAGE_ALIGN(size); 967 nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift; 968 iommu_free(tbl, dma_handle, nio_pages); 969 size = PAGE_ALIGN(size); 970 free_pages((unsigned long)vaddr, get_order(size)); 971 } 972 } 973 974 unsigned long iommu_direction_to_tce_perm(enum dma_data_direction dir) 975 { 976 switch (dir) { 977 case DMA_BIDIRECTIONAL: 978 return TCE_PCI_READ | TCE_PCI_WRITE; 979 case DMA_FROM_DEVICE: 980 return TCE_PCI_WRITE; 981 case DMA_TO_DEVICE: 982 return TCE_PCI_READ; 983 default: 984 return 0; 985 } 986 } 987 EXPORT_SYMBOL_GPL(iommu_direction_to_tce_perm); 988 989 #ifdef CONFIG_IOMMU_API 990 /* 991 * SPAPR TCE API 992 */ 993 static void group_release(void *iommu_data) 994 { 995 struct iommu_table_group *table_group = iommu_data; 996 997 table_group->group = NULL; 998 } 999 1000 void iommu_register_group(struct iommu_table_group *table_group, 1001 int pci_domain_number, unsigned long pe_num) 1002 { 1003 struct iommu_group *grp; 1004 char *name; 1005 1006 grp = iommu_group_alloc(); 1007 if (IS_ERR(grp)) { 1008 pr_warn("powerpc iommu api: cannot create new group, err=%ld\n", 1009 PTR_ERR(grp)); 1010 return; 1011 } 1012 table_group->group = grp; 1013 iommu_group_set_iommudata(grp, table_group, group_release); 1014 name = kasprintf(GFP_KERNEL, "domain%d-pe%lx", 1015 pci_domain_number, pe_num); 1016 if (!name) 1017 return; 1018 iommu_group_set_name(grp, name); 1019 kfree(name); 1020 } 1021 1022 enum dma_data_direction iommu_tce_direction(unsigned long tce) 1023 { 1024 if ((tce & TCE_PCI_READ) && (tce & TCE_PCI_WRITE)) 1025 return DMA_BIDIRECTIONAL; 1026 else if (tce & TCE_PCI_READ) 1027 return DMA_TO_DEVICE; 1028 else if (tce & TCE_PCI_WRITE) 1029 return DMA_FROM_DEVICE; 1030 else 1031 return DMA_NONE; 1032 } 1033 EXPORT_SYMBOL_GPL(iommu_tce_direction); 1034 1035 void iommu_flush_tce(struct iommu_table *tbl) 1036 { 1037 /* Flush/invalidate TLB caches if necessary */ 1038 if (tbl->it_ops->flush) 1039 tbl->it_ops->flush(tbl); 1040 1041 /* Make sure updates are seen by hardware */ 1042 mb(); 1043 } 1044 EXPORT_SYMBOL_GPL(iommu_flush_tce); 1045 1046 int iommu_tce_check_ioba(unsigned long page_shift, 1047 unsigned long offset, unsigned long size, 1048 unsigned long ioba, unsigned long npages) 1049 { 1050 unsigned long mask = (1UL << page_shift) - 1; 1051 1052 if (ioba & mask) 1053 return -EINVAL; 1054 1055 ioba >>= page_shift; 1056 if (ioba < offset) 1057 return -EINVAL; 1058 1059 if ((ioba + 1) > (offset + size)) 1060 return -EINVAL; 1061 1062 return 0; 1063 } 1064 EXPORT_SYMBOL_GPL(iommu_tce_check_ioba); 1065 1066 int iommu_tce_check_gpa(unsigned long page_shift, unsigned long gpa) 1067 { 1068 unsigned long mask = (1UL << page_shift) - 1; 1069 1070 if (gpa & mask) 1071 return -EINVAL; 1072 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(iommu_tce_check_gpa); 1076 1077 extern long iommu_tce_xchg_no_kill(struct mm_struct *mm, 1078 struct iommu_table *tbl, 1079 unsigned long entry, unsigned long *hpa, 1080 enum dma_data_direction *direction) 1081 { 1082 long ret; 1083 unsigned long size = 0; 1084 1085 ret = tbl->it_ops->xchg_no_kill(tbl, entry, hpa, direction); 1086 if (!ret && ((*direction == DMA_FROM_DEVICE) || 1087 (*direction == DMA_BIDIRECTIONAL)) && 1088 !mm_iommu_is_devmem(mm, *hpa, tbl->it_page_shift, 1089 &size)) 1090 SetPageDirty(pfn_to_page(*hpa >> PAGE_SHIFT)); 1091 1092 return ret; 1093 } 1094 EXPORT_SYMBOL_GPL(iommu_tce_xchg_no_kill); 1095 1096 void iommu_tce_kill(struct iommu_table *tbl, 1097 unsigned long entry, unsigned long pages) 1098 { 1099 if (tbl->it_ops->tce_kill) 1100 tbl->it_ops->tce_kill(tbl, entry, pages); 1101 } 1102 EXPORT_SYMBOL_GPL(iommu_tce_kill); 1103 1104 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 1105 static int iommu_take_ownership(struct iommu_table *tbl) 1106 { 1107 unsigned long flags, i, sz = (tbl->it_size + 7) >> 3; 1108 int ret = 0; 1109 1110 /* 1111 * VFIO does not control TCE entries allocation and the guest 1112 * can write new TCEs on top of existing ones so iommu_tce_build() 1113 * must be able to release old pages. This functionality 1114 * requires exchange() callback defined so if it is not 1115 * implemented, we disallow taking ownership over the table. 1116 */ 1117 if (!tbl->it_ops->xchg_no_kill) 1118 return -EINVAL; 1119 1120 spin_lock_irqsave(&tbl->large_pool.lock, flags); 1121 for (i = 0; i < tbl->nr_pools; i++) 1122 spin_lock_nest_lock(&tbl->pools[i].lock, &tbl->large_pool.lock); 1123 1124 if (iommu_table_in_use(tbl)) { 1125 pr_err("iommu_tce: it_map is not empty"); 1126 ret = -EBUSY; 1127 } else { 1128 memset(tbl->it_map, 0xff, sz); 1129 } 1130 1131 for (i = 0; i < tbl->nr_pools; i++) 1132 spin_unlock(&tbl->pools[i].lock); 1133 spin_unlock_irqrestore(&tbl->large_pool.lock, flags); 1134 1135 return ret; 1136 } 1137 1138 static void iommu_release_ownership(struct iommu_table *tbl) 1139 { 1140 unsigned long flags, i, sz = (tbl->it_size + 7) >> 3; 1141 1142 spin_lock_irqsave(&tbl->large_pool.lock, flags); 1143 for (i = 0; i < tbl->nr_pools; i++) 1144 spin_lock_nest_lock(&tbl->pools[i].lock, &tbl->large_pool.lock); 1145 1146 memset(tbl->it_map, 0, sz); 1147 1148 iommu_table_reserve_pages(tbl, tbl->it_reserved_start, 1149 tbl->it_reserved_end); 1150 1151 for (i = 0; i < tbl->nr_pools; i++) 1152 spin_unlock(&tbl->pools[i].lock); 1153 spin_unlock_irqrestore(&tbl->large_pool.lock, flags); 1154 } 1155 #endif 1156 1157 int iommu_add_device(struct iommu_table_group *table_group, struct device *dev) 1158 { 1159 /* 1160 * The sysfs entries should be populated before 1161 * binding IOMMU group. If sysfs entries isn't 1162 * ready, we simply bail. 1163 */ 1164 if (!device_is_registered(dev)) 1165 return -ENOENT; 1166 1167 if (device_iommu_mapped(dev)) { 1168 pr_debug("%s: Skipping device %s with iommu group %d\n", 1169 __func__, dev_name(dev), 1170 iommu_group_id(dev->iommu_group)); 1171 return -EBUSY; 1172 } 1173 1174 pr_debug("%s: Adding %s to iommu group %d\n", 1175 __func__, dev_name(dev), iommu_group_id(table_group->group)); 1176 /* 1177 * This is still not adding devices via the IOMMU bus notifier because 1178 * of pcibios_init() from arch/powerpc/kernel/pci_64.c which calls 1179 * pcibios_scan_phb() first (and this guy adds devices and triggers 1180 * the notifier) and only then it calls pci_bus_add_devices() which 1181 * configures DMA for buses which also creates PEs and IOMMU groups. 1182 */ 1183 return iommu_probe_device(dev); 1184 } 1185 EXPORT_SYMBOL_GPL(iommu_add_device); 1186 1187 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 1188 /* 1189 * A simple iommu_table_group_ops which only allows reusing the existing 1190 * iommu_table. This handles VFIO for POWER7 or the nested KVM. 1191 * The ops does not allow creating windows and only allows reusing the existing 1192 * one if it matches table_group->tce32_start/tce32_size/page_shift. 1193 */ 1194 static unsigned long spapr_tce_get_table_size(__u32 page_shift, 1195 __u64 window_size, __u32 levels) 1196 { 1197 unsigned long size; 1198 1199 if (levels > 1) 1200 return ~0U; 1201 size = window_size >> (page_shift - 3); 1202 return size; 1203 } 1204 1205 static long spapr_tce_create_table(struct iommu_table_group *table_group, int num, 1206 __u32 page_shift, __u64 window_size, __u32 levels, 1207 struct iommu_table **ptbl) 1208 { 1209 struct iommu_table *tbl = table_group->tables[0]; 1210 1211 if (num > 0) 1212 return -EPERM; 1213 1214 if (tbl->it_page_shift != page_shift || 1215 tbl->it_size != (window_size >> page_shift) || 1216 tbl->it_indirect_levels != levels - 1) 1217 return -EINVAL; 1218 1219 *ptbl = iommu_tce_table_get(tbl); 1220 return 0; 1221 } 1222 1223 static long spapr_tce_set_window(struct iommu_table_group *table_group, 1224 int num, struct iommu_table *tbl) 1225 { 1226 return tbl == table_group->tables[num] ? 0 : -EPERM; 1227 } 1228 1229 static long spapr_tce_unset_window(struct iommu_table_group *table_group, int num) 1230 { 1231 return 0; 1232 } 1233 1234 static long spapr_tce_take_ownership(struct iommu_table_group *table_group) 1235 { 1236 int i, j, rc = 0; 1237 1238 for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) { 1239 struct iommu_table *tbl = table_group->tables[i]; 1240 1241 if (!tbl || !tbl->it_map) 1242 continue; 1243 1244 rc = iommu_take_ownership(tbl); 1245 if (!rc) 1246 continue; 1247 1248 for (j = 0; j < i; ++j) 1249 iommu_release_ownership(table_group->tables[j]); 1250 return rc; 1251 } 1252 return 0; 1253 } 1254 1255 static void spapr_tce_release_ownership(struct iommu_table_group *table_group) 1256 { 1257 int i; 1258 1259 for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) { 1260 struct iommu_table *tbl = table_group->tables[i]; 1261 1262 if (!tbl) 1263 continue; 1264 1265 iommu_table_clear(tbl); 1266 if (tbl->it_map) 1267 iommu_release_ownership(tbl); 1268 } 1269 } 1270 1271 struct iommu_table_group_ops spapr_tce_table_group_ops = { 1272 .get_table_size = spapr_tce_get_table_size, 1273 .create_table = spapr_tce_create_table, 1274 .set_window = spapr_tce_set_window, 1275 .unset_window = spapr_tce_unset_window, 1276 .take_ownership = spapr_tce_take_ownership, 1277 .release_ownership = spapr_tce_release_ownership, 1278 }; 1279 1280 /* 1281 * A simple iommu_ops to allow less cruft in generic VFIO code. 1282 */ 1283 static int spapr_tce_blocking_iommu_attach_dev(struct iommu_domain *dom, 1284 struct device *dev) 1285 { 1286 struct iommu_group *grp = iommu_group_get(dev); 1287 struct iommu_table_group *table_group; 1288 int ret = -EINVAL; 1289 1290 if (!grp) 1291 return -ENODEV; 1292 1293 table_group = iommu_group_get_iommudata(grp); 1294 ret = table_group->ops->take_ownership(table_group); 1295 iommu_group_put(grp); 1296 1297 return ret; 1298 } 1299 1300 static void spapr_tce_blocking_iommu_set_platform_dma(struct device *dev) 1301 { 1302 struct iommu_group *grp = iommu_group_get(dev); 1303 struct iommu_table_group *table_group; 1304 1305 table_group = iommu_group_get_iommudata(grp); 1306 table_group->ops->release_ownership(table_group); 1307 } 1308 1309 static const struct iommu_domain_ops spapr_tce_blocking_domain_ops = { 1310 .attach_dev = spapr_tce_blocking_iommu_attach_dev, 1311 }; 1312 1313 static bool spapr_tce_iommu_capable(struct device *dev, enum iommu_cap cap) 1314 { 1315 switch (cap) { 1316 case IOMMU_CAP_CACHE_COHERENCY: 1317 return true; 1318 default: 1319 break; 1320 } 1321 1322 return false; 1323 } 1324 1325 static struct iommu_domain *spapr_tce_iommu_domain_alloc(unsigned int type) 1326 { 1327 struct iommu_domain *dom; 1328 1329 if (type != IOMMU_DOMAIN_BLOCKED) 1330 return NULL; 1331 1332 dom = kzalloc(sizeof(*dom), GFP_KERNEL); 1333 if (!dom) 1334 return NULL; 1335 1336 dom->ops = &spapr_tce_blocking_domain_ops; 1337 1338 return dom; 1339 } 1340 1341 static struct iommu_device *spapr_tce_iommu_probe_device(struct device *dev) 1342 { 1343 struct pci_dev *pdev; 1344 struct pci_controller *hose; 1345 1346 if (!dev_is_pci(dev)) 1347 return ERR_PTR(-ENODEV); 1348 1349 pdev = to_pci_dev(dev); 1350 hose = pdev->bus->sysdata; 1351 1352 return &hose->iommu; 1353 } 1354 1355 static void spapr_tce_iommu_release_device(struct device *dev) 1356 { 1357 } 1358 1359 static struct iommu_group *spapr_tce_iommu_device_group(struct device *dev) 1360 { 1361 struct pci_controller *hose; 1362 struct pci_dev *pdev; 1363 1364 pdev = to_pci_dev(dev); 1365 hose = pdev->bus->sysdata; 1366 1367 if (!hose->controller_ops.device_group) 1368 return ERR_PTR(-ENOENT); 1369 1370 return hose->controller_ops.device_group(hose, pdev); 1371 } 1372 1373 static const struct iommu_ops spapr_tce_iommu_ops = { 1374 .capable = spapr_tce_iommu_capable, 1375 .domain_alloc = spapr_tce_iommu_domain_alloc, 1376 .probe_device = spapr_tce_iommu_probe_device, 1377 .release_device = spapr_tce_iommu_release_device, 1378 .device_group = spapr_tce_iommu_device_group, 1379 .set_platform_dma_ops = spapr_tce_blocking_iommu_set_platform_dma, 1380 }; 1381 1382 static struct attribute *spapr_tce_iommu_attrs[] = { 1383 NULL, 1384 }; 1385 1386 static struct attribute_group spapr_tce_iommu_group = { 1387 .name = "spapr-tce-iommu", 1388 .attrs = spapr_tce_iommu_attrs, 1389 }; 1390 1391 static const struct attribute_group *spapr_tce_iommu_groups[] = { 1392 &spapr_tce_iommu_group, 1393 NULL, 1394 }; 1395 1396 void ppc_iommu_register_device(struct pci_controller *phb) 1397 { 1398 iommu_device_sysfs_add(&phb->iommu, phb->parent, 1399 spapr_tce_iommu_groups, "iommu-phb%04x", 1400 phb->global_number); 1401 iommu_device_register(&phb->iommu, &spapr_tce_iommu_ops, 1402 phb->parent); 1403 } 1404 1405 void ppc_iommu_unregister_device(struct pci_controller *phb) 1406 { 1407 iommu_device_unregister(&phb->iommu); 1408 iommu_device_sysfs_remove(&phb->iommu); 1409 } 1410 1411 /* 1412 * This registers IOMMU devices of PHBs. This needs to happen 1413 * after core_initcall(iommu_init) + postcore_initcall(pci_driver_init) and 1414 * before subsys_initcall(iommu_subsys_init). 1415 */ 1416 static int __init spapr_tce_setup_phb_iommus_initcall(void) 1417 { 1418 struct pci_controller *hose; 1419 1420 list_for_each_entry(hose, &hose_list, list_node) { 1421 ppc_iommu_register_device(hose); 1422 } 1423 return 0; 1424 } 1425 postcore_initcall_sync(spapr_tce_setup_phb_iommus_initcall); 1426 #endif 1427 1428 #endif /* CONFIG_IOMMU_API */ 1429