xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision f79e4d5f)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/seq_file.h>
34 #include <linux/crash_dump.h>
35 #include <linux/kobject.h>
36 #include <linux/sysfs.h>
37 
38 #include <asm/debugfs.h>
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/setup.h>
44 
45 static struct fw_dump fw_dump;
46 static struct fadump_mem_struct fdm;
47 static const struct fadump_mem_struct *fdm_active;
48 
49 static DEFINE_MUTEX(fadump_mutex);
50 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
51 int crash_mem_ranges;
52 
53 /* Scan the Firmware Assisted dump configuration details. */
54 int __init early_init_dt_scan_fw_dump(unsigned long node,
55 			const char *uname, int depth, void *data)
56 {
57 	const __be32 *sections;
58 	int i, num_sections;
59 	int size;
60 	const __be32 *token;
61 
62 	if (depth != 1 || strcmp(uname, "rtas") != 0)
63 		return 0;
64 
65 	/*
66 	 * Check if Firmware Assisted dump is supported. if yes, check
67 	 * if dump has been initiated on last reboot.
68 	 */
69 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
70 	if (!token)
71 		return 1;
72 
73 	fw_dump.fadump_supported = 1;
74 	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
75 
76 	/*
77 	 * The 'ibm,kernel-dump' rtas node is present only if there is
78 	 * dump data waiting for us.
79 	 */
80 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
81 	if (fdm_active)
82 		fw_dump.dump_active = 1;
83 
84 	/* Get the sizes required to store dump data for the firmware provided
85 	 * dump sections.
86 	 * For each dump section type supported, a 32bit cell which defines
87 	 * the ID of a supported section followed by two 32 bit cells which
88 	 * gives teh size of the section in bytes.
89 	 */
90 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
91 					&size);
92 
93 	if (!sections)
94 		return 1;
95 
96 	num_sections = size / (3 * sizeof(u32));
97 
98 	for (i = 0; i < num_sections; i++, sections += 3) {
99 		u32 type = (u32)of_read_number(sections, 1);
100 
101 		switch (type) {
102 		case FADUMP_CPU_STATE_DATA:
103 			fw_dump.cpu_state_data_size =
104 					of_read_ulong(&sections[1], 2);
105 			break;
106 		case FADUMP_HPTE_REGION:
107 			fw_dump.hpte_region_size =
108 					of_read_ulong(&sections[1], 2);
109 			break;
110 		}
111 	}
112 
113 	return 1;
114 }
115 
116 /*
117  * If fadump is registered, check if the memory provided
118  * falls within boot memory area.
119  */
120 int is_fadump_boot_memory_area(u64 addr, ulong size)
121 {
122 	if (!fw_dump.dump_registered)
123 		return 0;
124 
125 	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
126 }
127 
128 int should_fadump_crash(void)
129 {
130 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
131 		return 0;
132 	return 1;
133 }
134 
135 int is_fadump_active(void)
136 {
137 	return fw_dump.dump_active;
138 }
139 
140 /*
141  * Returns 1, if there are no holes in boot memory area,
142  * 0 otherwise.
143  */
144 static int is_boot_memory_area_contiguous(void)
145 {
146 	struct memblock_region *reg;
147 	unsigned long tstart, tend;
148 	unsigned long start_pfn = PHYS_PFN(RMA_START);
149 	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
150 	unsigned int ret = 0;
151 
152 	for_each_memblock(memory, reg) {
153 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
154 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
155 		if (tstart < tend) {
156 			/* Memory hole from start_pfn to tstart */
157 			if (tstart > start_pfn)
158 				break;
159 
160 			if (tend == end_pfn) {
161 				ret = 1;
162 				break;
163 			}
164 
165 			start_pfn = tend + 1;
166 		}
167 	}
168 
169 	return ret;
170 }
171 
172 /* Print firmware assisted dump configurations for debugging purpose. */
173 static void fadump_show_config(void)
174 {
175 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
176 			(fw_dump.fadump_supported ? "present" : "no support"));
177 
178 	if (!fw_dump.fadump_supported)
179 		return;
180 
181 	pr_debug("Fadump enabled    : %s\n",
182 				(fw_dump.fadump_enabled ? "yes" : "no"));
183 	pr_debug("Dump Active       : %s\n",
184 				(fw_dump.dump_active ? "yes" : "no"));
185 	pr_debug("Dump section sizes:\n");
186 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
187 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
188 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
189 }
190 
191 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
192 				unsigned long addr)
193 {
194 	if (!fdm)
195 		return 0;
196 
197 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
198 	addr = addr & PAGE_MASK;
199 
200 	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
201 	fdm->header.dump_num_sections = cpu_to_be16(3);
202 	fdm->header.dump_status_flag = 0;
203 	fdm->header.offset_first_dump_section =
204 		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
205 
206 	/*
207 	 * Fields for disk dump option.
208 	 * We are not using disk dump option, hence set these fields to 0.
209 	 */
210 	fdm->header.dd_block_size = 0;
211 	fdm->header.dd_block_offset = 0;
212 	fdm->header.dd_num_blocks = 0;
213 	fdm->header.dd_offset_disk_path = 0;
214 
215 	/* set 0 to disable an automatic dump-reboot. */
216 	fdm->header.max_time_auto = 0;
217 
218 	/* Kernel dump sections */
219 	/* cpu state data section. */
220 	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
221 	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
222 	fdm->cpu_state_data.source_address = 0;
223 	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
224 	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
225 	addr += fw_dump.cpu_state_data_size;
226 
227 	/* hpte region section */
228 	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
229 	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
230 	fdm->hpte_region.source_address = 0;
231 	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
232 	fdm->hpte_region.destination_address = cpu_to_be64(addr);
233 	addr += fw_dump.hpte_region_size;
234 
235 	/* RMA region section */
236 	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
237 	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
238 	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
239 	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
240 	fdm->rmr_region.destination_address = cpu_to_be64(addr);
241 	addr += fw_dump.boot_memory_size;
242 
243 	return addr;
244 }
245 
246 /**
247  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
248  *
249  * Function to find the largest memory size we need to reserve during early
250  * boot process. This will be the size of the memory that is required for a
251  * kernel to boot successfully.
252  *
253  * This function has been taken from phyp-assisted dump feature implementation.
254  *
255  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
256  *
257  * TODO: Come up with better approach to find out more accurate memory size
258  * that is required for a kernel to boot successfully.
259  *
260  */
261 static inline unsigned long fadump_calculate_reserve_size(void)
262 {
263 	int ret;
264 	unsigned long long base, size;
265 
266 	if (fw_dump.reserve_bootvar)
267 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
268 
269 	/*
270 	 * Check if the size is specified through crashkernel= cmdline
271 	 * option. If yes, then use that but ignore base as fadump reserves
272 	 * memory at a predefined offset.
273 	 */
274 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
275 				&size, &base);
276 	if (ret == 0 && size > 0) {
277 		unsigned long max_size;
278 
279 		if (fw_dump.reserve_bootvar)
280 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
281 
282 		fw_dump.reserve_bootvar = (unsigned long)size;
283 
284 		/*
285 		 * Adjust if the boot memory size specified is above
286 		 * the upper limit.
287 		 */
288 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
289 		if (fw_dump.reserve_bootvar > max_size) {
290 			fw_dump.reserve_bootvar = max_size;
291 			pr_info("Adjusted boot memory size to %luMB\n",
292 				(fw_dump.reserve_bootvar >> 20));
293 		}
294 
295 		return fw_dump.reserve_bootvar;
296 	} else if (fw_dump.reserve_bootvar) {
297 		/*
298 		 * 'fadump_reserve_mem=' is being used to reserve memory
299 		 * for firmware-assisted dump.
300 		 */
301 		return fw_dump.reserve_bootvar;
302 	}
303 
304 	/* divide by 20 to get 5% of value */
305 	size = memblock_phys_mem_size() / 20;
306 
307 	/* round it down in multiples of 256 */
308 	size = size & ~0x0FFFFFFFUL;
309 
310 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
311 	if (memory_limit && size > memory_limit)
312 		size = memory_limit;
313 
314 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
315 }
316 
317 /*
318  * Calculate the total memory size required to be reserved for
319  * firmware-assisted dump registration.
320  */
321 static unsigned long get_fadump_area_size(void)
322 {
323 	unsigned long size = 0;
324 
325 	size += fw_dump.cpu_state_data_size;
326 	size += fw_dump.hpte_region_size;
327 	size += fw_dump.boot_memory_size;
328 	size += sizeof(struct fadump_crash_info_header);
329 	size += sizeof(struct elfhdr); /* ELF core header.*/
330 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
331 	/* Program headers for crash memory regions. */
332 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
333 
334 	size = PAGE_ALIGN(size);
335 	return size;
336 }
337 
338 static void __init fadump_reserve_crash_area(unsigned long base,
339 					     unsigned long size)
340 {
341 	struct memblock_region *reg;
342 	unsigned long mstart, mend, msize;
343 
344 	for_each_memblock(memory, reg) {
345 		mstart = max_t(unsigned long, base, reg->base);
346 		mend = reg->base + reg->size;
347 		mend = min(base + size, mend);
348 
349 		if (mstart < mend) {
350 			msize = mend - mstart;
351 			memblock_reserve(mstart, msize);
352 			pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
353 				(msize >> 20), mstart);
354 		}
355 	}
356 }
357 
358 int __init fadump_reserve_mem(void)
359 {
360 	unsigned long base, size, memory_boundary;
361 
362 	if (!fw_dump.fadump_enabled)
363 		return 0;
364 
365 	if (!fw_dump.fadump_supported) {
366 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
367 				" this hardware\n");
368 		fw_dump.fadump_enabled = 0;
369 		return 0;
370 	}
371 	/*
372 	 * Initialize boot memory size
373 	 * If dump is active then we have already calculated the size during
374 	 * first kernel.
375 	 */
376 	if (fdm_active)
377 		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
378 	else
379 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
380 
381 	/*
382 	 * Calculate the memory boundary.
383 	 * If memory_limit is less than actual memory boundary then reserve
384 	 * the memory for fadump beyond the memory_limit and adjust the
385 	 * memory_limit accordingly, so that the running kernel can run with
386 	 * specified memory_limit.
387 	 */
388 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
389 		size = get_fadump_area_size();
390 		if ((memory_limit + size) < memblock_end_of_DRAM())
391 			memory_limit += size;
392 		else
393 			memory_limit = memblock_end_of_DRAM();
394 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
395 				" dump, now %#016llx\n", memory_limit);
396 	}
397 	if (memory_limit)
398 		memory_boundary = memory_limit;
399 	else
400 		memory_boundary = memblock_end_of_DRAM();
401 
402 	if (fw_dump.dump_active) {
403 		pr_info("Firmware-assisted dump is active.\n");
404 
405 #ifdef CONFIG_HUGETLB_PAGE
406 		/*
407 		 * FADump capture kernel doesn't care much about hugepages.
408 		 * In fact, handling hugepages in capture kernel is asking for
409 		 * trouble. So, disable HugeTLB support when fadump is active.
410 		 */
411 		hugetlb_disabled = true;
412 #endif
413 		/*
414 		 * If last boot has crashed then reserve all the memory
415 		 * above boot_memory_size so that we don't touch it until
416 		 * dump is written to disk by userspace tool. This memory
417 		 * will be released for general use once the dump is saved.
418 		 */
419 		base = fw_dump.boot_memory_size;
420 		size = memory_boundary - base;
421 		fadump_reserve_crash_area(base, size);
422 
423 		fw_dump.fadumphdr_addr =
424 				be64_to_cpu(fdm_active->rmr_region.destination_address) +
425 				be64_to_cpu(fdm_active->rmr_region.source_len);
426 		pr_debug("fadumphdr_addr = %p\n",
427 				(void *) fw_dump.fadumphdr_addr);
428 	} else {
429 		size = get_fadump_area_size();
430 
431 		/*
432 		 * Reserve memory at an offset closer to bottom of the RAM to
433 		 * minimize the impact of memory hot-remove operation. We can't
434 		 * use memblock_find_in_range() here since it doesn't allocate
435 		 * from bottom to top.
436 		 */
437 		for (base = fw_dump.boot_memory_size;
438 		     base <= (memory_boundary - size);
439 		     base += size) {
440 			if (memblock_is_region_memory(base, size) &&
441 			    !memblock_is_region_reserved(base, size))
442 				break;
443 		}
444 		if ((base > (memory_boundary - size)) ||
445 		    memblock_reserve(base, size)) {
446 			pr_err("Failed to reserve memory\n");
447 			return 0;
448 		}
449 
450 		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
451 			"assisted dump (System RAM: %ldMB)\n",
452 			(unsigned long)(size >> 20),
453 			(unsigned long)(base >> 20),
454 			(unsigned long)(memblock_phys_mem_size() >> 20));
455 	}
456 
457 	fw_dump.reserve_dump_area_start = base;
458 	fw_dump.reserve_dump_area_size = size;
459 	return 1;
460 }
461 
462 unsigned long __init arch_reserved_kernel_pages(void)
463 {
464 	return memblock_reserved_size() / PAGE_SIZE;
465 }
466 
467 /* Look for fadump= cmdline option. */
468 static int __init early_fadump_param(char *p)
469 {
470 	if (!p)
471 		return 1;
472 
473 	if (strncmp(p, "on", 2) == 0)
474 		fw_dump.fadump_enabled = 1;
475 	else if (strncmp(p, "off", 3) == 0)
476 		fw_dump.fadump_enabled = 0;
477 
478 	return 0;
479 }
480 early_param("fadump", early_fadump_param);
481 
482 /*
483  * Look for fadump_reserve_mem= cmdline option
484  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
485  *       the sooner 'crashkernel=' parameter is accustomed to.
486  */
487 static int __init early_fadump_reserve_mem(char *p)
488 {
489 	if (p)
490 		fw_dump.reserve_bootvar = memparse(p, &p);
491 	return 0;
492 }
493 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
494 
495 static int register_fw_dump(struct fadump_mem_struct *fdm)
496 {
497 	int rc, err;
498 	unsigned int wait_time;
499 
500 	pr_debug("Registering for firmware-assisted kernel dump...\n");
501 
502 	/* TODO: Add upper time limit for the delay */
503 	do {
504 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
505 			FADUMP_REGISTER, fdm,
506 			sizeof(struct fadump_mem_struct));
507 
508 		wait_time = rtas_busy_delay_time(rc);
509 		if (wait_time)
510 			mdelay(wait_time);
511 
512 	} while (wait_time);
513 
514 	err = -EIO;
515 	switch (rc) {
516 	default:
517 		pr_err("Failed to register. Unknown Error(%d).\n", rc);
518 		break;
519 	case -1:
520 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
521 			" dump. Hardware Error(%d).\n", rc);
522 		break;
523 	case -3:
524 		if (!is_boot_memory_area_contiguous())
525 			pr_err("Can't have holes in boot memory area while "
526 			       "registering fadump\n");
527 
528 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
529 			" dump. Parameter Error(%d).\n", rc);
530 		err = -EINVAL;
531 		break;
532 	case -9:
533 		printk(KERN_ERR "firmware-assisted kernel dump is already "
534 			" registered.");
535 		fw_dump.dump_registered = 1;
536 		err = -EEXIST;
537 		break;
538 	case 0:
539 		printk(KERN_INFO "firmware-assisted kernel dump registration"
540 			" is successful\n");
541 		fw_dump.dump_registered = 1;
542 		err = 0;
543 		break;
544 	}
545 	return err;
546 }
547 
548 void crash_fadump(struct pt_regs *regs, const char *str)
549 {
550 	struct fadump_crash_info_header *fdh = NULL;
551 	int old_cpu, this_cpu;
552 
553 	if (!should_fadump_crash())
554 		return;
555 
556 	/*
557 	 * old_cpu == -1 means this is the first CPU which has come here,
558 	 * go ahead and trigger fadump.
559 	 *
560 	 * old_cpu != -1 means some other CPU has already on it's way
561 	 * to trigger fadump, just keep looping here.
562 	 */
563 	this_cpu = smp_processor_id();
564 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
565 
566 	if (old_cpu != -1) {
567 		/*
568 		 * We can't loop here indefinitely. Wait as long as fadump
569 		 * is in force. If we race with fadump un-registration this
570 		 * loop will break and then we go down to normal panic path
571 		 * and reboot. If fadump is in force the first crashing
572 		 * cpu will definitely trigger fadump.
573 		 */
574 		while (fw_dump.dump_registered)
575 			cpu_relax();
576 		return;
577 	}
578 
579 	fdh = __va(fw_dump.fadumphdr_addr);
580 	fdh->crashing_cpu = crashing_cpu;
581 	crash_save_vmcoreinfo();
582 
583 	if (regs)
584 		fdh->regs = *regs;
585 	else
586 		ppc_save_regs(&fdh->regs);
587 
588 	fdh->online_mask = *cpu_online_mask;
589 
590 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
591 	rtas_os_term((char *)str);
592 }
593 
594 #define GPR_MASK	0xffffff0000000000
595 static inline int fadump_gpr_index(u64 id)
596 {
597 	int i = -1;
598 	char str[3];
599 
600 	if ((id & GPR_MASK) == REG_ID("GPR")) {
601 		/* get the digits at the end */
602 		id &= ~GPR_MASK;
603 		id >>= 24;
604 		str[2] = '\0';
605 		str[1] = id & 0xff;
606 		str[0] = (id >> 8) & 0xff;
607 		sscanf(str, "%d", &i);
608 		if (i > 31)
609 			i = -1;
610 	}
611 	return i;
612 }
613 
614 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
615 								u64 reg_val)
616 {
617 	int i;
618 
619 	i = fadump_gpr_index(reg_id);
620 	if (i >= 0)
621 		regs->gpr[i] = (unsigned long)reg_val;
622 	else if (reg_id == REG_ID("NIA"))
623 		regs->nip = (unsigned long)reg_val;
624 	else if (reg_id == REG_ID("MSR"))
625 		regs->msr = (unsigned long)reg_val;
626 	else if (reg_id == REG_ID("CTR"))
627 		regs->ctr = (unsigned long)reg_val;
628 	else if (reg_id == REG_ID("LR"))
629 		regs->link = (unsigned long)reg_val;
630 	else if (reg_id == REG_ID("XER"))
631 		regs->xer = (unsigned long)reg_val;
632 	else if (reg_id == REG_ID("CR"))
633 		regs->ccr = (unsigned long)reg_val;
634 	else if (reg_id == REG_ID("DAR"))
635 		regs->dar = (unsigned long)reg_val;
636 	else if (reg_id == REG_ID("DSISR"))
637 		regs->dsisr = (unsigned long)reg_val;
638 }
639 
640 static struct fadump_reg_entry*
641 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
642 {
643 	memset(regs, 0, sizeof(struct pt_regs));
644 
645 	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
646 		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
647 					be64_to_cpu(reg_entry->reg_value));
648 		reg_entry++;
649 	}
650 	reg_entry++;
651 	return reg_entry;
652 }
653 
654 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
655 {
656 	struct elf_prstatus prstatus;
657 
658 	memset(&prstatus, 0, sizeof(prstatus));
659 	/*
660 	 * FIXME: How do i get PID? Do I really need it?
661 	 * prstatus.pr_pid = ????
662 	 */
663 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
664 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
665 			      &prstatus, sizeof(prstatus));
666 	return buf;
667 }
668 
669 static void fadump_update_elfcore_header(char *bufp)
670 {
671 	struct elfhdr *elf;
672 	struct elf_phdr *phdr;
673 
674 	elf = (struct elfhdr *)bufp;
675 	bufp += sizeof(struct elfhdr);
676 
677 	/* First note is a place holder for cpu notes info. */
678 	phdr = (struct elf_phdr *)bufp;
679 
680 	if (phdr->p_type == PT_NOTE) {
681 		phdr->p_paddr = fw_dump.cpu_notes_buf;
682 		phdr->p_offset	= phdr->p_paddr;
683 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
684 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
685 	}
686 	return;
687 }
688 
689 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
690 {
691 	void *vaddr;
692 	struct page *page;
693 	unsigned long order, count, i;
694 
695 	order = get_order(size);
696 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
697 	if (!vaddr)
698 		return NULL;
699 
700 	count = 1 << order;
701 	page = virt_to_page(vaddr);
702 	for (i = 0; i < count; i++)
703 		SetPageReserved(page + i);
704 	return vaddr;
705 }
706 
707 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
708 {
709 	struct page *page;
710 	unsigned long order, count, i;
711 
712 	order = get_order(size);
713 	count = 1 << order;
714 	page = virt_to_page(vaddr);
715 	for (i = 0; i < count; i++)
716 		ClearPageReserved(page + i);
717 	__free_pages(page, order);
718 }
719 
720 /*
721  * Read CPU state dump data and convert it into ELF notes.
722  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
723  * used to access the data to allow for additional fields to be added without
724  * affecting compatibility. Each list of registers for a CPU starts with
725  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
726  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
727  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
728  * of register value. For more details refer to PAPR document.
729  *
730  * Only for the crashing cpu we ignore the CPU dump data and get exact
731  * state from fadump crash info structure populated by first kernel at the
732  * time of crash.
733  */
734 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
735 {
736 	struct fadump_reg_save_area_header *reg_header;
737 	struct fadump_reg_entry *reg_entry;
738 	struct fadump_crash_info_header *fdh = NULL;
739 	void *vaddr;
740 	unsigned long addr;
741 	u32 num_cpus, *note_buf;
742 	struct pt_regs regs;
743 	int i, rc = 0, cpu = 0;
744 
745 	if (!fdm->cpu_state_data.bytes_dumped)
746 		return -EINVAL;
747 
748 	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
749 	vaddr = __va(addr);
750 
751 	reg_header = vaddr;
752 	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
753 		printk(KERN_ERR "Unable to read register save area.\n");
754 		return -ENOENT;
755 	}
756 	pr_debug("--------CPU State Data------------\n");
757 	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
758 	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
759 
760 	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
761 	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
762 	pr_debug("NumCpus     : %u\n", num_cpus);
763 	vaddr += sizeof(u32);
764 	reg_entry = (struct fadump_reg_entry *)vaddr;
765 
766 	/* Allocate buffer to hold cpu crash notes. */
767 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
768 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
769 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
770 	if (!note_buf) {
771 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
772 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
773 		return -ENOMEM;
774 	}
775 	fw_dump.cpu_notes_buf = __pa(note_buf);
776 
777 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
778 			(num_cpus * sizeof(note_buf_t)), note_buf);
779 
780 	if (fw_dump.fadumphdr_addr)
781 		fdh = __va(fw_dump.fadumphdr_addr);
782 
783 	for (i = 0; i < num_cpus; i++) {
784 		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
785 			printk(KERN_ERR "Unable to read CPU state data\n");
786 			rc = -ENOENT;
787 			goto error_out;
788 		}
789 		/* Lower 4 bytes of reg_value contains logical cpu id */
790 		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
791 		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
792 			SKIP_TO_NEXT_CPU(reg_entry);
793 			continue;
794 		}
795 		pr_debug("Reading register data for cpu %d...\n", cpu);
796 		if (fdh && fdh->crashing_cpu == cpu) {
797 			regs = fdh->regs;
798 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
799 			SKIP_TO_NEXT_CPU(reg_entry);
800 		} else {
801 			reg_entry++;
802 			reg_entry = fadump_read_registers(reg_entry, &regs);
803 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
804 		}
805 	}
806 	final_note(note_buf);
807 
808 	if (fdh) {
809 		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
810 							fdh->elfcorehdr_addr);
811 		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
812 	}
813 	return 0;
814 
815 error_out:
816 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
817 					fw_dump.cpu_notes_buf_size);
818 	fw_dump.cpu_notes_buf = 0;
819 	fw_dump.cpu_notes_buf_size = 0;
820 	return rc;
821 
822 }
823 
824 /*
825  * Validate and process the dump data stored by firmware before exporting
826  * it through '/proc/vmcore'.
827  */
828 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
829 {
830 	struct fadump_crash_info_header *fdh;
831 	int rc = 0;
832 
833 	if (!fdm_active || !fw_dump.fadumphdr_addr)
834 		return -EINVAL;
835 
836 	/* Check if the dump data is valid. */
837 	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
838 			(fdm_active->cpu_state_data.error_flags != 0) ||
839 			(fdm_active->rmr_region.error_flags != 0)) {
840 		printk(KERN_ERR "Dump taken by platform is not valid\n");
841 		return -EINVAL;
842 	}
843 	if ((fdm_active->rmr_region.bytes_dumped !=
844 			fdm_active->rmr_region.source_len) ||
845 			!fdm_active->cpu_state_data.bytes_dumped) {
846 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
847 		return -EINVAL;
848 	}
849 
850 	/* Validate the fadump crash info header */
851 	fdh = __va(fw_dump.fadumphdr_addr);
852 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
853 		printk(KERN_ERR "Crash info header is not valid.\n");
854 		return -EINVAL;
855 	}
856 
857 	rc = fadump_build_cpu_notes(fdm_active);
858 	if (rc)
859 		return rc;
860 
861 	/*
862 	 * We are done validating dump info and elfcore header is now ready
863 	 * to be exported. set elfcorehdr_addr so that vmcore module will
864 	 * export the elfcore header through '/proc/vmcore'.
865 	 */
866 	elfcorehdr_addr = fdh->elfcorehdr_addr;
867 
868 	return 0;
869 }
870 
871 static inline void fadump_add_crash_memory(unsigned long long base,
872 					unsigned long long end)
873 {
874 	if (base == end)
875 		return;
876 
877 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
878 		crash_mem_ranges, base, end - 1, (end - base));
879 	crash_memory_ranges[crash_mem_ranges].base = base;
880 	crash_memory_ranges[crash_mem_ranges].size = end - base;
881 	crash_mem_ranges++;
882 }
883 
884 static void fadump_exclude_reserved_area(unsigned long long start,
885 					unsigned long long end)
886 {
887 	unsigned long long ra_start, ra_end;
888 
889 	ra_start = fw_dump.reserve_dump_area_start;
890 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
891 
892 	if ((ra_start < end) && (ra_end > start)) {
893 		if ((start < ra_start) && (end > ra_end)) {
894 			fadump_add_crash_memory(start, ra_start);
895 			fadump_add_crash_memory(ra_end, end);
896 		} else if (start < ra_start) {
897 			fadump_add_crash_memory(start, ra_start);
898 		} else if (ra_end < end) {
899 			fadump_add_crash_memory(ra_end, end);
900 		}
901 	} else
902 		fadump_add_crash_memory(start, end);
903 }
904 
905 static int fadump_init_elfcore_header(char *bufp)
906 {
907 	struct elfhdr *elf;
908 
909 	elf = (struct elfhdr *) bufp;
910 	bufp += sizeof(struct elfhdr);
911 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
912 	elf->e_ident[EI_CLASS] = ELF_CLASS;
913 	elf->e_ident[EI_DATA] = ELF_DATA;
914 	elf->e_ident[EI_VERSION] = EV_CURRENT;
915 	elf->e_ident[EI_OSABI] = ELF_OSABI;
916 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
917 	elf->e_type = ET_CORE;
918 	elf->e_machine = ELF_ARCH;
919 	elf->e_version = EV_CURRENT;
920 	elf->e_entry = 0;
921 	elf->e_phoff = sizeof(struct elfhdr);
922 	elf->e_shoff = 0;
923 #if defined(_CALL_ELF)
924 	elf->e_flags = _CALL_ELF;
925 #else
926 	elf->e_flags = 0;
927 #endif
928 	elf->e_ehsize = sizeof(struct elfhdr);
929 	elf->e_phentsize = sizeof(struct elf_phdr);
930 	elf->e_phnum = 0;
931 	elf->e_shentsize = 0;
932 	elf->e_shnum = 0;
933 	elf->e_shstrndx = 0;
934 
935 	return 0;
936 }
937 
938 /*
939  * Traverse through memblock structure and setup crash memory ranges. These
940  * ranges will be used create PT_LOAD program headers in elfcore header.
941  */
942 static void fadump_setup_crash_memory_ranges(void)
943 {
944 	struct memblock_region *reg;
945 	unsigned long long start, end;
946 
947 	pr_debug("Setup crash memory ranges.\n");
948 	crash_mem_ranges = 0;
949 	/*
950 	 * add the first memory chunk (RMA_START through boot_memory_size) as
951 	 * a separate memory chunk. The reason is, at the time crash firmware
952 	 * will move the content of this memory chunk to different location
953 	 * specified during fadump registration. We need to create a separate
954 	 * program header for this chunk with the correct offset.
955 	 */
956 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
957 
958 	for_each_memblock(memory, reg) {
959 		start = (unsigned long long)reg->base;
960 		end = start + (unsigned long long)reg->size;
961 
962 		/*
963 		 * skip the first memory chunk that is already added (RMA_START
964 		 * through boot_memory_size). This logic needs a relook if and
965 		 * when RMA_START changes to a non-zero value.
966 		 */
967 		BUILD_BUG_ON(RMA_START != 0);
968 		if (start < fw_dump.boot_memory_size) {
969 			if (end > fw_dump.boot_memory_size)
970 				start = fw_dump.boot_memory_size;
971 			else
972 				continue;
973 		}
974 
975 		/* add this range excluding the reserved dump area. */
976 		fadump_exclude_reserved_area(start, end);
977 	}
978 }
979 
980 /*
981  * If the given physical address falls within the boot memory region then
982  * return the relocated address that points to the dump region reserved
983  * for saving initial boot memory contents.
984  */
985 static inline unsigned long fadump_relocate(unsigned long paddr)
986 {
987 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
988 		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
989 	else
990 		return paddr;
991 }
992 
993 static int fadump_create_elfcore_headers(char *bufp)
994 {
995 	struct elfhdr *elf;
996 	struct elf_phdr *phdr;
997 	int i;
998 
999 	fadump_init_elfcore_header(bufp);
1000 	elf = (struct elfhdr *)bufp;
1001 	bufp += sizeof(struct elfhdr);
1002 
1003 	/*
1004 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1005 	 * will be populated during second kernel boot after crash. Hence
1006 	 * this PT_NOTE will always be the first elf note.
1007 	 *
1008 	 * NOTE: Any new ELF note addition should be placed after this note.
1009 	 */
1010 	phdr = (struct elf_phdr *)bufp;
1011 	bufp += sizeof(struct elf_phdr);
1012 	phdr->p_type = PT_NOTE;
1013 	phdr->p_flags = 0;
1014 	phdr->p_vaddr = 0;
1015 	phdr->p_align = 0;
1016 
1017 	phdr->p_offset = 0;
1018 	phdr->p_paddr = 0;
1019 	phdr->p_filesz = 0;
1020 	phdr->p_memsz = 0;
1021 
1022 	(elf->e_phnum)++;
1023 
1024 	/* setup ELF PT_NOTE for vmcoreinfo */
1025 	phdr = (struct elf_phdr *)bufp;
1026 	bufp += sizeof(struct elf_phdr);
1027 	phdr->p_type	= PT_NOTE;
1028 	phdr->p_flags	= 0;
1029 	phdr->p_vaddr	= 0;
1030 	phdr->p_align	= 0;
1031 
1032 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1033 	phdr->p_offset	= phdr->p_paddr;
1034 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1035 
1036 	/* Increment number of program headers. */
1037 	(elf->e_phnum)++;
1038 
1039 	/* setup PT_LOAD sections. */
1040 
1041 	for (i = 0; i < crash_mem_ranges; i++) {
1042 		unsigned long long mbase, msize;
1043 		mbase = crash_memory_ranges[i].base;
1044 		msize = crash_memory_ranges[i].size;
1045 
1046 		if (!msize)
1047 			continue;
1048 
1049 		phdr = (struct elf_phdr *)bufp;
1050 		bufp += sizeof(struct elf_phdr);
1051 		phdr->p_type	= PT_LOAD;
1052 		phdr->p_flags	= PF_R|PF_W|PF_X;
1053 		phdr->p_offset	= mbase;
1054 
1055 		if (mbase == RMA_START) {
1056 			/*
1057 			 * The entire RMA region will be moved by firmware
1058 			 * to the specified destination_address. Hence set
1059 			 * the correct offset.
1060 			 */
1061 			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1062 		}
1063 
1064 		phdr->p_paddr = mbase;
1065 		phdr->p_vaddr = (unsigned long)__va(mbase);
1066 		phdr->p_filesz = msize;
1067 		phdr->p_memsz = msize;
1068 		phdr->p_align = 0;
1069 
1070 		/* Increment number of program headers. */
1071 		(elf->e_phnum)++;
1072 	}
1073 	return 0;
1074 }
1075 
1076 static unsigned long init_fadump_header(unsigned long addr)
1077 {
1078 	struct fadump_crash_info_header *fdh;
1079 
1080 	if (!addr)
1081 		return 0;
1082 
1083 	fw_dump.fadumphdr_addr = addr;
1084 	fdh = __va(addr);
1085 	addr += sizeof(struct fadump_crash_info_header);
1086 
1087 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1088 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1089 	fdh->elfcorehdr_addr = addr;
1090 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1091 	fdh->crashing_cpu = CPU_UNKNOWN;
1092 
1093 	return addr;
1094 }
1095 
1096 static int register_fadump(void)
1097 {
1098 	unsigned long addr;
1099 	void *vaddr;
1100 
1101 	/*
1102 	 * If no memory is reserved then we can not register for firmware-
1103 	 * assisted dump.
1104 	 */
1105 	if (!fw_dump.reserve_dump_area_size)
1106 		return -ENODEV;
1107 
1108 	fadump_setup_crash_memory_ranges();
1109 
1110 	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1111 	/* Initialize fadump crash info header. */
1112 	addr = init_fadump_header(addr);
1113 	vaddr = __va(addr);
1114 
1115 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1116 	fadump_create_elfcore_headers(vaddr);
1117 
1118 	/* register the future kernel dump with firmware. */
1119 	return register_fw_dump(&fdm);
1120 }
1121 
1122 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1123 {
1124 	int rc = 0;
1125 	unsigned int wait_time;
1126 
1127 	pr_debug("Un-register firmware-assisted dump\n");
1128 
1129 	/* TODO: Add upper time limit for the delay */
1130 	do {
1131 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1132 			FADUMP_UNREGISTER, fdm,
1133 			sizeof(struct fadump_mem_struct));
1134 
1135 		wait_time = rtas_busy_delay_time(rc);
1136 		if (wait_time)
1137 			mdelay(wait_time);
1138 	} while (wait_time);
1139 
1140 	if (rc) {
1141 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1142 			" unexpected error(%d).\n", rc);
1143 		return rc;
1144 	}
1145 	fw_dump.dump_registered = 0;
1146 	return 0;
1147 }
1148 
1149 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1150 {
1151 	int rc = 0;
1152 	unsigned int wait_time;
1153 
1154 	pr_debug("Invalidating firmware-assisted dump registration\n");
1155 
1156 	/* TODO: Add upper time limit for the delay */
1157 	do {
1158 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1159 			FADUMP_INVALIDATE, fdm,
1160 			sizeof(struct fadump_mem_struct));
1161 
1162 		wait_time = rtas_busy_delay_time(rc);
1163 		if (wait_time)
1164 			mdelay(wait_time);
1165 	} while (wait_time);
1166 
1167 	if (rc) {
1168 		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1169 		return rc;
1170 	}
1171 	fw_dump.dump_active = 0;
1172 	fdm_active = NULL;
1173 	return 0;
1174 }
1175 
1176 void fadump_cleanup(void)
1177 {
1178 	/* Invalidate the registration only if dump is active. */
1179 	if (fw_dump.dump_active) {
1180 		init_fadump_mem_struct(&fdm,
1181 			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1182 		fadump_invalidate_dump(&fdm);
1183 	} else if (fw_dump.dump_registered) {
1184 		/* Un-register Firmware-assisted dump if it was registered. */
1185 		fadump_unregister_dump(&fdm);
1186 	}
1187 }
1188 
1189 static void fadump_free_reserved_memory(unsigned long start_pfn,
1190 					unsigned long end_pfn)
1191 {
1192 	unsigned long pfn;
1193 	unsigned long time_limit = jiffies + HZ;
1194 
1195 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1196 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1197 
1198 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1199 		free_reserved_page(pfn_to_page(pfn));
1200 
1201 		if (time_after(jiffies, time_limit)) {
1202 			cond_resched();
1203 			time_limit = jiffies + HZ;
1204 		}
1205 	}
1206 }
1207 
1208 /*
1209  * Skip memory holes and free memory that was actually reserved.
1210  */
1211 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1212 {
1213 	struct memblock_region *reg;
1214 	unsigned long tstart, tend;
1215 	unsigned long start_pfn = PHYS_PFN(start);
1216 	unsigned long end_pfn = PHYS_PFN(end);
1217 
1218 	for_each_memblock(memory, reg) {
1219 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1220 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1221 		if (tstart < tend) {
1222 			fadump_free_reserved_memory(tstart, tend);
1223 
1224 			if (tend == end_pfn)
1225 				break;
1226 
1227 			start_pfn = tend + 1;
1228 		}
1229 	}
1230 }
1231 
1232 /*
1233  * Release the memory that was reserved in early boot to preserve the memory
1234  * contents. The released memory will be available for general use.
1235  */
1236 static void fadump_release_memory(unsigned long begin, unsigned long end)
1237 {
1238 	unsigned long ra_start, ra_end;
1239 
1240 	ra_start = fw_dump.reserve_dump_area_start;
1241 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1242 
1243 	/*
1244 	 * exclude the dump reserve area. Will reuse it for next
1245 	 * fadump registration.
1246 	 */
1247 	if (begin < ra_end && end > ra_start) {
1248 		if (begin < ra_start)
1249 			fadump_release_reserved_area(begin, ra_start);
1250 		if (end > ra_end)
1251 			fadump_release_reserved_area(ra_end, end);
1252 	} else
1253 		fadump_release_reserved_area(begin, end);
1254 }
1255 
1256 static void fadump_invalidate_release_mem(void)
1257 {
1258 	unsigned long reserved_area_start, reserved_area_end;
1259 	unsigned long destination_address;
1260 
1261 	mutex_lock(&fadump_mutex);
1262 	if (!fw_dump.dump_active) {
1263 		mutex_unlock(&fadump_mutex);
1264 		return;
1265 	}
1266 
1267 	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1268 	fadump_cleanup();
1269 	mutex_unlock(&fadump_mutex);
1270 
1271 	/*
1272 	 * Save the current reserved memory bounds we will require them
1273 	 * later for releasing the memory for general use.
1274 	 */
1275 	reserved_area_start = fw_dump.reserve_dump_area_start;
1276 	reserved_area_end = reserved_area_start +
1277 			fw_dump.reserve_dump_area_size;
1278 	/*
1279 	 * Setup reserve_dump_area_start and its size so that we can
1280 	 * reuse this reserved memory for Re-registration.
1281 	 */
1282 	fw_dump.reserve_dump_area_start = destination_address;
1283 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1284 
1285 	fadump_release_memory(reserved_area_start, reserved_area_end);
1286 	if (fw_dump.cpu_notes_buf) {
1287 		fadump_cpu_notes_buf_free(
1288 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1289 				fw_dump.cpu_notes_buf_size);
1290 		fw_dump.cpu_notes_buf = 0;
1291 		fw_dump.cpu_notes_buf_size = 0;
1292 	}
1293 	/* Initialize the kernel dump memory structure for FAD registration. */
1294 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1295 }
1296 
1297 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1298 					struct kobj_attribute *attr,
1299 					const char *buf, size_t count)
1300 {
1301 	int input = -1;
1302 
1303 	if (!fw_dump.dump_active)
1304 		return -EPERM;
1305 
1306 	if (kstrtoint(buf, 0, &input))
1307 		return -EINVAL;
1308 
1309 	if (input == 1) {
1310 		/*
1311 		 * Take away the '/proc/vmcore'. We are releasing the dump
1312 		 * memory, hence it will not be valid anymore.
1313 		 */
1314 #ifdef CONFIG_PROC_VMCORE
1315 		vmcore_cleanup();
1316 #endif
1317 		fadump_invalidate_release_mem();
1318 
1319 	} else
1320 		return -EINVAL;
1321 	return count;
1322 }
1323 
1324 static ssize_t fadump_enabled_show(struct kobject *kobj,
1325 					struct kobj_attribute *attr,
1326 					char *buf)
1327 {
1328 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1329 }
1330 
1331 static ssize_t fadump_register_show(struct kobject *kobj,
1332 					struct kobj_attribute *attr,
1333 					char *buf)
1334 {
1335 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1336 }
1337 
1338 static ssize_t fadump_register_store(struct kobject *kobj,
1339 					struct kobj_attribute *attr,
1340 					const char *buf, size_t count)
1341 {
1342 	int ret = 0;
1343 	int input = -1;
1344 
1345 	if (!fw_dump.fadump_enabled || fdm_active)
1346 		return -EPERM;
1347 
1348 	if (kstrtoint(buf, 0, &input))
1349 		return -EINVAL;
1350 
1351 	mutex_lock(&fadump_mutex);
1352 
1353 	switch (input) {
1354 	case 0:
1355 		if (fw_dump.dump_registered == 0) {
1356 			goto unlock_out;
1357 		}
1358 		/* Un-register Firmware-assisted dump */
1359 		fadump_unregister_dump(&fdm);
1360 		break;
1361 	case 1:
1362 		if (fw_dump.dump_registered == 1) {
1363 			ret = -EEXIST;
1364 			goto unlock_out;
1365 		}
1366 		/* Register Firmware-assisted dump */
1367 		ret = register_fadump();
1368 		break;
1369 	default:
1370 		ret = -EINVAL;
1371 		break;
1372 	}
1373 
1374 unlock_out:
1375 	mutex_unlock(&fadump_mutex);
1376 	return ret < 0 ? ret : count;
1377 }
1378 
1379 static int fadump_region_show(struct seq_file *m, void *private)
1380 {
1381 	const struct fadump_mem_struct *fdm_ptr;
1382 
1383 	if (!fw_dump.fadump_enabled)
1384 		return 0;
1385 
1386 	mutex_lock(&fadump_mutex);
1387 	if (fdm_active)
1388 		fdm_ptr = fdm_active;
1389 	else {
1390 		mutex_unlock(&fadump_mutex);
1391 		fdm_ptr = &fdm;
1392 	}
1393 
1394 	seq_printf(m,
1395 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1396 			"Dumped: %#llx\n",
1397 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1398 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1399 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1400 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1401 			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1402 	seq_printf(m,
1403 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1404 			"Dumped: %#llx\n",
1405 			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1406 			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1407 			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1408 			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1409 			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1410 	seq_printf(m,
1411 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1412 			"Dumped: %#llx\n",
1413 			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1414 			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1415 			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1416 			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1417 			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1418 
1419 	if (!fdm_active ||
1420 		(fw_dump.reserve_dump_area_start ==
1421 		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1422 		goto out;
1423 
1424 	/* Dump is active. Show reserved memory region. */
1425 	seq_printf(m,
1426 			"    : [%#016llx-%#016llx] %#llx bytes, "
1427 			"Dumped: %#llx\n",
1428 			(unsigned long long)fw_dump.reserve_dump_area_start,
1429 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1430 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1431 			fw_dump.reserve_dump_area_start,
1432 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1433 			fw_dump.reserve_dump_area_start);
1434 out:
1435 	if (fdm_active)
1436 		mutex_unlock(&fadump_mutex);
1437 	return 0;
1438 }
1439 
1440 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1441 						0200, NULL,
1442 						fadump_release_memory_store);
1443 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1444 						0444, fadump_enabled_show,
1445 						NULL);
1446 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1447 						0644, fadump_register_show,
1448 						fadump_register_store);
1449 
1450 static int fadump_region_open(struct inode *inode, struct file *file)
1451 {
1452 	return single_open(file, fadump_region_show, inode->i_private);
1453 }
1454 
1455 static const struct file_operations fadump_region_fops = {
1456 	.open    = fadump_region_open,
1457 	.read    = seq_read,
1458 	.llseek  = seq_lseek,
1459 	.release = single_release,
1460 };
1461 
1462 static void fadump_init_files(void)
1463 {
1464 	struct dentry *debugfs_file;
1465 	int rc = 0;
1466 
1467 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1468 	if (rc)
1469 		printk(KERN_ERR "fadump: unable to create sysfs file"
1470 			" fadump_enabled (%d)\n", rc);
1471 
1472 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1473 	if (rc)
1474 		printk(KERN_ERR "fadump: unable to create sysfs file"
1475 			" fadump_registered (%d)\n", rc);
1476 
1477 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1478 					powerpc_debugfs_root, NULL,
1479 					&fadump_region_fops);
1480 	if (!debugfs_file)
1481 		printk(KERN_ERR "fadump: unable to create debugfs file"
1482 				" fadump_region\n");
1483 
1484 	if (fw_dump.dump_active) {
1485 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1486 		if (rc)
1487 			printk(KERN_ERR "fadump: unable to create sysfs file"
1488 				" fadump_release_mem (%d)\n", rc);
1489 	}
1490 	return;
1491 }
1492 
1493 /*
1494  * Prepare for firmware-assisted dump.
1495  */
1496 int __init setup_fadump(void)
1497 {
1498 	if (!fw_dump.fadump_enabled)
1499 		return 0;
1500 
1501 	if (!fw_dump.fadump_supported) {
1502 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1503 			" this hardware\n");
1504 		return 0;
1505 	}
1506 
1507 	fadump_show_config();
1508 	/*
1509 	 * If dump data is available then see if it is valid and prepare for
1510 	 * saving it to the disk.
1511 	 */
1512 	if (fw_dump.dump_active) {
1513 		/*
1514 		 * if dump process fails then invalidate the registration
1515 		 * and release memory before proceeding for re-registration.
1516 		 */
1517 		if (process_fadump(fdm_active) < 0)
1518 			fadump_invalidate_release_mem();
1519 	}
1520 	/* Initialize the kernel dump memory structure for FAD registration. */
1521 	else if (fw_dump.reserve_dump_area_size)
1522 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1523 	fadump_init_files();
1524 
1525 	return 1;
1526 }
1527 subsys_initcall(setup_fadump);
1528