xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 
35 /*
36  * The CPU who acquired the lock to trigger the fadump crash should
37  * wait for other CPUs to enter.
38  *
39  * The timeout is in milliseconds.
40  */
41 #define CRASH_TIMEOUT		500
42 
43 static struct fw_dump fw_dump;
44 
45 static void __init fadump_reserve_crash_area(u64 base);
46 
47 struct kobject *fadump_kobj;
48 
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50 
51 static atomic_t cpus_in_fadump;
52 static DEFINE_MUTEX(fadump_mutex);
53 
54 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
55 
56 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
58 				 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs,
61 						   RESERVED_RNGS_SZ, 0,
62 						   RESERVED_RNGS_CNT, true };
63 
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68 
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The reamining portion of fadump reserved memory will be not given
77  * to CMA and pages for thoes will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
82 int __init fadump_cma_init(void)
83 {
84 	unsigned long long base, size;
85 	int rc;
86 
87 	if (!fw_dump.fadump_enabled)
88 		return 0;
89 
90 	/*
91 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 	 * Return 1 to continue with fadump old behaviour.
93 	 */
94 	if (fw_dump.nocma)
95 		return 1;
96 
97 	base = fw_dump.reserve_dump_area_start;
98 	size = fw_dump.boot_memory_size;
99 
100 	if (!size)
101 		return 0;
102 
103 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
104 	if (rc) {
105 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
106 		/*
107 		 * Though the CMA init has failed we still have memory
108 		 * reservation with us. The reserved memory will be
109 		 * blocked from production system usage.  Hence return 1,
110 		 * so that we can continue with fadump.
111 		 */
112 		return 1;
113 	}
114 
115 	/*
116 	 * So we now have successfully initialized cma area for fadump.
117 	 */
118 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
119 		"bytes of memory reserved for firmware-assisted dump\n",
120 		cma_get_size(fadump_cma),
121 		(unsigned long)cma_get_base(fadump_cma) >> 20,
122 		fw_dump.reserve_dump_area_size);
123 	return 1;
124 }
125 #else
126 static int __init fadump_cma_init(void) { return 1; }
127 #endif /* CONFIG_CMA */
128 
129 /* Scan the Firmware Assisted dump configuration details. */
130 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
131 				      int depth, void *data)
132 {
133 	if (depth == 0) {
134 		early_init_dt_scan_reserved_ranges(node);
135 		return 0;
136 	}
137 
138 	if (depth != 1)
139 		return 0;
140 
141 	if (strcmp(uname, "rtas") == 0) {
142 		rtas_fadump_dt_scan(&fw_dump, node);
143 		return 1;
144 	}
145 
146 	if (strcmp(uname, "ibm,opal") == 0) {
147 		opal_fadump_dt_scan(&fw_dump, node);
148 		return 1;
149 	}
150 
151 	return 0;
152 }
153 
154 /*
155  * If fadump is registered, check if the memory provided
156  * falls within boot memory area and reserved memory area.
157  */
158 int is_fadump_memory_area(u64 addr, unsigned long size)
159 {
160 	u64 d_start, d_end;
161 
162 	if (!fw_dump.dump_registered)
163 		return 0;
164 
165 	if (!size)
166 		return 0;
167 
168 	d_start = fw_dump.reserve_dump_area_start;
169 	d_end = d_start + fw_dump.reserve_dump_area_size;
170 	if (((addr + size) > d_start) && (addr <= d_end))
171 		return 1;
172 
173 	return (addr <= fw_dump.boot_mem_top);
174 }
175 
176 int should_fadump_crash(void)
177 {
178 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
179 		return 0;
180 	return 1;
181 }
182 
183 int is_fadump_active(void)
184 {
185 	return fw_dump.dump_active;
186 }
187 
188 /*
189  * Returns true, if there are no holes in memory area between d_start to d_end,
190  * false otherwise.
191  */
192 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
193 {
194 	phys_addr_t reg_start, reg_end;
195 	bool ret = false;
196 	u64 i, start, end;
197 
198 	for_each_mem_range(i, &reg_start, &reg_end) {
199 		start = max_t(u64, d_start, reg_start);
200 		end = min_t(u64, d_end, reg_end);
201 		if (d_start < end) {
202 			/* Memory hole from d_start to start */
203 			if (start > d_start)
204 				break;
205 
206 			if (end == d_end) {
207 				ret = true;
208 				break;
209 			}
210 
211 			d_start = end + 1;
212 		}
213 	}
214 
215 	return ret;
216 }
217 
218 /*
219  * Returns true, if there are no holes in boot memory area,
220  * false otherwise.
221  */
222 bool is_fadump_boot_mem_contiguous(void)
223 {
224 	unsigned long d_start, d_end;
225 	bool ret = false;
226 	int i;
227 
228 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
229 		d_start = fw_dump.boot_mem_addr[i];
230 		d_end   = d_start + fw_dump.boot_mem_sz[i];
231 
232 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
233 		if (!ret)
234 			break;
235 	}
236 
237 	return ret;
238 }
239 
240 /*
241  * Returns true, if there are no holes in reserved memory area,
242  * false otherwise.
243  */
244 bool is_fadump_reserved_mem_contiguous(void)
245 {
246 	u64 d_start, d_end;
247 
248 	d_start	= fw_dump.reserve_dump_area_start;
249 	d_end	= d_start + fw_dump.reserve_dump_area_size;
250 	return is_fadump_mem_area_contiguous(d_start, d_end);
251 }
252 
253 /* Print firmware assisted dump configurations for debugging purpose. */
254 static void fadump_show_config(void)
255 {
256 	int i;
257 
258 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
259 			(fw_dump.fadump_supported ? "present" : "no support"));
260 
261 	if (!fw_dump.fadump_supported)
262 		return;
263 
264 	pr_debug("Fadump enabled    : %s\n",
265 				(fw_dump.fadump_enabled ? "yes" : "no"));
266 	pr_debug("Dump Active       : %s\n",
267 				(fw_dump.dump_active ? "yes" : "no"));
268 	pr_debug("Dump section sizes:\n");
269 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
270 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
271 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
272 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
273 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
274 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
275 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
276 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
277 	}
278 }
279 
280 /**
281  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
282  *
283  * Function to find the largest memory size we need to reserve during early
284  * boot process. This will be the size of the memory that is required for a
285  * kernel to boot successfully.
286  *
287  * This function has been taken from phyp-assisted dump feature implementation.
288  *
289  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
290  *
291  * TODO: Come up with better approach to find out more accurate memory size
292  * that is required for a kernel to boot successfully.
293  *
294  */
295 static inline u64 fadump_calculate_reserve_size(void)
296 {
297 	u64 base, size, bootmem_min;
298 	int ret;
299 
300 	if (fw_dump.reserve_bootvar)
301 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
302 
303 	/*
304 	 * Check if the size is specified through crashkernel= cmdline
305 	 * option. If yes, then use that but ignore base as fadump reserves
306 	 * memory at a predefined offset.
307 	 */
308 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
309 				&size, &base);
310 	if (ret == 0 && size > 0) {
311 		unsigned long max_size;
312 
313 		if (fw_dump.reserve_bootvar)
314 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
315 
316 		fw_dump.reserve_bootvar = (unsigned long)size;
317 
318 		/*
319 		 * Adjust if the boot memory size specified is above
320 		 * the upper limit.
321 		 */
322 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
323 		if (fw_dump.reserve_bootvar > max_size) {
324 			fw_dump.reserve_bootvar = max_size;
325 			pr_info("Adjusted boot memory size to %luMB\n",
326 				(fw_dump.reserve_bootvar >> 20));
327 		}
328 
329 		return fw_dump.reserve_bootvar;
330 	} else if (fw_dump.reserve_bootvar) {
331 		/*
332 		 * 'fadump_reserve_mem=' is being used to reserve memory
333 		 * for firmware-assisted dump.
334 		 */
335 		return fw_dump.reserve_bootvar;
336 	}
337 
338 	/* divide by 20 to get 5% of value */
339 	size = memblock_phys_mem_size() / 20;
340 
341 	/* round it down in multiples of 256 */
342 	size = size & ~0x0FFFFFFFUL;
343 
344 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
345 	if (memory_limit && size > memory_limit)
346 		size = memory_limit;
347 
348 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
349 	return (size > bootmem_min ? size : bootmem_min);
350 }
351 
352 /*
353  * Calculate the total memory size required to be reserved for
354  * firmware-assisted dump registration.
355  */
356 static unsigned long get_fadump_area_size(void)
357 {
358 	unsigned long size = 0;
359 
360 	size += fw_dump.cpu_state_data_size;
361 	size += fw_dump.hpte_region_size;
362 	size += fw_dump.boot_memory_size;
363 	size += sizeof(struct fadump_crash_info_header);
364 	size += sizeof(struct elfhdr); /* ELF core header.*/
365 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
366 	/* Program headers for crash memory regions. */
367 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
368 
369 	size = PAGE_ALIGN(size);
370 
371 	/* This is to hold kernel metadata on platforms that support it */
372 	size += (fw_dump.ops->fadump_get_metadata_size ?
373 		 fw_dump.ops->fadump_get_metadata_size() : 0);
374 	return size;
375 }
376 
377 static int __init add_boot_mem_region(unsigned long rstart,
378 				      unsigned long rsize)
379 {
380 	int i = fw_dump.boot_mem_regs_cnt++;
381 
382 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
383 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
384 		return 0;
385 	}
386 
387 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
388 		 i, rstart, (rstart + rsize));
389 	fw_dump.boot_mem_addr[i] = rstart;
390 	fw_dump.boot_mem_sz[i] = rsize;
391 	return 1;
392 }
393 
394 /*
395  * Firmware usually has a hard limit on the data it can copy per region.
396  * Honour that by splitting a memory range into multiple regions.
397  */
398 static int __init add_boot_mem_regions(unsigned long mstart,
399 				       unsigned long msize)
400 {
401 	unsigned long rstart, rsize, max_size;
402 	int ret = 1;
403 
404 	rstart = mstart;
405 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
406 	while (msize) {
407 		if (msize > max_size)
408 			rsize = max_size;
409 		else
410 			rsize = msize;
411 
412 		ret = add_boot_mem_region(rstart, rsize);
413 		if (!ret)
414 			break;
415 
416 		msize -= rsize;
417 		rstart += rsize;
418 	}
419 
420 	return ret;
421 }
422 
423 static int __init fadump_get_boot_mem_regions(void)
424 {
425 	unsigned long size, cur_size, hole_size, last_end;
426 	unsigned long mem_size = fw_dump.boot_memory_size;
427 	phys_addr_t reg_start, reg_end;
428 	int ret = 1;
429 	u64 i;
430 
431 	fw_dump.boot_mem_regs_cnt = 0;
432 
433 	last_end = 0;
434 	hole_size = 0;
435 	cur_size = 0;
436 	for_each_mem_range(i, &reg_start, &reg_end) {
437 		size = reg_end - reg_start;
438 		hole_size += (reg_start - last_end);
439 
440 		if ((cur_size + size) >= mem_size) {
441 			size = (mem_size - cur_size);
442 			ret = add_boot_mem_regions(reg_start, size);
443 			break;
444 		}
445 
446 		mem_size -= size;
447 		cur_size += size;
448 		ret = add_boot_mem_regions(reg_start, size);
449 		if (!ret)
450 			break;
451 
452 		last_end = reg_end;
453 	}
454 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
455 
456 	return ret;
457 }
458 
459 /*
460  * Returns true, if the given range overlaps with reserved memory ranges
461  * starting at idx. Also, updates idx to index of overlapping memory range
462  * with the given memory range.
463  * False, otherwise.
464  */
465 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
466 {
467 	bool ret = false;
468 	int i;
469 
470 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
471 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
472 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
473 
474 		if (end <= rbase)
475 			break;
476 
477 		if ((end > rbase) &&  (base < rend)) {
478 			*idx = i;
479 			ret = true;
480 			break;
481 		}
482 	}
483 
484 	return ret;
485 }
486 
487 /*
488  * Locate a suitable memory area to reserve memory for FADump. While at it,
489  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
490  */
491 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
492 {
493 	struct fadump_memory_range *mrngs;
494 	phys_addr_t mstart, mend;
495 	int idx = 0;
496 	u64 i, ret = 0;
497 
498 	mrngs = reserved_mrange_info.mem_ranges;
499 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
500 				&mstart, &mend, NULL) {
501 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
502 			 i, mstart, mend, base);
503 
504 		if (mstart > base)
505 			base = PAGE_ALIGN(mstart);
506 
507 		while ((mend > base) && ((mend - base) >= size)) {
508 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
509 				ret = base;
510 				goto out;
511 			}
512 
513 			base = mrngs[idx].base + mrngs[idx].size;
514 			base = PAGE_ALIGN(base);
515 		}
516 	}
517 
518 out:
519 	return ret;
520 }
521 
522 int __init fadump_reserve_mem(void)
523 {
524 	u64 base, size, mem_boundary, bootmem_min;
525 	int ret = 1;
526 
527 	if (!fw_dump.fadump_enabled)
528 		return 0;
529 
530 	if (!fw_dump.fadump_supported) {
531 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
532 		goto error_out;
533 	}
534 
535 	/*
536 	 * Initialize boot memory size
537 	 * If dump is active then we have already calculated the size during
538 	 * first kernel.
539 	 */
540 	if (!fw_dump.dump_active) {
541 		fw_dump.boot_memory_size =
542 			PAGE_ALIGN(fadump_calculate_reserve_size());
543 #ifdef CONFIG_CMA
544 		if (!fw_dump.nocma) {
545 			fw_dump.boot_memory_size =
546 				ALIGN(fw_dump.boot_memory_size,
547 				      FADUMP_CMA_ALIGNMENT);
548 		}
549 #endif
550 
551 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
552 		if (fw_dump.boot_memory_size < bootmem_min) {
553 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
554 			       fw_dump.boot_memory_size, bootmem_min);
555 			goto error_out;
556 		}
557 
558 		if (!fadump_get_boot_mem_regions()) {
559 			pr_err("Too many holes in boot memory area to enable fadump\n");
560 			goto error_out;
561 		}
562 	}
563 
564 	/*
565 	 * Calculate the memory boundary.
566 	 * If memory_limit is less than actual memory boundary then reserve
567 	 * the memory for fadump beyond the memory_limit and adjust the
568 	 * memory_limit accordingly, so that the running kernel can run with
569 	 * specified memory_limit.
570 	 */
571 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
572 		size = get_fadump_area_size();
573 		if ((memory_limit + size) < memblock_end_of_DRAM())
574 			memory_limit += size;
575 		else
576 			memory_limit = memblock_end_of_DRAM();
577 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
578 				" dump, now %#016llx\n", memory_limit);
579 	}
580 	if (memory_limit)
581 		mem_boundary = memory_limit;
582 	else
583 		mem_boundary = memblock_end_of_DRAM();
584 
585 	base = fw_dump.boot_mem_top;
586 	size = get_fadump_area_size();
587 	fw_dump.reserve_dump_area_size = size;
588 	if (fw_dump.dump_active) {
589 		pr_info("Firmware-assisted dump is active.\n");
590 
591 #ifdef CONFIG_HUGETLB_PAGE
592 		/*
593 		 * FADump capture kernel doesn't care much about hugepages.
594 		 * In fact, handling hugepages in capture kernel is asking for
595 		 * trouble. So, disable HugeTLB support when fadump is active.
596 		 */
597 		hugetlb_disabled = true;
598 #endif
599 		/*
600 		 * If last boot has crashed then reserve all the memory
601 		 * above boot memory size so that we don't touch it until
602 		 * dump is written to disk by userspace tool. This memory
603 		 * can be released for general use by invalidating fadump.
604 		 */
605 		fadump_reserve_crash_area(base);
606 
607 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
608 		pr_debug("Reserve dump area start address: 0x%lx\n",
609 			 fw_dump.reserve_dump_area_start);
610 	} else {
611 		/*
612 		 * Reserve memory at an offset closer to bottom of the RAM to
613 		 * minimize the impact of memory hot-remove operation.
614 		 */
615 		base = fadump_locate_reserve_mem(base, size);
616 
617 		if (!base || (base + size > mem_boundary)) {
618 			pr_err("Failed to find memory chunk for reservation!\n");
619 			goto error_out;
620 		}
621 		fw_dump.reserve_dump_area_start = base;
622 
623 		/*
624 		 * Calculate the kernel metadata address and register it with
625 		 * f/w if the platform supports.
626 		 */
627 		if (fw_dump.ops->fadump_setup_metadata &&
628 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
629 			goto error_out;
630 
631 		if (memblock_reserve(base, size)) {
632 			pr_err("Failed to reserve memory!\n");
633 			goto error_out;
634 		}
635 
636 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
637 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
638 
639 		ret = fadump_cma_init();
640 	}
641 
642 	return ret;
643 error_out:
644 	fw_dump.fadump_enabled = 0;
645 	return 0;
646 }
647 
648 /* Look for fadump= cmdline option. */
649 static int __init early_fadump_param(char *p)
650 {
651 	if (!p)
652 		return 1;
653 
654 	if (strncmp(p, "on", 2) == 0)
655 		fw_dump.fadump_enabled = 1;
656 	else if (strncmp(p, "off", 3) == 0)
657 		fw_dump.fadump_enabled = 0;
658 	else if (strncmp(p, "nocma", 5) == 0) {
659 		fw_dump.fadump_enabled = 1;
660 		fw_dump.nocma = 1;
661 	}
662 
663 	return 0;
664 }
665 early_param("fadump", early_fadump_param);
666 
667 /*
668  * Look for fadump_reserve_mem= cmdline option
669  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
670  *       the sooner 'crashkernel=' parameter is accustomed to.
671  */
672 static int __init early_fadump_reserve_mem(char *p)
673 {
674 	if (p)
675 		fw_dump.reserve_bootvar = memparse(p, &p);
676 	return 0;
677 }
678 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
679 
680 void crash_fadump(struct pt_regs *regs, const char *str)
681 {
682 	unsigned int msecs;
683 	struct fadump_crash_info_header *fdh = NULL;
684 	int old_cpu, this_cpu;
685 	/* Do not include first CPU */
686 	unsigned int ncpus = num_online_cpus() - 1;
687 
688 	if (!should_fadump_crash())
689 		return;
690 
691 	/*
692 	 * old_cpu == -1 means this is the first CPU which has come here,
693 	 * go ahead and trigger fadump.
694 	 *
695 	 * old_cpu != -1 means some other CPU has already on it's way
696 	 * to trigger fadump, just keep looping here.
697 	 */
698 	this_cpu = smp_processor_id();
699 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
700 
701 	if (old_cpu != -1) {
702 		atomic_inc(&cpus_in_fadump);
703 
704 		/*
705 		 * We can't loop here indefinitely. Wait as long as fadump
706 		 * is in force. If we race with fadump un-registration this
707 		 * loop will break and then we go down to normal panic path
708 		 * and reboot. If fadump is in force the first crashing
709 		 * cpu will definitely trigger fadump.
710 		 */
711 		while (fw_dump.dump_registered)
712 			cpu_relax();
713 		return;
714 	}
715 
716 	fdh = __va(fw_dump.fadumphdr_addr);
717 	fdh->crashing_cpu = crashing_cpu;
718 	crash_save_vmcoreinfo();
719 
720 	if (regs)
721 		fdh->regs = *regs;
722 	else
723 		ppc_save_regs(&fdh->regs);
724 
725 	fdh->online_mask = *cpu_online_mask;
726 
727 	/*
728 	 * If we came in via system reset, wait a while for the secondary
729 	 * CPUs to enter.
730 	 */
731 	if (TRAP(&(fdh->regs)) == 0x100) {
732 		msecs = CRASH_TIMEOUT;
733 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
734 			mdelay(1);
735 	}
736 
737 	fw_dump.ops->fadump_trigger(fdh, str);
738 }
739 
740 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
741 {
742 	struct elf_prstatus prstatus;
743 
744 	memset(&prstatus, 0, sizeof(prstatus));
745 	/*
746 	 * FIXME: How do i get PID? Do I really need it?
747 	 * prstatus.pr_pid = ????
748 	 */
749 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
750 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
751 			      &prstatus, sizeof(prstatus));
752 	return buf;
753 }
754 
755 void fadump_update_elfcore_header(char *bufp)
756 {
757 	struct elf_phdr *phdr;
758 
759 	bufp += sizeof(struct elfhdr);
760 
761 	/* First note is a place holder for cpu notes info. */
762 	phdr = (struct elf_phdr *)bufp;
763 
764 	if (phdr->p_type == PT_NOTE) {
765 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
766 		phdr->p_offset	= phdr->p_paddr;
767 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
768 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
769 	}
770 	return;
771 }
772 
773 static void *fadump_alloc_buffer(unsigned long size)
774 {
775 	unsigned long count, i;
776 	struct page *page;
777 	void *vaddr;
778 
779 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
780 	if (!vaddr)
781 		return NULL;
782 
783 	count = PAGE_ALIGN(size) / PAGE_SIZE;
784 	page = virt_to_page(vaddr);
785 	for (i = 0; i < count; i++)
786 		mark_page_reserved(page + i);
787 	return vaddr;
788 }
789 
790 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
791 {
792 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
793 }
794 
795 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
796 {
797 	/* Allocate buffer to hold cpu crash notes. */
798 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
799 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
800 	fw_dump.cpu_notes_buf_vaddr =
801 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
802 	if (!fw_dump.cpu_notes_buf_vaddr) {
803 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
804 		       fw_dump.cpu_notes_buf_size);
805 		return -ENOMEM;
806 	}
807 
808 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
809 		 fw_dump.cpu_notes_buf_size,
810 		 fw_dump.cpu_notes_buf_vaddr);
811 	return 0;
812 }
813 
814 void fadump_free_cpu_notes_buf(void)
815 {
816 	if (!fw_dump.cpu_notes_buf_vaddr)
817 		return;
818 
819 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
820 			   fw_dump.cpu_notes_buf_size);
821 	fw_dump.cpu_notes_buf_vaddr = 0;
822 	fw_dump.cpu_notes_buf_size = 0;
823 }
824 
825 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
826 {
827 	if (mrange_info->is_static) {
828 		mrange_info->mem_range_cnt = 0;
829 		return;
830 	}
831 
832 	kfree(mrange_info->mem_ranges);
833 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
834 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
835 }
836 
837 /*
838  * Allocate or reallocate mem_ranges array in incremental units
839  * of PAGE_SIZE.
840  */
841 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
842 {
843 	struct fadump_memory_range *new_array;
844 	u64 new_size;
845 
846 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
847 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
848 		 new_size, mrange_info->name);
849 
850 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
851 	if (new_array == NULL) {
852 		pr_err("Insufficient memory for setting up %s memory ranges\n",
853 		       mrange_info->name);
854 		fadump_free_mem_ranges(mrange_info);
855 		return -ENOMEM;
856 	}
857 
858 	mrange_info->mem_ranges = new_array;
859 	mrange_info->mem_ranges_sz = new_size;
860 	mrange_info->max_mem_ranges = (new_size /
861 				       sizeof(struct fadump_memory_range));
862 	return 0;
863 }
864 
865 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
866 				       u64 base, u64 end)
867 {
868 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
869 	bool is_adjacent = false;
870 	u64 start, size;
871 
872 	if (base == end)
873 		return 0;
874 
875 	/*
876 	 * Fold adjacent memory ranges to bring down the memory ranges/
877 	 * PT_LOAD segments count.
878 	 */
879 	if (mrange_info->mem_range_cnt) {
880 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
881 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
882 
883 		if ((start + size) == base)
884 			is_adjacent = true;
885 	}
886 	if (!is_adjacent) {
887 		/* resize the array on reaching the limit */
888 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
889 			int ret;
890 
891 			if (mrange_info->is_static) {
892 				pr_err("Reached array size limit for %s memory ranges\n",
893 				       mrange_info->name);
894 				return -ENOSPC;
895 			}
896 
897 			ret = fadump_alloc_mem_ranges(mrange_info);
898 			if (ret)
899 				return ret;
900 
901 			/* Update to the new resized array */
902 			mem_ranges = mrange_info->mem_ranges;
903 		}
904 
905 		start = base;
906 		mem_ranges[mrange_info->mem_range_cnt].base = start;
907 		mrange_info->mem_range_cnt++;
908 	}
909 
910 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
911 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
912 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
913 		 start, end - 1, (end - start));
914 	return 0;
915 }
916 
917 static int fadump_exclude_reserved_area(u64 start, u64 end)
918 {
919 	u64 ra_start, ra_end;
920 	int ret = 0;
921 
922 	ra_start = fw_dump.reserve_dump_area_start;
923 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
924 
925 	if ((ra_start < end) && (ra_end > start)) {
926 		if ((start < ra_start) && (end > ra_end)) {
927 			ret = fadump_add_mem_range(&crash_mrange_info,
928 						   start, ra_start);
929 			if (ret)
930 				return ret;
931 
932 			ret = fadump_add_mem_range(&crash_mrange_info,
933 						   ra_end, end);
934 		} else if (start < ra_start) {
935 			ret = fadump_add_mem_range(&crash_mrange_info,
936 						   start, ra_start);
937 		} else if (ra_end < end) {
938 			ret = fadump_add_mem_range(&crash_mrange_info,
939 						   ra_end, end);
940 		}
941 	} else
942 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
943 
944 	return ret;
945 }
946 
947 static int fadump_init_elfcore_header(char *bufp)
948 {
949 	struct elfhdr *elf;
950 
951 	elf = (struct elfhdr *) bufp;
952 	bufp += sizeof(struct elfhdr);
953 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
954 	elf->e_ident[EI_CLASS] = ELF_CLASS;
955 	elf->e_ident[EI_DATA] = ELF_DATA;
956 	elf->e_ident[EI_VERSION] = EV_CURRENT;
957 	elf->e_ident[EI_OSABI] = ELF_OSABI;
958 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
959 	elf->e_type = ET_CORE;
960 	elf->e_machine = ELF_ARCH;
961 	elf->e_version = EV_CURRENT;
962 	elf->e_entry = 0;
963 	elf->e_phoff = sizeof(struct elfhdr);
964 	elf->e_shoff = 0;
965 #if defined(_CALL_ELF)
966 	elf->e_flags = _CALL_ELF;
967 #else
968 	elf->e_flags = 0;
969 #endif
970 	elf->e_ehsize = sizeof(struct elfhdr);
971 	elf->e_phentsize = sizeof(struct elf_phdr);
972 	elf->e_phnum = 0;
973 	elf->e_shentsize = 0;
974 	elf->e_shnum = 0;
975 	elf->e_shstrndx = 0;
976 
977 	return 0;
978 }
979 
980 /*
981  * Traverse through memblock structure and setup crash memory ranges. These
982  * ranges will be used create PT_LOAD program headers in elfcore header.
983  */
984 static int fadump_setup_crash_memory_ranges(void)
985 {
986 	u64 i, start, end;
987 	int ret;
988 
989 	pr_debug("Setup crash memory ranges.\n");
990 	crash_mrange_info.mem_range_cnt = 0;
991 
992 	/*
993 	 * Boot memory region(s) registered with firmware are moved to
994 	 * different location at the time of crash. Create separate program
995 	 * header(s) for this memory chunk(s) with the correct offset.
996 	 */
997 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
998 		start = fw_dump.boot_mem_addr[i];
999 		end = start + fw_dump.boot_mem_sz[i];
1000 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1001 		if (ret)
1002 			return ret;
1003 	}
1004 
1005 	for_each_mem_range(i, &start, &end) {
1006 		/*
1007 		 * skip the memory chunk that is already added
1008 		 * (0 through boot_memory_top).
1009 		 */
1010 		if (start < fw_dump.boot_mem_top) {
1011 			if (end > fw_dump.boot_mem_top)
1012 				start = fw_dump.boot_mem_top;
1013 			else
1014 				continue;
1015 		}
1016 
1017 		/* add this range excluding the reserved dump area. */
1018 		ret = fadump_exclude_reserved_area(start, end);
1019 		if (ret)
1020 			return ret;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * If the given physical address falls within the boot memory region then
1028  * return the relocated address that points to the dump region reserved
1029  * for saving initial boot memory contents.
1030  */
1031 static inline unsigned long fadump_relocate(unsigned long paddr)
1032 {
1033 	unsigned long raddr, rstart, rend, rlast, hole_size;
1034 	int i;
1035 
1036 	hole_size = 0;
1037 	rlast = 0;
1038 	raddr = paddr;
1039 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1040 		rstart = fw_dump.boot_mem_addr[i];
1041 		rend = rstart + fw_dump.boot_mem_sz[i];
1042 		hole_size += (rstart - rlast);
1043 
1044 		if (paddr >= rstart && paddr < rend) {
1045 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1046 			break;
1047 		}
1048 
1049 		rlast = rend;
1050 	}
1051 
1052 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1053 	return raddr;
1054 }
1055 
1056 static int fadump_create_elfcore_headers(char *bufp)
1057 {
1058 	unsigned long long raddr, offset;
1059 	struct elf_phdr *phdr;
1060 	struct elfhdr *elf;
1061 	int i, j;
1062 
1063 	fadump_init_elfcore_header(bufp);
1064 	elf = (struct elfhdr *)bufp;
1065 	bufp += sizeof(struct elfhdr);
1066 
1067 	/*
1068 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1069 	 * will be populated during second kernel boot after crash. Hence
1070 	 * this PT_NOTE will always be the first elf note.
1071 	 *
1072 	 * NOTE: Any new ELF note addition should be placed after this note.
1073 	 */
1074 	phdr = (struct elf_phdr *)bufp;
1075 	bufp += sizeof(struct elf_phdr);
1076 	phdr->p_type = PT_NOTE;
1077 	phdr->p_flags = 0;
1078 	phdr->p_vaddr = 0;
1079 	phdr->p_align = 0;
1080 
1081 	phdr->p_offset = 0;
1082 	phdr->p_paddr = 0;
1083 	phdr->p_filesz = 0;
1084 	phdr->p_memsz = 0;
1085 
1086 	(elf->e_phnum)++;
1087 
1088 	/* setup ELF PT_NOTE for vmcoreinfo */
1089 	phdr = (struct elf_phdr *)bufp;
1090 	bufp += sizeof(struct elf_phdr);
1091 	phdr->p_type	= PT_NOTE;
1092 	phdr->p_flags	= 0;
1093 	phdr->p_vaddr	= 0;
1094 	phdr->p_align	= 0;
1095 
1096 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1097 	phdr->p_offset	= phdr->p_paddr;
1098 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1099 
1100 	/* Increment number of program headers. */
1101 	(elf->e_phnum)++;
1102 
1103 	/* setup PT_LOAD sections. */
1104 	j = 0;
1105 	offset = 0;
1106 	raddr = fw_dump.boot_mem_addr[0];
1107 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1108 		u64 mbase, msize;
1109 
1110 		mbase = crash_mrange_info.mem_ranges[i].base;
1111 		msize = crash_mrange_info.mem_ranges[i].size;
1112 		if (!msize)
1113 			continue;
1114 
1115 		phdr = (struct elf_phdr *)bufp;
1116 		bufp += sizeof(struct elf_phdr);
1117 		phdr->p_type	= PT_LOAD;
1118 		phdr->p_flags	= PF_R|PF_W|PF_X;
1119 		phdr->p_offset	= mbase;
1120 
1121 		if (mbase == raddr) {
1122 			/*
1123 			 * The entire real memory region will be moved by
1124 			 * firmware to the specified destination_address.
1125 			 * Hence set the correct offset.
1126 			 */
1127 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1128 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1129 				offset += fw_dump.boot_mem_sz[j];
1130 				raddr = fw_dump.boot_mem_addr[++j];
1131 			}
1132 		}
1133 
1134 		phdr->p_paddr = mbase;
1135 		phdr->p_vaddr = (unsigned long)__va(mbase);
1136 		phdr->p_filesz = msize;
1137 		phdr->p_memsz = msize;
1138 		phdr->p_align = 0;
1139 
1140 		/* Increment number of program headers. */
1141 		(elf->e_phnum)++;
1142 	}
1143 	return 0;
1144 }
1145 
1146 static unsigned long init_fadump_header(unsigned long addr)
1147 {
1148 	struct fadump_crash_info_header *fdh;
1149 
1150 	if (!addr)
1151 		return 0;
1152 
1153 	fdh = __va(addr);
1154 	addr += sizeof(struct fadump_crash_info_header);
1155 
1156 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1157 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1158 	fdh->elfcorehdr_addr = addr;
1159 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1160 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1161 
1162 	return addr;
1163 }
1164 
1165 static int register_fadump(void)
1166 {
1167 	unsigned long addr;
1168 	void *vaddr;
1169 	int ret;
1170 
1171 	/*
1172 	 * If no memory is reserved then we can not register for firmware-
1173 	 * assisted dump.
1174 	 */
1175 	if (!fw_dump.reserve_dump_area_size)
1176 		return -ENODEV;
1177 
1178 	ret = fadump_setup_crash_memory_ranges();
1179 	if (ret)
1180 		return ret;
1181 
1182 	addr = fw_dump.fadumphdr_addr;
1183 
1184 	/* Initialize fadump crash info header. */
1185 	addr = init_fadump_header(addr);
1186 	vaddr = __va(addr);
1187 
1188 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1189 	fadump_create_elfcore_headers(vaddr);
1190 
1191 	/* register the future kernel dump with firmware. */
1192 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1193 	return fw_dump.ops->fadump_register(&fw_dump);
1194 }
1195 
1196 void fadump_cleanup(void)
1197 {
1198 	if (!fw_dump.fadump_supported)
1199 		return;
1200 
1201 	/* Invalidate the registration only if dump is active. */
1202 	if (fw_dump.dump_active) {
1203 		pr_debug("Invalidating firmware-assisted dump registration\n");
1204 		fw_dump.ops->fadump_invalidate(&fw_dump);
1205 	} else if (fw_dump.dump_registered) {
1206 		/* Un-register Firmware-assisted dump if it was registered. */
1207 		fw_dump.ops->fadump_unregister(&fw_dump);
1208 		fadump_free_mem_ranges(&crash_mrange_info);
1209 	}
1210 
1211 	if (fw_dump.ops->fadump_cleanup)
1212 		fw_dump.ops->fadump_cleanup(&fw_dump);
1213 }
1214 
1215 static void fadump_free_reserved_memory(unsigned long start_pfn,
1216 					unsigned long end_pfn)
1217 {
1218 	unsigned long pfn;
1219 	unsigned long time_limit = jiffies + HZ;
1220 
1221 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1222 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1223 
1224 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1225 		free_reserved_page(pfn_to_page(pfn));
1226 
1227 		if (time_after(jiffies, time_limit)) {
1228 			cond_resched();
1229 			time_limit = jiffies + HZ;
1230 		}
1231 	}
1232 }
1233 
1234 /*
1235  * Skip memory holes and free memory that was actually reserved.
1236  */
1237 static void fadump_release_reserved_area(u64 start, u64 end)
1238 {
1239 	unsigned long reg_spfn, reg_epfn;
1240 	u64 tstart, tend, spfn, epfn;
1241 	int i;
1242 
1243 	spfn = PHYS_PFN(start);
1244 	epfn = PHYS_PFN(end);
1245 
1246 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1247 		tstart = max_t(u64, spfn, reg_spfn);
1248 		tend   = min_t(u64, epfn, reg_epfn);
1249 
1250 		if (tstart < tend) {
1251 			fadump_free_reserved_memory(tstart, tend);
1252 
1253 			if (tend == epfn)
1254 				break;
1255 
1256 			spfn = tend;
1257 		}
1258 	}
1259 }
1260 
1261 /*
1262  * Sort the mem ranges in-place and merge adjacent ranges
1263  * to minimize the memory ranges count.
1264  */
1265 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1266 {
1267 	struct fadump_memory_range *mem_ranges;
1268 	struct fadump_memory_range tmp_range;
1269 	u64 base, size;
1270 	int i, j, idx;
1271 
1272 	if (!reserved_mrange_info.mem_range_cnt)
1273 		return;
1274 
1275 	/* Sort the memory ranges */
1276 	mem_ranges = mrange_info->mem_ranges;
1277 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1278 		idx = i;
1279 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1280 			if (mem_ranges[idx].base > mem_ranges[j].base)
1281 				idx = j;
1282 		}
1283 		if (idx != i) {
1284 			tmp_range = mem_ranges[idx];
1285 			mem_ranges[idx] = mem_ranges[i];
1286 			mem_ranges[i] = tmp_range;
1287 		}
1288 	}
1289 
1290 	/* Merge adjacent reserved ranges */
1291 	idx = 0;
1292 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1293 		base = mem_ranges[i-1].base;
1294 		size = mem_ranges[i-1].size;
1295 		if (mem_ranges[i].base == (base + size))
1296 			mem_ranges[idx].size += mem_ranges[i].size;
1297 		else {
1298 			idx++;
1299 			if (i == idx)
1300 				continue;
1301 
1302 			mem_ranges[idx] = mem_ranges[i];
1303 		}
1304 	}
1305 	mrange_info->mem_range_cnt = idx + 1;
1306 }
1307 
1308 /*
1309  * Scan reserved-ranges to consider them while reserving/releasing
1310  * memory for FADump.
1311  */
1312 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1313 {
1314 	const __be32 *prop;
1315 	int len, ret = -1;
1316 	unsigned long i;
1317 
1318 	/* reserved-ranges already scanned */
1319 	if (reserved_mrange_info.mem_range_cnt != 0)
1320 		return;
1321 
1322 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1323 	if (!prop)
1324 		return;
1325 
1326 	/*
1327 	 * Each reserved range is an (address,size) pair, 2 cells each,
1328 	 * totalling 4 cells per range.
1329 	 */
1330 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1331 		u64 base, size;
1332 
1333 		base = of_read_number(prop + (i * 4) + 0, 2);
1334 		size = of_read_number(prop + (i * 4) + 2, 2);
1335 
1336 		if (size) {
1337 			ret = fadump_add_mem_range(&reserved_mrange_info,
1338 						   base, base + size);
1339 			if (ret < 0) {
1340 				pr_warn("some reserved ranges are ignored!\n");
1341 				break;
1342 			}
1343 		}
1344 	}
1345 
1346 	/* Compact reserved ranges */
1347 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1348 }
1349 
1350 /*
1351  * Release the memory that was reserved during early boot to preserve the
1352  * crash'ed kernel's memory contents except reserved dump area (permanent
1353  * reservation) and reserved ranges used by F/W. The released memory will
1354  * be available for general use.
1355  */
1356 static void fadump_release_memory(u64 begin, u64 end)
1357 {
1358 	u64 ra_start, ra_end, tstart;
1359 	int i, ret;
1360 
1361 	ra_start = fw_dump.reserve_dump_area_start;
1362 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1363 
1364 	/*
1365 	 * If reserved ranges array limit is hit, overwrite the last reserved
1366 	 * memory range with reserved dump area to ensure it is excluded from
1367 	 * the memory being released (reused for next FADump registration).
1368 	 */
1369 	if (reserved_mrange_info.mem_range_cnt ==
1370 	    reserved_mrange_info.max_mem_ranges)
1371 		reserved_mrange_info.mem_range_cnt--;
1372 
1373 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1374 	if (ret != 0)
1375 		return;
1376 
1377 	/* Get the reserved ranges list in order first. */
1378 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1379 
1380 	/* Exclude reserved ranges and release remaining memory */
1381 	tstart = begin;
1382 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1383 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1384 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1385 
1386 		if (tstart >= ra_end)
1387 			continue;
1388 
1389 		if (tstart < ra_start)
1390 			fadump_release_reserved_area(tstart, ra_start);
1391 		tstart = ra_end;
1392 	}
1393 
1394 	if (tstart < end)
1395 		fadump_release_reserved_area(tstart, end);
1396 }
1397 
1398 static void fadump_invalidate_release_mem(void)
1399 {
1400 	mutex_lock(&fadump_mutex);
1401 	if (!fw_dump.dump_active) {
1402 		mutex_unlock(&fadump_mutex);
1403 		return;
1404 	}
1405 
1406 	fadump_cleanup();
1407 	mutex_unlock(&fadump_mutex);
1408 
1409 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1410 	fadump_free_cpu_notes_buf();
1411 
1412 	/*
1413 	 * Setup kernel metadata and initialize the kernel dump
1414 	 * memory structure for FADump re-registration.
1415 	 */
1416 	if (fw_dump.ops->fadump_setup_metadata &&
1417 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1418 		pr_warn("Failed to setup kernel metadata!\n");
1419 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1420 }
1421 
1422 static ssize_t release_mem_store(struct kobject *kobj,
1423 				 struct kobj_attribute *attr,
1424 				 const char *buf, size_t count)
1425 {
1426 	int input = -1;
1427 
1428 	if (!fw_dump.dump_active)
1429 		return -EPERM;
1430 
1431 	if (kstrtoint(buf, 0, &input))
1432 		return -EINVAL;
1433 
1434 	if (input == 1) {
1435 		/*
1436 		 * Take away the '/proc/vmcore'. We are releasing the dump
1437 		 * memory, hence it will not be valid anymore.
1438 		 */
1439 #ifdef CONFIG_PROC_VMCORE
1440 		vmcore_cleanup();
1441 #endif
1442 		fadump_invalidate_release_mem();
1443 
1444 	} else
1445 		return -EINVAL;
1446 	return count;
1447 }
1448 
1449 /* Release the reserved memory and disable the FADump */
1450 static void unregister_fadump(void)
1451 {
1452 	fadump_cleanup();
1453 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1454 			      fw_dump.reserve_dump_area_size);
1455 	fw_dump.fadump_enabled = 0;
1456 	kobject_put(fadump_kobj);
1457 }
1458 
1459 static ssize_t enabled_show(struct kobject *kobj,
1460 			    struct kobj_attribute *attr,
1461 			    char *buf)
1462 {
1463 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1464 }
1465 
1466 static ssize_t mem_reserved_show(struct kobject *kobj,
1467 				 struct kobj_attribute *attr,
1468 				 char *buf)
1469 {
1470 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1471 }
1472 
1473 static ssize_t registered_show(struct kobject *kobj,
1474 			       struct kobj_attribute *attr,
1475 			       char *buf)
1476 {
1477 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1478 }
1479 
1480 static ssize_t registered_store(struct kobject *kobj,
1481 				struct kobj_attribute *attr,
1482 				const char *buf, size_t count)
1483 {
1484 	int ret = 0;
1485 	int input = -1;
1486 
1487 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1488 		return -EPERM;
1489 
1490 	if (kstrtoint(buf, 0, &input))
1491 		return -EINVAL;
1492 
1493 	mutex_lock(&fadump_mutex);
1494 
1495 	switch (input) {
1496 	case 0:
1497 		if (fw_dump.dump_registered == 0) {
1498 			goto unlock_out;
1499 		}
1500 
1501 		/* Un-register Firmware-assisted dump */
1502 		pr_debug("Un-register firmware-assisted dump\n");
1503 		fw_dump.ops->fadump_unregister(&fw_dump);
1504 		break;
1505 	case 1:
1506 		if (fw_dump.dump_registered == 1) {
1507 			/* Un-register Firmware-assisted dump */
1508 			fw_dump.ops->fadump_unregister(&fw_dump);
1509 		}
1510 		/* Register Firmware-assisted dump */
1511 		ret = register_fadump();
1512 		break;
1513 	default:
1514 		ret = -EINVAL;
1515 		break;
1516 	}
1517 
1518 unlock_out:
1519 	mutex_unlock(&fadump_mutex);
1520 	return ret < 0 ? ret : count;
1521 }
1522 
1523 static int fadump_region_show(struct seq_file *m, void *private)
1524 {
1525 	if (!fw_dump.fadump_enabled)
1526 		return 0;
1527 
1528 	mutex_lock(&fadump_mutex);
1529 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1530 	mutex_unlock(&fadump_mutex);
1531 	return 0;
1532 }
1533 
1534 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1535 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1536 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1537 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1538 
1539 static struct attribute *fadump_attrs[] = {
1540 	&enable_attr.attr,
1541 	&register_attr.attr,
1542 	&mem_reserved_attr.attr,
1543 	NULL,
1544 };
1545 
1546 ATTRIBUTE_GROUPS(fadump);
1547 
1548 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1549 
1550 static void fadump_init_files(void)
1551 {
1552 	int rc = 0;
1553 
1554 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1555 	if (!fadump_kobj) {
1556 		pr_err("failed to create fadump kobject\n");
1557 		return;
1558 	}
1559 
1560 	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1561 			    &fadump_region_fops);
1562 
1563 	if (fw_dump.dump_active) {
1564 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1565 		if (rc)
1566 			pr_err("unable to create release_mem sysfs file (%d)\n",
1567 			       rc);
1568 	}
1569 
1570 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1571 	if (rc) {
1572 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1573 		       rc);
1574 		unregister_fadump();
1575 		return;
1576 	}
1577 
1578 	/*
1579 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1580 	 * create symlink at old location to maintain backward compatibility.
1581 	 *
1582 	 *      - fadump_enabled -> fadump/enabled
1583 	 *      - fadump_registered -> fadump/registered
1584 	 *      - fadump_release_mem -> fadump/release_mem
1585 	 */
1586 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1587 						  "enabled", "fadump_enabled");
1588 	if (rc) {
1589 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1590 		return;
1591 	}
1592 
1593 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1594 						  "registered",
1595 						  "fadump_registered");
1596 	if (rc) {
1597 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1598 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1599 		return;
1600 	}
1601 
1602 	if (fw_dump.dump_active) {
1603 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1604 							  fadump_kobj,
1605 							  "release_mem",
1606 							  "fadump_release_mem");
1607 		if (rc)
1608 			pr_err("unable to create fadump_release_mem symlink (%d)",
1609 			       rc);
1610 	}
1611 	return;
1612 }
1613 
1614 /*
1615  * Prepare for firmware-assisted dump.
1616  */
1617 int __init setup_fadump(void)
1618 {
1619 	if (!fw_dump.fadump_supported)
1620 		return 0;
1621 
1622 	fadump_init_files();
1623 	fadump_show_config();
1624 
1625 	if (!fw_dump.fadump_enabled)
1626 		return 1;
1627 
1628 	/*
1629 	 * If dump data is available then see if it is valid and prepare for
1630 	 * saving it to the disk.
1631 	 */
1632 	if (fw_dump.dump_active) {
1633 		/*
1634 		 * if dump process fails then invalidate the registration
1635 		 * and release memory before proceeding for re-registration.
1636 		 */
1637 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1638 			fadump_invalidate_release_mem();
1639 	}
1640 	/* Initialize the kernel dump memory structure for FAD registration. */
1641 	else if (fw_dump.reserve_dump_area_size)
1642 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1643 
1644 	return 1;
1645 }
1646 subsys_initcall(setup_fadump);
1647 #else /* !CONFIG_PRESERVE_FA_DUMP */
1648 
1649 /* Scan the Firmware Assisted dump configuration details. */
1650 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1651 				      int depth, void *data)
1652 {
1653 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1654 		return 0;
1655 
1656 	opal_fadump_dt_scan(&fw_dump, node);
1657 	return 1;
1658 }
1659 
1660 /*
1661  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1662  * preserve crash data. The subsequent memory preserving kernel boot
1663  * is likely to process this crash data.
1664  */
1665 int __init fadump_reserve_mem(void)
1666 {
1667 	if (fw_dump.dump_active) {
1668 		/*
1669 		 * If last boot has crashed then reserve all the memory
1670 		 * above boot memory to preserve crash data.
1671 		 */
1672 		pr_info("Preserving crash data for processing in next boot.\n");
1673 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1674 	} else
1675 		pr_debug("FADump-aware kernel..\n");
1676 
1677 	return 1;
1678 }
1679 #endif /* CONFIG_PRESERVE_FA_DUMP */
1680 
1681 /* Preserve everything above the base address */
1682 static void __init fadump_reserve_crash_area(u64 base)
1683 {
1684 	u64 i, mstart, mend, msize;
1685 
1686 	for_each_mem_range(i, &mstart, &mend) {
1687 		msize  = mend - mstart;
1688 
1689 		if ((mstart + msize) < base)
1690 			continue;
1691 
1692 		if (mstart < base) {
1693 			msize -= (base - mstart);
1694 			mstart = base;
1695 		}
1696 
1697 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1698 			(msize >> 20), mstart);
1699 		memblock_reserve(mstart, msize);
1700 	}
1701 }
1702 
1703 unsigned long __init arch_reserved_kernel_pages(void)
1704 {
1705 	return memblock_reserved_size() / PAGE_SIZE;
1706 }
1707