1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/debugfs.h> 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 35 /* 36 * The CPU who acquired the lock to trigger the fadump crash should 37 * wait for other CPUs to enter. 38 * 39 * The timeout is in milliseconds. 40 */ 41 #define CRASH_TIMEOUT 500 42 43 static struct fw_dump fw_dump; 44 45 static void __init fadump_reserve_crash_area(u64 base); 46 47 struct kobject *fadump_kobj; 48 static atomic_t cpus_in_fadump; 49 50 #ifndef CONFIG_PRESERVE_FA_DUMP 51 static DEFINE_MUTEX(fadump_mutex); 52 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false }; 53 54 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */ 55 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \ 56 sizeof(struct fadump_memory_range)) 57 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT]; 58 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs, 59 RESERVED_RNGS_SZ, 0, 60 RESERVED_RNGS_CNT, true }; 61 62 static void __init early_init_dt_scan_reserved_ranges(unsigned long node); 63 64 #ifdef CONFIG_CMA 65 static struct cma *fadump_cma; 66 67 /* 68 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 69 * 70 * This function initializes CMA area from fadump reserved memory. 71 * The total size of fadump reserved memory covers for boot memory size 72 * + cpu data size + hpte size and metadata. 73 * Initialize only the area equivalent to boot memory size for CMA use. 74 * The reamining portion of fadump reserved memory will be not given 75 * to CMA and pages for thoes will stay reserved. boot memory size is 76 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 77 * But for some reason even if it fails we still have the memory reservation 78 * with us and we can still continue doing fadump. 79 */ 80 int __init fadump_cma_init(void) 81 { 82 unsigned long long base, size; 83 int rc; 84 85 if (!fw_dump.fadump_enabled) 86 return 0; 87 88 /* 89 * Do not use CMA if user has provided fadump=nocma kernel parameter. 90 * Return 1 to continue with fadump old behaviour. 91 */ 92 if (fw_dump.nocma) 93 return 1; 94 95 base = fw_dump.reserve_dump_area_start; 96 size = fw_dump.boot_memory_size; 97 98 if (!size) 99 return 0; 100 101 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 102 if (rc) { 103 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 104 /* 105 * Though the CMA init has failed we still have memory 106 * reservation with us. The reserved memory will be 107 * blocked from production system usage. Hence return 1, 108 * so that we can continue with fadump. 109 */ 110 return 1; 111 } 112 113 /* 114 * So we now have successfully initialized cma area for fadump. 115 */ 116 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 117 "bytes of memory reserved for firmware-assisted dump\n", 118 cma_get_size(fadump_cma), 119 (unsigned long)cma_get_base(fadump_cma) >> 20, 120 fw_dump.reserve_dump_area_size); 121 return 1; 122 } 123 #else 124 static int __init fadump_cma_init(void) { return 1; } 125 #endif /* CONFIG_CMA */ 126 127 /* Scan the Firmware Assisted dump configuration details. */ 128 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 129 int depth, void *data) 130 { 131 if (depth == 0) { 132 early_init_dt_scan_reserved_ranges(node); 133 return 0; 134 } 135 136 if (depth != 1) 137 return 0; 138 139 if (strcmp(uname, "rtas") == 0) { 140 rtas_fadump_dt_scan(&fw_dump, node); 141 return 1; 142 } 143 144 if (strcmp(uname, "ibm,opal") == 0) { 145 opal_fadump_dt_scan(&fw_dump, node); 146 return 1; 147 } 148 149 return 0; 150 } 151 152 /* 153 * If fadump is registered, check if the memory provided 154 * falls within boot memory area and reserved memory area. 155 */ 156 int is_fadump_memory_area(u64 addr, unsigned long size) 157 { 158 u64 d_start, d_end; 159 160 if (!fw_dump.dump_registered) 161 return 0; 162 163 if (!size) 164 return 0; 165 166 d_start = fw_dump.reserve_dump_area_start; 167 d_end = d_start + fw_dump.reserve_dump_area_size; 168 if (((addr + size) > d_start) && (addr <= d_end)) 169 return 1; 170 171 return (addr <= fw_dump.boot_mem_top); 172 } 173 174 int should_fadump_crash(void) 175 { 176 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 177 return 0; 178 return 1; 179 } 180 181 int is_fadump_active(void) 182 { 183 return fw_dump.dump_active; 184 } 185 186 /* 187 * Returns true, if there are no holes in memory area between d_start to d_end, 188 * false otherwise. 189 */ 190 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 191 { 192 struct memblock_region *reg; 193 bool ret = false; 194 u64 start, end; 195 196 for_each_memblock(memory, reg) { 197 start = max_t(u64, d_start, reg->base); 198 end = min_t(u64, d_end, (reg->base + reg->size)); 199 if (d_start < end) { 200 /* Memory hole from d_start to start */ 201 if (start > d_start) 202 break; 203 204 if (end == d_end) { 205 ret = true; 206 break; 207 } 208 209 d_start = end + 1; 210 } 211 } 212 213 return ret; 214 } 215 216 /* 217 * Returns true, if there are no holes in boot memory area, 218 * false otherwise. 219 */ 220 bool is_fadump_boot_mem_contiguous(void) 221 { 222 unsigned long d_start, d_end; 223 bool ret = false; 224 int i; 225 226 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 227 d_start = fw_dump.boot_mem_addr[i]; 228 d_end = d_start + fw_dump.boot_mem_sz[i]; 229 230 ret = is_fadump_mem_area_contiguous(d_start, d_end); 231 if (!ret) 232 break; 233 } 234 235 return ret; 236 } 237 238 /* 239 * Returns true, if there are no holes in reserved memory area, 240 * false otherwise. 241 */ 242 bool is_fadump_reserved_mem_contiguous(void) 243 { 244 u64 d_start, d_end; 245 246 d_start = fw_dump.reserve_dump_area_start; 247 d_end = d_start + fw_dump.reserve_dump_area_size; 248 return is_fadump_mem_area_contiguous(d_start, d_end); 249 } 250 251 /* Print firmware assisted dump configurations for debugging purpose. */ 252 static void fadump_show_config(void) 253 { 254 int i; 255 256 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 257 (fw_dump.fadump_supported ? "present" : "no support")); 258 259 if (!fw_dump.fadump_supported) 260 return; 261 262 pr_debug("Fadump enabled : %s\n", 263 (fw_dump.fadump_enabled ? "yes" : "no")); 264 pr_debug("Dump Active : %s\n", 265 (fw_dump.dump_active ? "yes" : "no")); 266 pr_debug("Dump section sizes:\n"); 267 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 268 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 269 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 270 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 271 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 272 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 273 pr_debug("[%03d] base = %llx, size = %llx\n", i, 274 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 275 } 276 } 277 278 /** 279 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 280 * 281 * Function to find the largest memory size we need to reserve during early 282 * boot process. This will be the size of the memory that is required for a 283 * kernel to boot successfully. 284 * 285 * This function has been taken from phyp-assisted dump feature implementation. 286 * 287 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 288 * 289 * TODO: Come up with better approach to find out more accurate memory size 290 * that is required for a kernel to boot successfully. 291 * 292 */ 293 static inline u64 fadump_calculate_reserve_size(void) 294 { 295 u64 base, size, bootmem_min; 296 int ret; 297 298 if (fw_dump.reserve_bootvar) 299 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 300 301 /* 302 * Check if the size is specified through crashkernel= cmdline 303 * option. If yes, then use that but ignore base as fadump reserves 304 * memory at a predefined offset. 305 */ 306 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 307 &size, &base); 308 if (ret == 0 && size > 0) { 309 unsigned long max_size; 310 311 if (fw_dump.reserve_bootvar) 312 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 313 314 fw_dump.reserve_bootvar = (unsigned long)size; 315 316 /* 317 * Adjust if the boot memory size specified is above 318 * the upper limit. 319 */ 320 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 321 if (fw_dump.reserve_bootvar > max_size) { 322 fw_dump.reserve_bootvar = max_size; 323 pr_info("Adjusted boot memory size to %luMB\n", 324 (fw_dump.reserve_bootvar >> 20)); 325 } 326 327 return fw_dump.reserve_bootvar; 328 } else if (fw_dump.reserve_bootvar) { 329 /* 330 * 'fadump_reserve_mem=' is being used to reserve memory 331 * for firmware-assisted dump. 332 */ 333 return fw_dump.reserve_bootvar; 334 } 335 336 /* divide by 20 to get 5% of value */ 337 size = memblock_phys_mem_size() / 20; 338 339 /* round it down in multiples of 256 */ 340 size = size & ~0x0FFFFFFFUL; 341 342 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 343 if (memory_limit && size > memory_limit) 344 size = memory_limit; 345 346 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 347 return (size > bootmem_min ? size : bootmem_min); 348 } 349 350 /* 351 * Calculate the total memory size required to be reserved for 352 * firmware-assisted dump registration. 353 */ 354 static unsigned long get_fadump_area_size(void) 355 { 356 unsigned long size = 0; 357 358 size += fw_dump.cpu_state_data_size; 359 size += fw_dump.hpte_region_size; 360 size += fw_dump.boot_memory_size; 361 size += sizeof(struct fadump_crash_info_header); 362 size += sizeof(struct elfhdr); /* ELF core header.*/ 363 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 364 /* Program headers for crash memory regions. */ 365 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 366 367 size = PAGE_ALIGN(size); 368 369 /* This is to hold kernel metadata on platforms that support it */ 370 size += (fw_dump.ops->fadump_get_metadata_size ? 371 fw_dump.ops->fadump_get_metadata_size() : 0); 372 return size; 373 } 374 375 static int __init add_boot_mem_region(unsigned long rstart, 376 unsigned long rsize) 377 { 378 int i = fw_dump.boot_mem_regs_cnt++; 379 380 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { 381 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; 382 return 0; 383 } 384 385 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 386 i, rstart, (rstart + rsize)); 387 fw_dump.boot_mem_addr[i] = rstart; 388 fw_dump.boot_mem_sz[i] = rsize; 389 return 1; 390 } 391 392 /* 393 * Firmware usually has a hard limit on the data it can copy per region. 394 * Honour that by splitting a memory range into multiple regions. 395 */ 396 static int __init add_boot_mem_regions(unsigned long mstart, 397 unsigned long msize) 398 { 399 unsigned long rstart, rsize, max_size; 400 int ret = 1; 401 402 rstart = mstart; 403 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 404 while (msize) { 405 if (msize > max_size) 406 rsize = max_size; 407 else 408 rsize = msize; 409 410 ret = add_boot_mem_region(rstart, rsize); 411 if (!ret) 412 break; 413 414 msize -= rsize; 415 rstart += rsize; 416 } 417 418 return ret; 419 } 420 421 static int __init fadump_get_boot_mem_regions(void) 422 { 423 unsigned long base, size, cur_size, hole_size, last_end; 424 unsigned long mem_size = fw_dump.boot_memory_size; 425 struct memblock_region *reg; 426 int ret = 1; 427 428 fw_dump.boot_mem_regs_cnt = 0; 429 430 last_end = 0; 431 hole_size = 0; 432 cur_size = 0; 433 for_each_memblock(memory, reg) { 434 base = reg->base; 435 size = reg->size; 436 hole_size += (base - last_end); 437 438 if ((cur_size + size) >= mem_size) { 439 size = (mem_size - cur_size); 440 ret = add_boot_mem_regions(base, size); 441 break; 442 } 443 444 mem_size -= size; 445 cur_size += size; 446 ret = add_boot_mem_regions(base, size); 447 if (!ret) 448 break; 449 450 last_end = base + size; 451 } 452 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 453 454 return ret; 455 } 456 457 /* 458 * Returns true, if the given range overlaps with reserved memory ranges 459 * starting at idx. Also, updates idx to index of overlapping memory range 460 * with the given memory range. 461 * False, otherwise. 462 */ 463 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx) 464 { 465 bool ret = false; 466 int i; 467 468 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) { 469 u64 rbase = reserved_mrange_info.mem_ranges[i].base; 470 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size; 471 472 if (end <= rbase) 473 break; 474 475 if ((end > rbase) && (base < rend)) { 476 *idx = i; 477 ret = true; 478 break; 479 } 480 } 481 482 return ret; 483 } 484 485 /* 486 * Locate a suitable memory area to reserve memory for FADump. While at it, 487 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W. 488 */ 489 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size) 490 { 491 struct fadump_memory_range *mrngs; 492 phys_addr_t mstart, mend; 493 int idx = 0; 494 u64 i, ret = 0; 495 496 mrngs = reserved_mrange_info.mem_ranges; 497 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 498 &mstart, &mend, NULL) { 499 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n", 500 i, mstart, mend, base); 501 502 if (mstart > base) 503 base = PAGE_ALIGN(mstart); 504 505 while ((mend > base) && ((mend - base) >= size)) { 506 if (!overlaps_reserved_ranges(base, base+size, &idx)) { 507 ret = base; 508 goto out; 509 } 510 511 base = mrngs[idx].base + mrngs[idx].size; 512 base = PAGE_ALIGN(base); 513 } 514 } 515 516 out: 517 return ret; 518 } 519 520 int __init fadump_reserve_mem(void) 521 { 522 u64 base, size, mem_boundary, bootmem_min; 523 int ret = 1; 524 525 if (!fw_dump.fadump_enabled) 526 return 0; 527 528 if (!fw_dump.fadump_supported) { 529 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 530 goto error_out; 531 } 532 533 /* 534 * Initialize boot memory size 535 * If dump is active then we have already calculated the size during 536 * first kernel. 537 */ 538 if (!fw_dump.dump_active) { 539 fw_dump.boot_memory_size = 540 PAGE_ALIGN(fadump_calculate_reserve_size()); 541 #ifdef CONFIG_CMA 542 if (!fw_dump.nocma) { 543 fw_dump.boot_memory_size = 544 ALIGN(fw_dump.boot_memory_size, 545 FADUMP_CMA_ALIGNMENT); 546 } 547 #endif 548 549 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 550 if (fw_dump.boot_memory_size < bootmem_min) { 551 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 552 fw_dump.boot_memory_size, bootmem_min); 553 goto error_out; 554 } 555 556 if (!fadump_get_boot_mem_regions()) { 557 pr_err("Too many holes in boot memory area to enable fadump\n"); 558 goto error_out; 559 } 560 } 561 562 /* 563 * Calculate the memory boundary. 564 * If memory_limit is less than actual memory boundary then reserve 565 * the memory for fadump beyond the memory_limit and adjust the 566 * memory_limit accordingly, so that the running kernel can run with 567 * specified memory_limit. 568 */ 569 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 570 size = get_fadump_area_size(); 571 if ((memory_limit + size) < memblock_end_of_DRAM()) 572 memory_limit += size; 573 else 574 memory_limit = memblock_end_of_DRAM(); 575 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 576 " dump, now %#016llx\n", memory_limit); 577 } 578 if (memory_limit) 579 mem_boundary = memory_limit; 580 else 581 mem_boundary = memblock_end_of_DRAM(); 582 583 base = fw_dump.boot_mem_top; 584 size = get_fadump_area_size(); 585 fw_dump.reserve_dump_area_size = size; 586 if (fw_dump.dump_active) { 587 pr_info("Firmware-assisted dump is active.\n"); 588 589 #ifdef CONFIG_HUGETLB_PAGE 590 /* 591 * FADump capture kernel doesn't care much about hugepages. 592 * In fact, handling hugepages in capture kernel is asking for 593 * trouble. So, disable HugeTLB support when fadump is active. 594 */ 595 hugetlb_disabled = true; 596 #endif 597 /* 598 * If last boot has crashed then reserve all the memory 599 * above boot memory size so that we don't touch it until 600 * dump is written to disk by userspace tool. This memory 601 * can be released for general use by invalidating fadump. 602 */ 603 fadump_reserve_crash_area(base); 604 605 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 606 pr_debug("Reserve dump area start address: 0x%lx\n", 607 fw_dump.reserve_dump_area_start); 608 } else { 609 /* 610 * Reserve memory at an offset closer to bottom of the RAM to 611 * minimize the impact of memory hot-remove operation. 612 */ 613 base = fadump_locate_reserve_mem(base, size); 614 615 if (!base || (base + size > mem_boundary)) { 616 pr_err("Failed to find memory chunk for reservation!\n"); 617 goto error_out; 618 } 619 fw_dump.reserve_dump_area_start = base; 620 621 /* 622 * Calculate the kernel metadata address and register it with 623 * f/w if the platform supports. 624 */ 625 if (fw_dump.ops->fadump_setup_metadata && 626 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 627 goto error_out; 628 629 if (memblock_reserve(base, size)) { 630 pr_err("Failed to reserve memory!\n"); 631 goto error_out; 632 } 633 634 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 635 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 636 637 ret = fadump_cma_init(); 638 } 639 640 return ret; 641 error_out: 642 fw_dump.fadump_enabled = 0; 643 return 0; 644 } 645 646 /* Look for fadump= cmdline option. */ 647 static int __init early_fadump_param(char *p) 648 { 649 if (!p) 650 return 1; 651 652 if (strncmp(p, "on", 2) == 0) 653 fw_dump.fadump_enabled = 1; 654 else if (strncmp(p, "off", 3) == 0) 655 fw_dump.fadump_enabled = 0; 656 else if (strncmp(p, "nocma", 5) == 0) { 657 fw_dump.fadump_enabled = 1; 658 fw_dump.nocma = 1; 659 } 660 661 return 0; 662 } 663 early_param("fadump", early_fadump_param); 664 665 /* 666 * Look for fadump_reserve_mem= cmdline option 667 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 668 * the sooner 'crashkernel=' parameter is accustomed to. 669 */ 670 static int __init early_fadump_reserve_mem(char *p) 671 { 672 if (p) 673 fw_dump.reserve_bootvar = memparse(p, &p); 674 return 0; 675 } 676 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 677 678 void crash_fadump(struct pt_regs *regs, const char *str) 679 { 680 unsigned int msecs; 681 struct fadump_crash_info_header *fdh = NULL; 682 int old_cpu, this_cpu; 683 /* Do not include first CPU */ 684 unsigned int ncpus = num_online_cpus() - 1; 685 686 if (!should_fadump_crash()) 687 return; 688 689 /* 690 * old_cpu == -1 means this is the first CPU which has come here, 691 * go ahead and trigger fadump. 692 * 693 * old_cpu != -1 means some other CPU has already on it's way 694 * to trigger fadump, just keep looping here. 695 */ 696 this_cpu = smp_processor_id(); 697 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 698 699 if (old_cpu != -1) { 700 atomic_inc(&cpus_in_fadump); 701 702 /* 703 * We can't loop here indefinitely. Wait as long as fadump 704 * is in force. If we race with fadump un-registration this 705 * loop will break and then we go down to normal panic path 706 * and reboot. If fadump is in force the first crashing 707 * cpu will definitely trigger fadump. 708 */ 709 while (fw_dump.dump_registered) 710 cpu_relax(); 711 return; 712 } 713 714 fdh = __va(fw_dump.fadumphdr_addr); 715 fdh->crashing_cpu = crashing_cpu; 716 crash_save_vmcoreinfo(); 717 718 if (regs) 719 fdh->regs = *regs; 720 else 721 ppc_save_regs(&fdh->regs); 722 723 fdh->online_mask = *cpu_online_mask; 724 725 /* 726 * If we came in via system reset, wait a while for the secondary 727 * CPUs to enter. 728 */ 729 if (TRAP(&(fdh->regs)) == 0x100) { 730 msecs = CRASH_TIMEOUT; 731 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0)) 732 mdelay(1); 733 } 734 735 fw_dump.ops->fadump_trigger(fdh, str); 736 } 737 738 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 739 { 740 struct elf_prstatus prstatus; 741 742 memset(&prstatus, 0, sizeof(prstatus)); 743 /* 744 * FIXME: How do i get PID? Do I really need it? 745 * prstatus.pr_pid = ???? 746 */ 747 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 748 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 749 &prstatus, sizeof(prstatus)); 750 return buf; 751 } 752 753 void fadump_update_elfcore_header(char *bufp) 754 { 755 struct elfhdr *elf; 756 struct elf_phdr *phdr; 757 758 elf = (struct elfhdr *)bufp; 759 bufp += sizeof(struct elfhdr); 760 761 /* First note is a place holder for cpu notes info. */ 762 phdr = (struct elf_phdr *)bufp; 763 764 if (phdr->p_type == PT_NOTE) { 765 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 766 phdr->p_offset = phdr->p_paddr; 767 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 768 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 769 } 770 return; 771 } 772 773 static void *fadump_alloc_buffer(unsigned long size) 774 { 775 unsigned long count, i; 776 struct page *page; 777 void *vaddr; 778 779 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 780 if (!vaddr) 781 return NULL; 782 783 count = PAGE_ALIGN(size) / PAGE_SIZE; 784 page = virt_to_page(vaddr); 785 for (i = 0; i < count; i++) 786 mark_page_reserved(page + i); 787 return vaddr; 788 } 789 790 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 791 { 792 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 793 } 794 795 s32 fadump_setup_cpu_notes_buf(u32 num_cpus) 796 { 797 /* Allocate buffer to hold cpu crash notes. */ 798 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 799 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 800 fw_dump.cpu_notes_buf_vaddr = 801 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 802 if (!fw_dump.cpu_notes_buf_vaddr) { 803 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 804 fw_dump.cpu_notes_buf_size); 805 return -ENOMEM; 806 } 807 808 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 809 fw_dump.cpu_notes_buf_size, 810 fw_dump.cpu_notes_buf_vaddr); 811 return 0; 812 } 813 814 void fadump_free_cpu_notes_buf(void) 815 { 816 if (!fw_dump.cpu_notes_buf_vaddr) 817 return; 818 819 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 820 fw_dump.cpu_notes_buf_size); 821 fw_dump.cpu_notes_buf_vaddr = 0; 822 fw_dump.cpu_notes_buf_size = 0; 823 } 824 825 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 826 { 827 if (mrange_info->is_static) { 828 mrange_info->mem_range_cnt = 0; 829 return; 830 } 831 832 kfree(mrange_info->mem_ranges); 833 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0, 834 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ)); 835 } 836 837 /* 838 * Allocate or reallocate mem_ranges array in incremental units 839 * of PAGE_SIZE. 840 */ 841 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 842 { 843 struct fadump_memory_range *new_array; 844 u64 new_size; 845 846 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 847 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 848 new_size, mrange_info->name); 849 850 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 851 if (new_array == NULL) { 852 pr_err("Insufficient memory for setting up %s memory ranges\n", 853 mrange_info->name); 854 fadump_free_mem_ranges(mrange_info); 855 return -ENOMEM; 856 } 857 858 mrange_info->mem_ranges = new_array; 859 mrange_info->mem_ranges_sz = new_size; 860 mrange_info->max_mem_ranges = (new_size / 861 sizeof(struct fadump_memory_range)); 862 return 0; 863 } 864 865 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 866 u64 base, u64 end) 867 { 868 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 869 bool is_adjacent = false; 870 u64 start, size; 871 872 if (base == end) 873 return 0; 874 875 /* 876 * Fold adjacent memory ranges to bring down the memory ranges/ 877 * PT_LOAD segments count. 878 */ 879 if (mrange_info->mem_range_cnt) { 880 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 881 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 882 883 if ((start + size) == base) 884 is_adjacent = true; 885 } 886 if (!is_adjacent) { 887 /* resize the array on reaching the limit */ 888 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 889 int ret; 890 891 if (mrange_info->is_static) { 892 pr_err("Reached array size limit for %s memory ranges\n", 893 mrange_info->name); 894 return -ENOSPC; 895 } 896 897 ret = fadump_alloc_mem_ranges(mrange_info); 898 if (ret) 899 return ret; 900 901 /* Update to the new resized array */ 902 mem_ranges = mrange_info->mem_ranges; 903 } 904 905 start = base; 906 mem_ranges[mrange_info->mem_range_cnt].base = start; 907 mrange_info->mem_range_cnt++; 908 } 909 910 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 911 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 912 mrange_info->name, (mrange_info->mem_range_cnt - 1), 913 start, end - 1, (end - start)); 914 return 0; 915 } 916 917 static int fadump_exclude_reserved_area(u64 start, u64 end) 918 { 919 u64 ra_start, ra_end; 920 int ret = 0; 921 922 ra_start = fw_dump.reserve_dump_area_start; 923 ra_end = ra_start + fw_dump.reserve_dump_area_size; 924 925 if ((ra_start < end) && (ra_end > start)) { 926 if ((start < ra_start) && (end > ra_end)) { 927 ret = fadump_add_mem_range(&crash_mrange_info, 928 start, ra_start); 929 if (ret) 930 return ret; 931 932 ret = fadump_add_mem_range(&crash_mrange_info, 933 ra_end, end); 934 } else if (start < ra_start) { 935 ret = fadump_add_mem_range(&crash_mrange_info, 936 start, ra_start); 937 } else if (ra_end < end) { 938 ret = fadump_add_mem_range(&crash_mrange_info, 939 ra_end, end); 940 } 941 } else 942 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 943 944 return ret; 945 } 946 947 static int fadump_init_elfcore_header(char *bufp) 948 { 949 struct elfhdr *elf; 950 951 elf = (struct elfhdr *) bufp; 952 bufp += sizeof(struct elfhdr); 953 memcpy(elf->e_ident, ELFMAG, SELFMAG); 954 elf->e_ident[EI_CLASS] = ELF_CLASS; 955 elf->e_ident[EI_DATA] = ELF_DATA; 956 elf->e_ident[EI_VERSION] = EV_CURRENT; 957 elf->e_ident[EI_OSABI] = ELF_OSABI; 958 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 959 elf->e_type = ET_CORE; 960 elf->e_machine = ELF_ARCH; 961 elf->e_version = EV_CURRENT; 962 elf->e_entry = 0; 963 elf->e_phoff = sizeof(struct elfhdr); 964 elf->e_shoff = 0; 965 #if defined(_CALL_ELF) 966 elf->e_flags = _CALL_ELF; 967 #else 968 elf->e_flags = 0; 969 #endif 970 elf->e_ehsize = sizeof(struct elfhdr); 971 elf->e_phentsize = sizeof(struct elf_phdr); 972 elf->e_phnum = 0; 973 elf->e_shentsize = 0; 974 elf->e_shnum = 0; 975 elf->e_shstrndx = 0; 976 977 return 0; 978 } 979 980 /* 981 * Traverse through memblock structure and setup crash memory ranges. These 982 * ranges will be used create PT_LOAD program headers in elfcore header. 983 */ 984 static int fadump_setup_crash_memory_ranges(void) 985 { 986 struct memblock_region *reg; 987 u64 start, end; 988 int i, ret; 989 990 pr_debug("Setup crash memory ranges.\n"); 991 crash_mrange_info.mem_range_cnt = 0; 992 993 /* 994 * Boot memory region(s) registered with firmware are moved to 995 * different location at the time of crash. Create separate program 996 * header(s) for this memory chunk(s) with the correct offset. 997 */ 998 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 999 start = fw_dump.boot_mem_addr[i]; 1000 end = start + fw_dump.boot_mem_sz[i]; 1001 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 for_each_memblock(memory, reg) { 1007 start = (u64)reg->base; 1008 end = start + (u64)reg->size; 1009 1010 /* 1011 * skip the memory chunk that is already added 1012 * (0 through boot_memory_top). 1013 */ 1014 if (start < fw_dump.boot_mem_top) { 1015 if (end > fw_dump.boot_mem_top) 1016 start = fw_dump.boot_mem_top; 1017 else 1018 continue; 1019 } 1020 1021 /* add this range excluding the reserved dump area. */ 1022 ret = fadump_exclude_reserved_area(start, end); 1023 if (ret) 1024 return ret; 1025 } 1026 1027 return 0; 1028 } 1029 1030 /* 1031 * If the given physical address falls within the boot memory region then 1032 * return the relocated address that points to the dump region reserved 1033 * for saving initial boot memory contents. 1034 */ 1035 static inline unsigned long fadump_relocate(unsigned long paddr) 1036 { 1037 unsigned long raddr, rstart, rend, rlast, hole_size; 1038 int i; 1039 1040 hole_size = 0; 1041 rlast = 0; 1042 raddr = paddr; 1043 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 1044 rstart = fw_dump.boot_mem_addr[i]; 1045 rend = rstart + fw_dump.boot_mem_sz[i]; 1046 hole_size += (rstart - rlast); 1047 1048 if (paddr >= rstart && paddr < rend) { 1049 raddr += fw_dump.boot_mem_dest_addr - hole_size; 1050 break; 1051 } 1052 1053 rlast = rend; 1054 } 1055 1056 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 1057 return raddr; 1058 } 1059 1060 static int fadump_create_elfcore_headers(char *bufp) 1061 { 1062 unsigned long long raddr, offset; 1063 struct elf_phdr *phdr; 1064 struct elfhdr *elf; 1065 int i, j; 1066 1067 fadump_init_elfcore_header(bufp); 1068 elf = (struct elfhdr *)bufp; 1069 bufp += sizeof(struct elfhdr); 1070 1071 /* 1072 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 1073 * will be populated during second kernel boot after crash. Hence 1074 * this PT_NOTE will always be the first elf note. 1075 * 1076 * NOTE: Any new ELF note addition should be placed after this note. 1077 */ 1078 phdr = (struct elf_phdr *)bufp; 1079 bufp += sizeof(struct elf_phdr); 1080 phdr->p_type = PT_NOTE; 1081 phdr->p_flags = 0; 1082 phdr->p_vaddr = 0; 1083 phdr->p_align = 0; 1084 1085 phdr->p_offset = 0; 1086 phdr->p_paddr = 0; 1087 phdr->p_filesz = 0; 1088 phdr->p_memsz = 0; 1089 1090 (elf->e_phnum)++; 1091 1092 /* setup ELF PT_NOTE for vmcoreinfo */ 1093 phdr = (struct elf_phdr *)bufp; 1094 bufp += sizeof(struct elf_phdr); 1095 phdr->p_type = PT_NOTE; 1096 phdr->p_flags = 0; 1097 phdr->p_vaddr = 0; 1098 phdr->p_align = 0; 1099 1100 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 1101 phdr->p_offset = phdr->p_paddr; 1102 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 1103 1104 /* Increment number of program headers. */ 1105 (elf->e_phnum)++; 1106 1107 /* setup PT_LOAD sections. */ 1108 j = 0; 1109 offset = 0; 1110 raddr = fw_dump.boot_mem_addr[0]; 1111 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { 1112 u64 mbase, msize; 1113 1114 mbase = crash_mrange_info.mem_ranges[i].base; 1115 msize = crash_mrange_info.mem_ranges[i].size; 1116 if (!msize) 1117 continue; 1118 1119 phdr = (struct elf_phdr *)bufp; 1120 bufp += sizeof(struct elf_phdr); 1121 phdr->p_type = PT_LOAD; 1122 phdr->p_flags = PF_R|PF_W|PF_X; 1123 phdr->p_offset = mbase; 1124 1125 if (mbase == raddr) { 1126 /* 1127 * The entire real memory region will be moved by 1128 * firmware to the specified destination_address. 1129 * Hence set the correct offset. 1130 */ 1131 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; 1132 if (j < (fw_dump.boot_mem_regs_cnt - 1)) { 1133 offset += fw_dump.boot_mem_sz[j]; 1134 raddr = fw_dump.boot_mem_addr[++j]; 1135 } 1136 } 1137 1138 phdr->p_paddr = mbase; 1139 phdr->p_vaddr = (unsigned long)__va(mbase); 1140 phdr->p_filesz = msize; 1141 phdr->p_memsz = msize; 1142 phdr->p_align = 0; 1143 1144 /* Increment number of program headers. */ 1145 (elf->e_phnum)++; 1146 } 1147 return 0; 1148 } 1149 1150 static unsigned long init_fadump_header(unsigned long addr) 1151 { 1152 struct fadump_crash_info_header *fdh; 1153 1154 if (!addr) 1155 return 0; 1156 1157 fdh = __va(addr); 1158 addr += sizeof(struct fadump_crash_info_header); 1159 1160 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1161 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1162 fdh->elfcorehdr_addr = addr; 1163 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1164 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1165 1166 return addr; 1167 } 1168 1169 static int register_fadump(void) 1170 { 1171 unsigned long addr; 1172 void *vaddr; 1173 int ret; 1174 1175 /* 1176 * If no memory is reserved then we can not register for firmware- 1177 * assisted dump. 1178 */ 1179 if (!fw_dump.reserve_dump_area_size) 1180 return -ENODEV; 1181 1182 ret = fadump_setup_crash_memory_ranges(); 1183 if (ret) 1184 return ret; 1185 1186 addr = fw_dump.fadumphdr_addr; 1187 1188 /* Initialize fadump crash info header. */ 1189 addr = init_fadump_header(addr); 1190 vaddr = __va(addr); 1191 1192 pr_debug("Creating ELF core headers at %#016lx\n", addr); 1193 fadump_create_elfcore_headers(vaddr); 1194 1195 /* register the future kernel dump with firmware. */ 1196 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1197 return fw_dump.ops->fadump_register(&fw_dump); 1198 } 1199 1200 void fadump_cleanup(void) 1201 { 1202 if (!fw_dump.fadump_supported) 1203 return; 1204 1205 /* Invalidate the registration only if dump is active. */ 1206 if (fw_dump.dump_active) { 1207 pr_debug("Invalidating firmware-assisted dump registration\n"); 1208 fw_dump.ops->fadump_invalidate(&fw_dump); 1209 } else if (fw_dump.dump_registered) { 1210 /* Un-register Firmware-assisted dump if it was registered. */ 1211 fw_dump.ops->fadump_unregister(&fw_dump); 1212 fadump_free_mem_ranges(&crash_mrange_info); 1213 } 1214 1215 if (fw_dump.ops->fadump_cleanup) 1216 fw_dump.ops->fadump_cleanup(&fw_dump); 1217 } 1218 1219 static void fadump_free_reserved_memory(unsigned long start_pfn, 1220 unsigned long end_pfn) 1221 { 1222 unsigned long pfn; 1223 unsigned long time_limit = jiffies + HZ; 1224 1225 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1226 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1227 1228 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1229 free_reserved_page(pfn_to_page(pfn)); 1230 1231 if (time_after(jiffies, time_limit)) { 1232 cond_resched(); 1233 time_limit = jiffies + HZ; 1234 } 1235 } 1236 } 1237 1238 /* 1239 * Skip memory holes and free memory that was actually reserved. 1240 */ 1241 static void fadump_release_reserved_area(u64 start, u64 end) 1242 { 1243 u64 tstart, tend, spfn, epfn; 1244 struct memblock_region *reg; 1245 1246 spfn = PHYS_PFN(start); 1247 epfn = PHYS_PFN(end); 1248 for_each_memblock(memory, reg) { 1249 tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg)); 1250 tend = min_t(u64, epfn, memblock_region_memory_end_pfn(reg)); 1251 if (tstart < tend) { 1252 fadump_free_reserved_memory(tstart, tend); 1253 1254 if (tend == epfn) 1255 break; 1256 1257 spfn = tend; 1258 } 1259 } 1260 } 1261 1262 /* 1263 * Sort the mem ranges in-place and merge adjacent ranges 1264 * to minimize the memory ranges count. 1265 */ 1266 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1267 { 1268 struct fadump_memory_range *mem_ranges; 1269 struct fadump_memory_range tmp_range; 1270 u64 base, size; 1271 int i, j, idx; 1272 1273 if (!reserved_mrange_info.mem_range_cnt) 1274 return; 1275 1276 /* Sort the memory ranges */ 1277 mem_ranges = mrange_info->mem_ranges; 1278 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1279 idx = i; 1280 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1281 if (mem_ranges[idx].base > mem_ranges[j].base) 1282 idx = j; 1283 } 1284 if (idx != i) { 1285 tmp_range = mem_ranges[idx]; 1286 mem_ranges[idx] = mem_ranges[i]; 1287 mem_ranges[i] = tmp_range; 1288 } 1289 } 1290 1291 /* Merge adjacent reserved ranges */ 1292 idx = 0; 1293 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1294 base = mem_ranges[i-1].base; 1295 size = mem_ranges[i-1].size; 1296 if (mem_ranges[i].base == (base + size)) 1297 mem_ranges[idx].size += mem_ranges[i].size; 1298 else { 1299 idx++; 1300 if (i == idx) 1301 continue; 1302 1303 mem_ranges[idx] = mem_ranges[i]; 1304 } 1305 } 1306 mrange_info->mem_range_cnt = idx + 1; 1307 } 1308 1309 /* 1310 * Scan reserved-ranges to consider them while reserving/releasing 1311 * memory for FADump. 1312 */ 1313 static void __init early_init_dt_scan_reserved_ranges(unsigned long node) 1314 { 1315 const __be32 *prop; 1316 int len, ret = -1; 1317 unsigned long i; 1318 1319 /* reserved-ranges already scanned */ 1320 if (reserved_mrange_info.mem_range_cnt != 0) 1321 return; 1322 1323 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len); 1324 if (!prop) 1325 return; 1326 1327 /* 1328 * Each reserved range is an (address,size) pair, 2 cells each, 1329 * totalling 4 cells per range. 1330 */ 1331 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1332 u64 base, size; 1333 1334 base = of_read_number(prop + (i * 4) + 0, 2); 1335 size = of_read_number(prop + (i * 4) + 2, 2); 1336 1337 if (size) { 1338 ret = fadump_add_mem_range(&reserved_mrange_info, 1339 base, base + size); 1340 if (ret < 0) { 1341 pr_warn("some reserved ranges are ignored!\n"); 1342 break; 1343 } 1344 } 1345 } 1346 1347 /* Compact reserved ranges */ 1348 sort_and_merge_mem_ranges(&reserved_mrange_info); 1349 } 1350 1351 /* 1352 * Release the memory that was reserved during early boot to preserve the 1353 * crash'ed kernel's memory contents except reserved dump area (permanent 1354 * reservation) and reserved ranges used by F/W. The released memory will 1355 * be available for general use. 1356 */ 1357 static void fadump_release_memory(u64 begin, u64 end) 1358 { 1359 u64 ra_start, ra_end, tstart; 1360 int i, ret; 1361 1362 ra_start = fw_dump.reserve_dump_area_start; 1363 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1364 1365 /* 1366 * If reserved ranges array limit is hit, overwrite the last reserved 1367 * memory range with reserved dump area to ensure it is excluded from 1368 * the memory being released (reused for next FADump registration). 1369 */ 1370 if (reserved_mrange_info.mem_range_cnt == 1371 reserved_mrange_info.max_mem_ranges) 1372 reserved_mrange_info.mem_range_cnt--; 1373 1374 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1375 if (ret != 0) 1376 return; 1377 1378 /* Get the reserved ranges list in order first. */ 1379 sort_and_merge_mem_ranges(&reserved_mrange_info); 1380 1381 /* Exclude reserved ranges and release remaining memory */ 1382 tstart = begin; 1383 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1384 ra_start = reserved_mrange_info.mem_ranges[i].base; 1385 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1386 1387 if (tstart >= ra_end) 1388 continue; 1389 1390 if (tstart < ra_start) 1391 fadump_release_reserved_area(tstart, ra_start); 1392 tstart = ra_end; 1393 } 1394 1395 if (tstart < end) 1396 fadump_release_reserved_area(tstart, end); 1397 } 1398 1399 static void fadump_invalidate_release_mem(void) 1400 { 1401 mutex_lock(&fadump_mutex); 1402 if (!fw_dump.dump_active) { 1403 mutex_unlock(&fadump_mutex); 1404 return; 1405 } 1406 1407 fadump_cleanup(); 1408 mutex_unlock(&fadump_mutex); 1409 1410 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1411 fadump_free_cpu_notes_buf(); 1412 1413 /* 1414 * Setup kernel metadata and initialize the kernel dump 1415 * memory structure for FADump re-registration. 1416 */ 1417 if (fw_dump.ops->fadump_setup_metadata && 1418 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1419 pr_warn("Failed to setup kernel metadata!\n"); 1420 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1421 } 1422 1423 static ssize_t release_mem_store(struct kobject *kobj, 1424 struct kobj_attribute *attr, 1425 const char *buf, size_t count) 1426 { 1427 int input = -1; 1428 1429 if (!fw_dump.dump_active) 1430 return -EPERM; 1431 1432 if (kstrtoint(buf, 0, &input)) 1433 return -EINVAL; 1434 1435 if (input == 1) { 1436 /* 1437 * Take away the '/proc/vmcore'. We are releasing the dump 1438 * memory, hence it will not be valid anymore. 1439 */ 1440 #ifdef CONFIG_PROC_VMCORE 1441 vmcore_cleanup(); 1442 #endif 1443 fadump_invalidate_release_mem(); 1444 1445 } else 1446 return -EINVAL; 1447 return count; 1448 } 1449 1450 /* Release the reserved memory and disable the FADump */ 1451 static void unregister_fadump(void) 1452 { 1453 fadump_cleanup(); 1454 fadump_release_memory(fw_dump.reserve_dump_area_start, 1455 fw_dump.reserve_dump_area_size); 1456 fw_dump.fadump_enabled = 0; 1457 kobject_put(fadump_kobj); 1458 } 1459 1460 static ssize_t enabled_show(struct kobject *kobj, 1461 struct kobj_attribute *attr, 1462 char *buf) 1463 { 1464 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1465 } 1466 1467 static ssize_t mem_reserved_show(struct kobject *kobj, 1468 struct kobj_attribute *attr, 1469 char *buf) 1470 { 1471 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); 1472 } 1473 1474 static ssize_t registered_show(struct kobject *kobj, 1475 struct kobj_attribute *attr, 1476 char *buf) 1477 { 1478 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1479 } 1480 1481 static ssize_t registered_store(struct kobject *kobj, 1482 struct kobj_attribute *attr, 1483 const char *buf, size_t count) 1484 { 1485 int ret = 0; 1486 int input = -1; 1487 1488 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1489 return -EPERM; 1490 1491 if (kstrtoint(buf, 0, &input)) 1492 return -EINVAL; 1493 1494 mutex_lock(&fadump_mutex); 1495 1496 switch (input) { 1497 case 0: 1498 if (fw_dump.dump_registered == 0) { 1499 goto unlock_out; 1500 } 1501 1502 /* Un-register Firmware-assisted dump */ 1503 pr_debug("Un-register firmware-assisted dump\n"); 1504 fw_dump.ops->fadump_unregister(&fw_dump); 1505 break; 1506 case 1: 1507 if (fw_dump.dump_registered == 1) { 1508 /* Un-register Firmware-assisted dump */ 1509 fw_dump.ops->fadump_unregister(&fw_dump); 1510 } 1511 /* Register Firmware-assisted dump */ 1512 ret = register_fadump(); 1513 break; 1514 default: 1515 ret = -EINVAL; 1516 break; 1517 } 1518 1519 unlock_out: 1520 mutex_unlock(&fadump_mutex); 1521 return ret < 0 ? ret : count; 1522 } 1523 1524 static int fadump_region_show(struct seq_file *m, void *private) 1525 { 1526 if (!fw_dump.fadump_enabled) 1527 return 0; 1528 1529 mutex_lock(&fadump_mutex); 1530 fw_dump.ops->fadump_region_show(&fw_dump, m); 1531 mutex_unlock(&fadump_mutex); 1532 return 0; 1533 } 1534 1535 static struct kobj_attribute release_attr = __ATTR_WO(release_mem); 1536 static struct kobj_attribute enable_attr = __ATTR_RO(enabled); 1537 static struct kobj_attribute register_attr = __ATTR_RW(registered); 1538 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); 1539 1540 static struct attribute *fadump_attrs[] = { 1541 &enable_attr.attr, 1542 ®ister_attr.attr, 1543 &mem_reserved_attr.attr, 1544 NULL, 1545 }; 1546 1547 ATTRIBUTE_GROUPS(fadump); 1548 1549 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1550 1551 static void fadump_init_files(void) 1552 { 1553 int rc = 0; 1554 1555 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); 1556 if (!fadump_kobj) { 1557 pr_err("failed to create fadump kobject\n"); 1558 return; 1559 } 1560 1561 debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL, 1562 &fadump_region_fops); 1563 1564 if (fw_dump.dump_active) { 1565 rc = sysfs_create_file(fadump_kobj, &release_attr.attr); 1566 if (rc) 1567 pr_err("unable to create release_mem sysfs file (%d)\n", 1568 rc); 1569 } 1570 1571 rc = sysfs_create_groups(fadump_kobj, fadump_groups); 1572 if (rc) { 1573 pr_err("sysfs group creation failed (%d), unregistering FADump", 1574 rc); 1575 unregister_fadump(); 1576 return; 1577 } 1578 1579 /* 1580 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to 1581 * create symlink at old location to maintain backward compatibility. 1582 * 1583 * - fadump_enabled -> fadump/enabled 1584 * - fadump_registered -> fadump/registered 1585 * - fadump_release_mem -> fadump/release_mem 1586 */ 1587 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1588 "enabled", "fadump_enabled"); 1589 if (rc) { 1590 pr_err("unable to create fadump_enabled symlink (%d)", rc); 1591 return; 1592 } 1593 1594 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1595 "registered", 1596 "fadump_registered"); 1597 if (rc) { 1598 pr_err("unable to create fadump_registered symlink (%d)", rc); 1599 sysfs_remove_link(kernel_kobj, "fadump_enabled"); 1600 return; 1601 } 1602 1603 if (fw_dump.dump_active) { 1604 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, 1605 fadump_kobj, 1606 "release_mem", 1607 "fadump_release_mem"); 1608 if (rc) 1609 pr_err("unable to create fadump_release_mem symlink (%d)", 1610 rc); 1611 } 1612 return; 1613 } 1614 1615 /* 1616 * Prepare for firmware-assisted dump. 1617 */ 1618 int __init setup_fadump(void) 1619 { 1620 if (!fw_dump.fadump_supported) 1621 return 0; 1622 1623 fadump_init_files(); 1624 fadump_show_config(); 1625 1626 if (!fw_dump.fadump_enabled) 1627 return 1; 1628 1629 /* 1630 * If dump data is available then see if it is valid and prepare for 1631 * saving it to the disk. 1632 */ 1633 if (fw_dump.dump_active) { 1634 /* 1635 * if dump process fails then invalidate the registration 1636 * and release memory before proceeding for re-registration. 1637 */ 1638 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1639 fadump_invalidate_release_mem(); 1640 } 1641 /* Initialize the kernel dump memory structure for FAD registration. */ 1642 else if (fw_dump.reserve_dump_area_size) 1643 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1644 1645 return 1; 1646 } 1647 subsys_initcall(setup_fadump); 1648 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1649 1650 /* Scan the Firmware Assisted dump configuration details. */ 1651 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1652 int depth, void *data) 1653 { 1654 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1655 return 0; 1656 1657 opal_fadump_dt_scan(&fw_dump, node); 1658 return 1; 1659 } 1660 1661 /* 1662 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1663 * preserve crash data. The subsequent memory preserving kernel boot 1664 * is likely to process this crash data. 1665 */ 1666 int __init fadump_reserve_mem(void) 1667 { 1668 if (fw_dump.dump_active) { 1669 /* 1670 * If last boot has crashed then reserve all the memory 1671 * above boot memory to preserve crash data. 1672 */ 1673 pr_info("Preserving crash data for processing in next boot.\n"); 1674 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1675 } else 1676 pr_debug("FADump-aware kernel..\n"); 1677 1678 return 1; 1679 } 1680 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1681 1682 /* Preserve everything above the base address */ 1683 static void __init fadump_reserve_crash_area(u64 base) 1684 { 1685 struct memblock_region *reg; 1686 u64 mstart, msize; 1687 1688 for_each_memblock(memory, reg) { 1689 mstart = reg->base; 1690 msize = reg->size; 1691 1692 if ((mstart + msize) < base) 1693 continue; 1694 1695 if (mstart < base) { 1696 msize -= (base - mstart); 1697 mstart = base; 1698 } 1699 1700 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1701 (msize >> 20), mstart); 1702 memblock_reserve(mstart, msize); 1703 } 1704 } 1705 1706 unsigned long __init arch_reserved_kernel_pages(void) 1707 { 1708 return memblock_reserved_size() / PAGE_SIZE; 1709 } 1710