xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38 
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45 
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49 
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53 
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56 			const char *uname, int depth, void *data)
57 {
58 	const __be32 *sections;
59 	int i, num_sections;
60 	int size;
61 	const __be32 *token;
62 
63 	if (depth != 1 || strcmp(uname, "rtas") != 0)
64 		return 0;
65 
66 	/*
67 	 * Check if Firmware Assisted dump is supported. if yes, check
68 	 * if dump has been initiated on last reboot.
69 	 */
70 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71 	if (!token)
72 		return 1;
73 
74 	fw_dump.fadump_supported = 1;
75 	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
76 
77 	/*
78 	 * The 'ibm,kernel-dump' rtas node is present only if there is
79 	 * dump data waiting for us.
80 	 */
81 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82 	if (fdm_active)
83 		fw_dump.dump_active = 1;
84 
85 	/* Get the sizes required to store dump data for the firmware provided
86 	 * dump sections.
87 	 * For each dump section type supported, a 32bit cell which defines
88 	 * the ID of a supported section followed by two 32 bit cells which
89 	 * gives teh size of the section in bytes.
90 	 */
91 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92 					&size);
93 
94 	if (!sections)
95 		return 1;
96 
97 	num_sections = size / (3 * sizeof(u32));
98 
99 	for (i = 0; i < num_sections; i++, sections += 3) {
100 		u32 type = (u32)of_read_number(sections, 1);
101 
102 		switch (type) {
103 		case FADUMP_CPU_STATE_DATA:
104 			fw_dump.cpu_state_data_size =
105 					of_read_ulong(&sections[1], 2);
106 			break;
107 		case FADUMP_HPTE_REGION:
108 			fw_dump.hpte_region_size =
109 					of_read_ulong(&sections[1], 2);
110 			break;
111 		}
112 	}
113 
114 	return 1;
115 }
116 
117 int is_fadump_active(void)
118 {
119 	return fw_dump.dump_active;
120 }
121 
122 /* Print firmware assisted dump configurations for debugging purpose. */
123 static void fadump_show_config(void)
124 {
125 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
126 			(fw_dump.fadump_supported ? "present" : "no support"));
127 
128 	if (!fw_dump.fadump_supported)
129 		return;
130 
131 	pr_debug("Fadump enabled    : %s\n",
132 				(fw_dump.fadump_enabled ? "yes" : "no"));
133 	pr_debug("Dump Active       : %s\n",
134 				(fw_dump.dump_active ? "yes" : "no"));
135 	pr_debug("Dump section sizes:\n");
136 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
137 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
138 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
139 }
140 
141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
142 				unsigned long addr)
143 {
144 	if (!fdm)
145 		return 0;
146 
147 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
148 	addr = addr & PAGE_MASK;
149 
150 	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
151 	fdm->header.dump_num_sections = cpu_to_be16(3);
152 	fdm->header.dump_status_flag = 0;
153 	fdm->header.offset_first_dump_section =
154 		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
155 
156 	/*
157 	 * Fields for disk dump option.
158 	 * We are not using disk dump option, hence set these fields to 0.
159 	 */
160 	fdm->header.dd_block_size = 0;
161 	fdm->header.dd_block_offset = 0;
162 	fdm->header.dd_num_blocks = 0;
163 	fdm->header.dd_offset_disk_path = 0;
164 
165 	/* set 0 to disable an automatic dump-reboot. */
166 	fdm->header.max_time_auto = 0;
167 
168 	/* Kernel dump sections */
169 	/* cpu state data section. */
170 	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
171 	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
172 	fdm->cpu_state_data.source_address = 0;
173 	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
174 	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
175 	addr += fw_dump.cpu_state_data_size;
176 
177 	/* hpte region section */
178 	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
179 	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
180 	fdm->hpte_region.source_address = 0;
181 	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
182 	fdm->hpte_region.destination_address = cpu_to_be64(addr);
183 	addr += fw_dump.hpte_region_size;
184 
185 	/* RMA region section */
186 	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
187 	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
188 	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
189 	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
190 	fdm->rmr_region.destination_address = cpu_to_be64(addr);
191 	addr += fw_dump.boot_memory_size;
192 
193 	return addr;
194 }
195 
196 /**
197  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
198  *
199  * Function to find the largest memory size we need to reserve during early
200  * boot process. This will be the size of the memory that is required for a
201  * kernel to boot successfully.
202  *
203  * This function has been taken from phyp-assisted dump feature implementation.
204  *
205  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
206  *
207  * TODO: Come up with better approach to find out more accurate memory size
208  * that is required for a kernel to boot successfully.
209  *
210  */
211 static inline unsigned long fadump_calculate_reserve_size(void)
212 {
213 	unsigned long size;
214 
215 	/*
216 	 * Check if the size is specified through fadump_reserve_mem= cmdline
217 	 * option. If yes, then use that.
218 	 */
219 	if (fw_dump.reserve_bootvar)
220 		return fw_dump.reserve_bootvar;
221 
222 	/* divide by 20 to get 5% of value */
223 	size = memblock_end_of_DRAM() / 20;
224 
225 	/* round it down in multiples of 256 */
226 	size = size & ~0x0FFFFFFFUL;
227 
228 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
229 	if (memory_limit && size > memory_limit)
230 		size = memory_limit;
231 
232 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
233 }
234 
235 /*
236  * Calculate the total memory size required to be reserved for
237  * firmware-assisted dump registration.
238  */
239 static unsigned long get_fadump_area_size(void)
240 {
241 	unsigned long size = 0;
242 
243 	size += fw_dump.cpu_state_data_size;
244 	size += fw_dump.hpte_region_size;
245 	size += fw_dump.boot_memory_size;
246 	size += sizeof(struct fadump_crash_info_header);
247 	size += sizeof(struct elfhdr); /* ELF core header.*/
248 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
249 	/* Program headers for crash memory regions. */
250 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
251 
252 	size = PAGE_ALIGN(size);
253 	return size;
254 }
255 
256 int __init fadump_reserve_mem(void)
257 {
258 	unsigned long base, size, memory_boundary;
259 
260 	if (!fw_dump.fadump_enabled)
261 		return 0;
262 
263 	if (!fw_dump.fadump_supported) {
264 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
265 				" this hardware\n");
266 		fw_dump.fadump_enabled = 0;
267 		return 0;
268 	}
269 	/*
270 	 * Initialize boot memory size
271 	 * If dump is active then we have already calculated the size during
272 	 * first kernel.
273 	 */
274 	if (fdm_active)
275 		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
276 	else
277 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
278 
279 	/*
280 	 * Calculate the memory boundary.
281 	 * If memory_limit is less than actual memory boundary then reserve
282 	 * the memory for fadump beyond the memory_limit and adjust the
283 	 * memory_limit accordingly, so that the running kernel can run with
284 	 * specified memory_limit.
285 	 */
286 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
287 		size = get_fadump_area_size();
288 		if ((memory_limit + size) < memblock_end_of_DRAM())
289 			memory_limit += size;
290 		else
291 			memory_limit = memblock_end_of_DRAM();
292 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
293 				" dump, now %#016llx\n", memory_limit);
294 	}
295 	if (memory_limit)
296 		memory_boundary = memory_limit;
297 	else
298 		memory_boundary = memblock_end_of_DRAM();
299 
300 	if (fw_dump.dump_active) {
301 		printk(KERN_INFO "Firmware-assisted dump is active.\n");
302 		/*
303 		 * If last boot has crashed then reserve all the memory
304 		 * above boot_memory_size so that we don't touch it until
305 		 * dump is written to disk by userspace tool. This memory
306 		 * will be released for general use once the dump is saved.
307 		 */
308 		base = fw_dump.boot_memory_size;
309 		size = memory_boundary - base;
310 		memblock_reserve(base, size);
311 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312 				"for saving crash dump\n",
313 				(unsigned long)(size >> 20),
314 				(unsigned long)(base >> 20));
315 
316 		fw_dump.fadumphdr_addr =
317 				be64_to_cpu(fdm_active->rmr_region.destination_address) +
318 				be64_to_cpu(fdm_active->rmr_region.source_len);
319 		pr_debug("fadumphdr_addr = %p\n",
320 				(void *) fw_dump.fadumphdr_addr);
321 	} else {
322 		/* Reserve the memory at the top of memory. */
323 		size = get_fadump_area_size();
324 		base = memory_boundary - size;
325 		memblock_reserve(base, size);
326 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327 				"for firmware-assisted dump\n",
328 				(unsigned long)(size >> 20),
329 				(unsigned long)(base >> 20));
330 	}
331 	fw_dump.reserve_dump_area_start = base;
332 	fw_dump.reserve_dump_area_size = size;
333 	return 1;
334 }
335 
336 unsigned long __init arch_reserved_kernel_pages(void)
337 {
338 	return memblock_reserved_size() / PAGE_SIZE;
339 }
340 
341 /* Look for fadump= cmdline option. */
342 static int __init early_fadump_param(char *p)
343 {
344 	if (!p)
345 		return 1;
346 
347 	if (strncmp(p, "on", 2) == 0)
348 		fw_dump.fadump_enabled = 1;
349 	else if (strncmp(p, "off", 3) == 0)
350 		fw_dump.fadump_enabled = 0;
351 
352 	return 0;
353 }
354 early_param("fadump", early_fadump_param);
355 
356 /* Look for fadump_reserve_mem= cmdline option */
357 static int __init early_fadump_reserve_mem(char *p)
358 {
359 	if (p)
360 		fw_dump.reserve_bootvar = memparse(p, &p);
361 	return 0;
362 }
363 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
364 
365 static void register_fw_dump(struct fadump_mem_struct *fdm)
366 {
367 	int rc;
368 	unsigned int wait_time;
369 
370 	pr_debug("Registering for firmware-assisted kernel dump...\n");
371 
372 	/* TODO: Add upper time limit for the delay */
373 	do {
374 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
375 			FADUMP_REGISTER, fdm,
376 			sizeof(struct fadump_mem_struct));
377 
378 		wait_time = rtas_busy_delay_time(rc);
379 		if (wait_time)
380 			mdelay(wait_time);
381 
382 	} while (wait_time);
383 
384 	switch (rc) {
385 	case -1:
386 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
387 			" dump. Hardware Error(%d).\n", rc);
388 		break;
389 	case -3:
390 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
391 			" dump. Parameter Error(%d).\n", rc);
392 		break;
393 	case -9:
394 		printk(KERN_ERR "firmware-assisted kernel dump is already "
395 			" registered.");
396 		fw_dump.dump_registered = 1;
397 		break;
398 	case 0:
399 		printk(KERN_INFO "firmware-assisted kernel dump registration"
400 			" is successful\n");
401 		fw_dump.dump_registered = 1;
402 		break;
403 	}
404 }
405 
406 void crash_fadump(struct pt_regs *regs, const char *str)
407 {
408 	struct fadump_crash_info_header *fdh = NULL;
409 
410 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
411 		return;
412 
413 	fdh = __va(fw_dump.fadumphdr_addr);
414 	crashing_cpu = smp_processor_id();
415 	fdh->crashing_cpu = crashing_cpu;
416 	crash_save_vmcoreinfo();
417 
418 	if (regs)
419 		fdh->regs = *regs;
420 	else
421 		ppc_save_regs(&fdh->regs);
422 
423 	fdh->online_mask = *cpu_online_mask;
424 
425 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
426 	rtas_os_term((char *)str);
427 }
428 
429 #define GPR_MASK	0xffffff0000000000
430 static inline int fadump_gpr_index(u64 id)
431 {
432 	int i = -1;
433 	char str[3];
434 
435 	if ((id & GPR_MASK) == REG_ID("GPR")) {
436 		/* get the digits at the end */
437 		id &= ~GPR_MASK;
438 		id >>= 24;
439 		str[2] = '\0';
440 		str[1] = id & 0xff;
441 		str[0] = (id >> 8) & 0xff;
442 		sscanf(str, "%d", &i);
443 		if (i > 31)
444 			i = -1;
445 	}
446 	return i;
447 }
448 
449 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
450 								u64 reg_val)
451 {
452 	int i;
453 
454 	i = fadump_gpr_index(reg_id);
455 	if (i >= 0)
456 		regs->gpr[i] = (unsigned long)reg_val;
457 	else if (reg_id == REG_ID("NIA"))
458 		regs->nip = (unsigned long)reg_val;
459 	else if (reg_id == REG_ID("MSR"))
460 		regs->msr = (unsigned long)reg_val;
461 	else if (reg_id == REG_ID("CTR"))
462 		regs->ctr = (unsigned long)reg_val;
463 	else if (reg_id == REG_ID("LR"))
464 		regs->link = (unsigned long)reg_val;
465 	else if (reg_id == REG_ID("XER"))
466 		regs->xer = (unsigned long)reg_val;
467 	else if (reg_id == REG_ID("CR"))
468 		regs->ccr = (unsigned long)reg_val;
469 	else if (reg_id == REG_ID("DAR"))
470 		regs->dar = (unsigned long)reg_val;
471 	else if (reg_id == REG_ID("DSISR"))
472 		regs->dsisr = (unsigned long)reg_val;
473 }
474 
475 static struct fadump_reg_entry*
476 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
477 {
478 	memset(regs, 0, sizeof(struct pt_regs));
479 
480 	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
481 		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
482 					be64_to_cpu(reg_entry->reg_value));
483 		reg_entry++;
484 	}
485 	reg_entry++;
486 	return reg_entry;
487 }
488 
489 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
490 						void *data, size_t data_len)
491 {
492 	struct elf_note note;
493 
494 	note.n_namesz = strlen(name) + 1;
495 	note.n_descsz = data_len;
496 	note.n_type   = type;
497 	memcpy(buf, &note, sizeof(note));
498 	buf += (sizeof(note) + 3)/4;
499 	memcpy(buf, name, note.n_namesz);
500 	buf += (note.n_namesz + 3)/4;
501 	memcpy(buf, data, note.n_descsz);
502 	buf += (note.n_descsz + 3)/4;
503 
504 	return buf;
505 }
506 
507 static void fadump_final_note(u32 *buf)
508 {
509 	struct elf_note note;
510 
511 	note.n_namesz = 0;
512 	note.n_descsz = 0;
513 	note.n_type   = 0;
514 	memcpy(buf, &note, sizeof(note));
515 }
516 
517 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
518 {
519 	struct elf_prstatus prstatus;
520 
521 	memset(&prstatus, 0, sizeof(prstatus));
522 	/*
523 	 * FIXME: How do i get PID? Do I really need it?
524 	 * prstatus.pr_pid = ????
525 	 */
526 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
527 	buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
528 				&prstatus, sizeof(prstatus));
529 	return buf;
530 }
531 
532 static void fadump_update_elfcore_header(char *bufp)
533 {
534 	struct elfhdr *elf;
535 	struct elf_phdr *phdr;
536 
537 	elf = (struct elfhdr *)bufp;
538 	bufp += sizeof(struct elfhdr);
539 
540 	/* First note is a place holder for cpu notes info. */
541 	phdr = (struct elf_phdr *)bufp;
542 
543 	if (phdr->p_type == PT_NOTE) {
544 		phdr->p_paddr = fw_dump.cpu_notes_buf;
545 		phdr->p_offset	= phdr->p_paddr;
546 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
547 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
548 	}
549 	return;
550 }
551 
552 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
553 {
554 	void *vaddr;
555 	struct page *page;
556 	unsigned long order, count, i;
557 
558 	order = get_order(size);
559 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
560 	if (!vaddr)
561 		return NULL;
562 
563 	count = 1 << order;
564 	page = virt_to_page(vaddr);
565 	for (i = 0; i < count; i++)
566 		SetPageReserved(page + i);
567 	return vaddr;
568 }
569 
570 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
571 {
572 	struct page *page;
573 	unsigned long order, count, i;
574 
575 	order = get_order(size);
576 	count = 1 << order;
577 	page = virt_to_page(vaddr);
578 	for (i = 0; i < count; i++)
579 		ClearPageReserved(page + i);
580 	__free_pages(page, order);
581 }
582 
583 /*
584  * Read CPU state dump data and convert it into ELF notes.
585  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
586  * used to access the data to allow for additional fields to be added without
587  * affecting compatibility. Each list of registers for a CPU starts with
588  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
589  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
590  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
591  * of register value. For more details refer to PAPR document.
592  *
593  * Only for the crashing cpu we ignore the CPU dump data and get exact
594  * state from fadump crash info structure populated by first kernel at the
595  * time of crash.
596  */
597 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
598 {
599 	struct fadump_reg_save_area_header *reg_header;
600 	struct fadump_reg_entry *reg_entry;
601 	struct fadump_crash_info_header *fdh = NULL;
602 	void *vaddr;
603 	unsigned long addr;
604 	u32 num_cpus, *note_buf;
605 	struct pt_regs regs;
606 	int i, rc = 0, cpu = 0;
607 
608 	if (!fdm->cpu_state_data.bytes_dumped)
609 		return -EINVAL;
610 
611 	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
612 	vaddr = __va(addr);
613 
614 	reg_header = vaddr;
615 	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
616 		printk(KERN_ERR "Unable to read register save area.\n");
617 		return -ENOENT;
618 	}
619 	pr_debug("--------CPU State Data------------\n");
620 	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
621 	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
622 
623 	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
624 	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
625 	pr_debug("NumCpus     : %u\n", num_cpus);
626 	vaddr += sizeof(u32);
627 	reg_entry = (struct fadump_reg_entry *)vaddr;
628 
629 	/* Allocate buffer to hold cpu crash notes. */
630 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
631 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
632 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
633 	if (!note_buf) {
634 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
635 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
636 		return -ENOMEM;
637 	}
638 	fw_dump.cpu_notes_buf = __pa(note_buf);
639 
640 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
641 			(num_cpus * sizeof(note_buf_t)), note_buf);
642 
643 	if (fw_dump.fadumphdr_addr)
644 		fdh = __va(fw_dump.fadumphdr_addr);
645 
646 	for (i = 0; i < num_cpus; i++) {
647 		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
648 			printk(KERN_ERR "Unable to read CPU state data\n");
649 			rc = -ENOENT;
650 			goto error_out;
651 		}
652 		/* Lower 4 bytes of reg_value contains logical cpu id */
653 		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
654 		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
655 			SKIP_TO_NEXT_CPU(reg_entry);
656 			continue;
657 		}
658 		pr_debug("Reading register data for cpu %d...\n", cpu);
659 		if (fdh && fdh->crashing_cpu == cpu) {
660 			regs = fdh->regs;
661 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
662 			SKIP_TO_NEXT_CPU(reg_entry);
663 		} else {
664 			reg_entry++;
665 			reg_entry = fadump_read_registers(reg_entry, &regs);
666 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
667 		}
668 	}
669 	fadump_final_note(note_buf);
670 
671 	if (fdh) {
672 		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
673 							fdh->elfcorehdr_addr);
674 		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
675 	}
676 	return 0;
677 
678 error_out:
679 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
680 					fw_dump.cpu_notes_buf_size);
681 	fw_dump.cpu_notes_buf = 0;
682 	fw_dump.cpu_notes_buf_size = 0;
683 	return rc;
684 
685 }
686 
687 /*
688  * Validate and process the dump data stored by firmware before exporting
689  * it through '/proc/vmcore'.
690  */
691 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
692 {
693 	struct fadump_crash_info_header *fdh;
694 	int rc = 0;
695 
696 	if (!fdm_active || !fw_dump.fadumphdr_addr)
697 		return -EINVAL;
698 
699 	/* Check if the dump data is valid. */
700 	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
701 			(fdm_active->cpu_state_data.error_flags != 0) ||
702 			(fdm_active->rmr_region.error_flags != 0)) {
703 		printk(KERN_ERR "Dump taken by platform is not valid\n");
704 		return -EINVAL;
705 	}
706 	if ((fdm_active->rmr_region.bytes_dumped !=
707 			fdm_active->rmr_region.source_len) ||
708 			!fdm_active->cpu_state_data.bytes_dumped) {
709 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
710 		return -EINVAL;
711 	}
712 
713 	/* Validate the fadump crash info header */
714 	fdh = __va(fw_dump.fadumphdr_addr);
715 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
716 		printk(KERN_ERR "Crash info header is not valid.\n");
717 		return -EINVAL;
718 	}
719 
720 	rc = fadump_build_cpu_notes(fdm_active);
721 	if (rc)
722 		return rc;
723 
724 	/*
725 	 * We are done validating dump info and elfcore header is now ready
726 	 * to be exported. set elfcorehdr_addr so that vmcore module will
727 	 * export the elfcore header through '/proc/vmcore'.
728 	 */
729 	elfcorehdr_addr = fdh->elfcorehdr_addr;
730 
731 	return 0;
732 }
733 
734 static inline void fadump_add_crash_memory(unsigned long long base,
735 					unsigned long long end)
736 {
737 	if (base == end)
738 		return;
739 
740 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
741 		crash_mem_ranges, base, end - 1, (end - base));
742 	crash_memory_ranges[crash_mem_ranges].base = base;
743 	crash_memory_ranges[crash_mem_ranges].size = end - base;
744 	crash_mem_ranges++;
745 }
746 
747 static void fadump_exclude_reserved_area(unsigned long long start,
748 					unsigned long long end)
749 {
750 	unsigned long long ra_start, ra_end;
751 
752 	ra_start = fw_dump.reserve_dump_area_start;
753 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
754 
755 	if ((ra_start < end) && (ra_end > start)) {
756 		if ((start < ra_start) && (end > ra_end)) {
757 			fadump_add_crash_memory(start, ra_start);
758 			fadump_add_crash_memory(ra_end, end);
759 		} else if (start < ra_start) {
760 			fadump_add_crash_memory(start, ra_start);
761 		} else if (ra_end < end) {
762 			fadump_add_crash_memory(ra_end, end);
763 		}
764 	} else
765 		fadump_add_crash_memory(start, end);
766 }
767 
768 static int fadump_init_elfcore_header(char *bufp)
769 {
770 	struct elfhdr *elf;
771 
772 	elf = (struct elfhdr *) bufp;
773 	bufp += sizeof(struct elfhdr);
774 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
775 	elf->e_ident[EI_CLASS] = ELF_CLASS;
776 	elf->e_ident[EI_DATA] = ELF_DATA;
777 	elf->e_ident[EI_VERSION] = EV_CURRENT;
778 	elf->e_ident[EI_OSABI] = ELF_OSABI;
779 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
780 	elf->e_type = ET_CORE;
781 	elf->e_machine = ELF_ARCH;
782 	elf->e_version = EV_CURRENT;
783 	elf->e_entry = 0;
784 	elf->e_phoff = sizeof(struct elfhdr);
785 	elf->e_shoff = 0;
786 #if defined(_CALL_ELF)
787 	elf->e_flags = _CALL_ELF;
788 #else
789 	elf->e_flags = 0;
790 #endif
791 	elf->e_ehsize = sizeof(struct elfhdr);
792 	elf->e_phentsize = sizeof(struct elf_phdr);
793 	elf->e_phnum = 0;
794 	elf->e_shentsize = 0;
795 	elf->e_shnum = 0;
796 	elf->e_shstrndx = 0;
797 
798 	return 0;
799 }
800 
801 /*
802  * Traverse through memblock structure and setup crash memory ranges. These
803  * ranges will be used create PT_LOAD program headers in elfcore header.
804  */
805 static void fadump_setup_crash_memory_ranges(void)
806 {
807 	struct memblock_region *reg;
808 	unsigned long long start, end;
809 
810 	pr_debug("Setup crash memory ranges.\n");
811 	crash_mem_ranges = 0;
812 	/*
813 	 * add the first memory chunk (RMA_START through boot_memory_size) as
814 	 * a separate memory chunk. The reason is, at the time crash firmware
815 	 * will move the content of this memory chunk to different location
816 	 * specified during fadump registration. We need to create a separate
817 	 * program header for this chunk with the correct offset.
818 	 */
819 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
820 
821 	for_each_memblock(memory, reg) {
822 		start = (unsigned long long)reg->base;
823 		end = start + (unsigned long long)reg->size;
824 		if (start == RMA_START && end >= fw_dump.boot_memory_size)
825 			start = fw_dump.boot_memory_size;
826 
827 		/* add this range excluding the reserved dump area. */
828 		fadump_exclude_reserved_area(start, end);
829 	}
830 }
831 
832 /*
833  * If the given physical address falls within the boot memory region then
834  * return the relocated address that points to the dump region reserved
835  * for saving initial boot memory contents.
836  */
837 static inline unsigned long fadump_relocate(unsigned long paddr)
838 {
839 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
840 		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
841 	else
842 		return paddr;
843 }
844 
845 static int fadump_create_elfcore_headers(char *bufp)
846 {
847 	struct elfhdr *elf;
848 	struct elf_phdr *phdr;
849 	int i;
850 
851 	fadump_init_elfcore_header(bufp);
852 	elf = (struct elfhdr *)bufp;
853 	bufp += sizeof(struct elfhdr);
854 
855 	/*
856 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
857 	 * will be populated during second kernel boot after crash. Hence
858 	 * this PT_NOTE will always be the first elf note.
859 	 *
860 	 * NOTE: Any new ELF note addition should be placed after this note.
861 	 */
862 	phdr = (struct elf_phdr *)bufp;
863 	bufp += sizeof(struct elf_phdr);
864 	phdr->p_type = PT_NOTE;
865 	phdr->p_flags = 0;
866 	phdr->p_vaddr = 0;
867 	phdr->p_align = 0;
868 
869 	phdr->p_offset = 0;
870 	phdr->p_paddr = 0;
871 	phdr->p_filesz = 0;
872 	phdr->p_memsz = 0;
873 
874 	(elf->e_phnum)++;
875 
876 	/* setup ELF PT_NOTE for vmcoreinfo */
877 	phdr = (struct elf_phdr *)bufp;
878 	bufp += sizeof(struct elf_phdr);
879 	phdr->p_type	= PT_NOTE;
880 	phdr->p_flags	= 0;
881 	phdr->p_vaddr	= 0;
882 	phdr->p_align	= 0;
883 
884 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
885 	phdr->p_offset	= phdr->p_paddr;
886 	phdr->p_memsz	= vmcoreinfo_max_size;
887 	phdr->p_filesz	= vmcoreinfo_max_size;
888 
889 	/* Increment number of program headers. */
890 	(elf->e_phnum)++;
891 
892 	/* setup PT_LOAD sections. */
893 
894 	for (i = 0; i < crash_mem_ranges; i++) {
895 		unsigned long long mbase, msize;
896 		mbase = crash_memory_ranges[i].base;
897 		msize = crash_memory_ranges[i].size;
898 
899 		if (!msize)
900 			continue;
901 
902 		phdr = (struct elf_phdr *)bufp;
903 		bufp += sizeof(struct elf_phdr);
904 		phdr->p_type	= PT_LOAD;
905 		phdr->p_flags	= PF_R|PF_W|PF_X;
906 		phdr->p_offset	= mbase;
907 
908 		if (mbase == RMA_START) {
909 			/*
910 			 * The entire RMA region will be moved by firmware
911 			 * to the specified destination_address. Hence set
912 			 * the correct offset.
913 			 */
914 			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
915 		}
916 
917 		phdr->p_paddr = mbase;
918 		phdr->p_vaddr = (unsigned long)__va(mbase);
919 		phdr->p_filesz = msize;
920 		phdr->p_memsz = msize;
921 		phdr->p_align = 0;
922 
923 		/* Increment number of program headers. */
924 		(elf->e_phnum)++;
925 	}
926 	return 0;
927 }
928 
929 static unsigned long init_fadump_header(unsigned long addr)
930 {
931 	struct fadump_crash_info_header *fdh;
932 
933 	if (!addr)
934 		return 0;
935 
936 	fw_dump.fadumphdr_addr = addr;
937 	fdh = __va(addr);
938 	addr += sizeof(struct fadump_crash_info_header);
939 
940 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
941 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
942 	fdh->elfcorehdr_addr = addr;
943 	/* We will set the crashing cpu id in crash_fadump() during crash. */
944 	fdh->crashing_cpu = CPU_UNKNOWN;
945 
946 	return addr;
947 }
948 
949 static void register_fadump(void)
950 {
951 	unsigned long addr;
952 	void *vaddr;
953 
954 	/*
955 	 * If no memory is reserved then we can not register for firmware-
956 	 * assisted dump.
957 	 */
958 	if (!fw_dump.reserve_dump_area_size)
959 		return;
960 
961 	fadump_setup_crash_memory_ranges();
962 
963 	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
964 	/* Initialize fadump crash info header. */
965 	addr = init_fadump_header(addr);
966 	vaddr = __va(addr);
967 
968 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
969 	fadump_create_elfcore_headers(vaddr);
970 
971 	/* register the future kernel dump with firmware. */
972 	register_fw_dump(&fdm);
973 }
974 
975 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
976 {
977 	int rc = 0;
978 	unsigned int wait_time;
979 
980 	pr_debug("Un-register firmware-assisted dump\n");
981 
982 	/* TODO: Add upper time limit for the delay */
983 	do {
984 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
985 			FADUMP_UNREGISTER, fdm,
986 			sizeof(struct fadump_mem_struct));
987 
988 		wait_time = rtas_busy_delay_time(rc);
989 		if (wait_time)
990 			mdelay(wait_time);
991 	} while (wait_time);
992 
993 	if (rc) {
994 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
995 			" unexpected error(%d).\n", rc);
996 		return rc;
997 	}
998 	fw_dump.dump_registered = 0;
999 	return 0;
1000 }
1001 
1002 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1003 {
1004 	int rc = 0;
1005 	unsigned int wait_time;
1006 
1007 	pr_debug("Invalidating firmware-assisted dump registration\n");
1008 
1009 	/* TODO: Add upper time limit for the delay */
1010 	do {
1011 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1012 			FADUMP_INVALIDATE, fdm,
1013 			sizeof(struct fadump_mem_struct));
1014 
1015 		wait_time = rtas_busy_delay_time(rc);
1016 		if (wait_time)
1017 			mdelay(wait_time);
1018 	} while (wait_time);
1019 
1020 	if (rc) {
1021 		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1022 		return rc;
1023 	}
1024 	fw_dump.dump_active = 0;
1025 	fdm_active = NULL;
1026 	return 0;
1027 }
1028 
1029 void fadump_cleanup(void)
1030 {
1031 	/* Invalidate the registration only if dump is active. */
1032 	if (fw_dump.dump_active) {
1033 		init_fadump_mem_struct(&fdm,
1034 			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1035 		fadump_invalidate_dump(&fdm);
1036 	}
1037 }
1038 
1039 /*
1040  * Release the memory that was reserved in early boot to preserve the memory
1041  * contents. The released memory will be available for general use.
1042  */
1043 static void fadump_release_memory(unsigned long begin, unsigned long end)
1044 {
1045 	unsigned long addr;
1046 	unsigned long ra_start, ra_end;
1047 
1048 	ra_start = fw_dump.reserve_dump_area_start;
1049 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1050 
1051 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1052 		/*
1053 		 * exclude the dump reserve area. Will reuse it for next
1054 		 * fadump registration.
1055 		 */
1056 		if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1057 			continue;
1058 
1059 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1060 	}
1061 }
1062 
1063 static void fadump_invalidate_release_mem(void)
1064 {
1065 	unsigned long reserved_area_start, reserved_area_end;
1066 	unsigned long destination_address;
1067 
1068 	mutex_lock(&fadump_mutex);
1069 	if (!fw_dump.dump_active) {
1070 		mutex_unlock(&fadump_mutex);
1071 		return;
1072 	}
1073 
1074 	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1075 	fadump_cleanup();
1076 	mutex_unlock(&fadump_mutex);
1077 
1078 	/*
1079 	 * Save the current reserved memory bounds we will require them
1080 	 * later for releasing the memory for general use.
1081 	 */
1082 	reserved_area_start = fw_dump.reserve_dump_area_start;
1083 	reserved_area_end = reserved_area_start +
1084 			fw_dump.reserve_dump_area_size;
1085 	/*
1086 	 * Setup reserve_dump_area_start and its size so that we can
1087 	 * reuse this reserved memory for Re-registration.
1088 	 */
1089 	fw_dump.reserve_dump_area_start = destination_address;
1090 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1091 
1092 	fadump_release_memory(reserved_area_start, reserved_area_end);
1093 	if (fw_dump.cpu_notes_buf) {
1094 		fadump_cpu_notes_buf_free(
1095 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1096 				fw_dump.cpu_notes_buf_size);
1097 		fw_dump.cpu_notes_buf = 0;
1098 		fw_dump.cpu_notes_buf_size = 0;
1099 	}
1100 	/* Initialize the kernel dump memory structure for FAD registration. */
1101 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1102 }
1103 
1104 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1105 					struct kobj_attribute *attr,
1106 					const char *buf, size_t count)
1107 {
1108 	if (!fw_dump.dump_active)
1109 		return -EPERM;
1110 
1111 	if (buf[0] == '1') {
1112 		/*
1113 		 * Take away the '/proc/vmcore'. We are releasing the dump
1114 		 * memory, hence it will not be valid anymore.
1115 		 */
1116 #ifdef CONFIG_PROC_VMCORE
1117 		vmcore_cleanup();
1118 #endif
1119 		fadump_invalidate_release_mem();
1120 
1121 	} else
1122 		return -EINVAL;
1123 	return count;
1124 }
1125 
1126 static ssize_t fadump_enabled_show(struct kobject *kobj,
1127 					struct kobj_attribute *attr,
1128 					char *buf)
1129 {
1130 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1131 }
1132 
1133 static ssize_t fadump_register_show(struct kobject *kobj,
1134 					struct kobj_attribute *attr,
1135 					char *buf)
1136 {
1137 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1138 }
1139 
1140 static ssize_t fadump_register_store(struct kobject *kobj,
1141 					struct kobj_attribute *attr,
1142 					const char *buf, size_t count)
1143 {
1144 	int ret = 0;
1145 
1146 	if (!fw_dump.fadump_enabled || fdm_active)
1147 		return -EPERM;
1148 
1149 	mutex_lock(&fadump_mutex);
1150 
1151 	switch (buf[0]) {
1152 	case '0':
1153 		if (fw_dump.dump_registered == 0) {
1154 			ret = -EINVAL;
1155 			goto unlock_out;
1156 		}
1157 		/* Un-register Firmware-assisted dump */
1158 		fadump_unregister_dump(&fdm);
1159 		break;
1160 	case '1':
1161 		if (fw_dump.dump_registered == 1) {
1162 			ret = -EINVAL;
1163 			goto unlock_out;
1164 		}
1165 		/* Register Firmware-assisted dump */
1166 		register_fadump();
1167 		break;
1168 	default:
1169 		ret = -EINVAL;
1170 		break;
1171 	}
1172 
1173 unlock_out:
1174 	mutex_unlock(&fadump_mutex);
1175 	return ret < 0 ? ret : count;
1176 }
1177 
1178 static int fadump_region_show(struct seq_file *m, void *private)
1179 {
1180 	const struct fadump_mem_struct *fdm_ptr;
1181 
1182 	if (!fw_dump.fadump_enabled)
1183 		return 0;
1184 
1185 	mutex_lock(&fadump_mutex);
1186 	if (fdm_active)
1187 		fdm_ptr = fdm_active;
1188 	else {
1189 		mutex_unlock(&fadump_mutex);
1190 		fdm_ptr = &fdm;
1191 	}
1192 
1193 	seq_printf(m,
1194 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1195 			"Dumped: %#llx\n",
1196 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1197 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1198 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1199 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1200 			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1201 	seq_printf(m,
1202 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1203 			"Dumped: %#llx\n",
1204 			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1205 			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1206 			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1207 			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1208 			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1209 	seq_printf(m,
1210 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1211 			"Dumped: %#llx\n",
1212 			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1213 			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1214 			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1215 			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1216 			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1217 
1218 	if (!fdm_active ||
1219 		(fw_dump.reserve_dump_area_start ==
1220 		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1221 		goto out;
1222 
1223 	/* Dump is active. Show reserved memory region. */
1224 	seq_printf(m,
1225 			"    : [%#016llx-%#016llx] %#llx bytes, "
1226 			"Dumped: %#llx\n",
1227 			(unsigned long long)fw_dump.reserve_dump_area_start,
1228 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1229 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1230 			fw_dump.reserve_dump_area_start,
1231 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1232 			fw_dump.reserve_dump_area_start);
1233 out:
1234 	if (fdm_active)
1235 		mutex_unlock(&fadump_mutex);
1236 	return 0;
1237 }
1238 
1239 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1240 						0200, NULL,
1241 						fadump_release_memory_store);
1242 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1243 						0444, fadump_enabled_show,
1244 						NULL);
1245 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1246 						0644, fadump_register_show,
1247 						fadump_register_store);
1248 
1249 static int fadump_region_open(struct inode *inode, struct file *file)
1250 {
1251 	return single_open(file, fadump_region_show, inode->i_private);
1252 }
1253 
1254 static const struct file_operations fadump_region_fops = {
1255 	.open    = fadump_region_open,
1256 	.read    = seq_read,
1257 	.llseek  = seq_lseek,
1258 	.release = single_release,
1259 };
1260 
1261 static void fadump_init_files(void)
1262 {
1263 	struct dentry *debugfs_file;
1264 	int rc = 0;
1265 
1266 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1267 	if (rc)
1268 		printk(KERN_ERR "fadump: unable to create sysfs file"
1269 			" fadump_enabled (%d)\n", rc);
1270 
1271 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1272 	if (rc)
1273 		printk(KERN_ERR "fadump: unable to create sysfs file"
1274 			" fadump_registered (%d)\n", rc);
1275 
1276 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1277 					powerpc_debugfs_root, NULL,
1278 					&fadump_region_fops);
1279 	if (!debugfs_file)
1280 		printk(KERN_ERR "fadump: unable to create debugfs file"
1281 				" fadump_region\n");
1282 
1283 	if (fw_dump.dump_active) {
1284 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1285 		if (rc)
1286 			printk(KERN_ERR "fadump: unable to create sysfs file"
1287 				" fadump_release_mem (%d)\n", rc);
1288 	}
1289 	return;
1290 }
1291 
1292 /*
1293  * Prepare for firmware-assisted dump.
1294  */
1295 int __init setup_fadump(void)
1296 {
1297 	if (!fw_dump.fadump_enabled)
1298 		return 0;
1299 
1300 	if (!fw_dump.fadump_supported) {
1301 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1302 			" this hardware\n");
1303 		return 0;
1304 	}
1305 
1306 	fadump_show_config();
1307 	/*
1308 	 * If dump data is available then see if it is valid and prepare for
1309 	 * saving it to the disk.
1310 	 */
1311 	if (fw_dump.dump_active) {
1312 		/*
1313 		 * if dump process fails then invalidate the registration
1314 		 * and release memory before proceeding for re-registration.
1315 		 */
1316 		if (process_fadump(fdm_active) < 0)
1317 			fadump_invalidate_release_mem();
1318 	}
1319 	/* Initialize the kernel dump memory structure for FAD registration. */
1320 	else if (fw_dump.reserve_dump_area_size)
1321 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1322 	fadump_init_files();
1323 
1324 	return 1;
1325 }
1326 subsys_initcall(setup_fadump);
1327