xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision b78412b8)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/seq_file.h>
34 #include <linux/crash_dump.h>
35 #include <linux/kobject.h>
36 #include <linux/sysfs.h>
37 
38 #include <asm/debugfs.h>
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/setup.h>
44 
45 static struct fw_dump fw_dump;
46 static struct fadump_mem_struct fdm;
47 static const struct fadump_mem_struct *fdm_active;
48 
49 static DEFINE_MUTEX(fadump_mutex);
50 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
51 int crash_mem_ranges;
52 
53 /* Scan the Firmware Assisted dump configuration details. */
54 int __init early_init_dt_scan_fw_dump(unsigned long node,
55 			const char *uname, int depth, void *data)
56 {
57 	const __be32 *sections;
58 	int i, num_sections;
59 	int size;
60 	const __be32 *token;
61 
62 	if (depth != 1 || strcmp(uname, "rtas") != 0)
63 		return 0;
64 
65 	/*
66 	 * Check if Firmware Assisted dump is supported. if yes, check
67 	 * if dump has been initiated on last reboot.
68 	 */
69 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
70 	if (!token)
71 		return 1;
72 
73 	fw_dump.fadump_supported = 1;
74 	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
75 
76 	/*
77 	 * The 'ibm,kernel-dump' rtas node is present only if there is
78 	 * dump data waiting for us.
79 	 */
80 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
81 	if (fdm_active)
82 		fw_dump.dump_active = 1;
83 
84 	/* Get the sizes required to store dump data for the firmware provided
85 	 * dump sections.
86 	 * For each dump section type supported, a 32bit cell which defines
87 	 * the ID of a supported section followed by two 32 bit cells which
88 	 * gives teh size of the section in bytes.
89 	 */
90 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
91 					&size);
92 
93 	if (!sections)
94 		return 1;
95 
96 	num_sections = size / (3 * sizeof(u32));
97 
98 	for (i = 0; i < num_sections; i++, sections += 3) {
99 		u32 type = (u32)of_read_number(sections, 1);
100 
101 		switch (type) {
102 		case FADUMP_CPU_STATE_DATA:
103 			fw_dump.cpu_state_data_size =
104 					of_read_ulong(&sections[1], 2);
105 			break;
106 		case FADUMP_HPTE_REGION:
107 			fw_dump.hpte_region_size =
108 					of_read_ulong(&sections[1], 2);
109 			break;
110 		}
111 	}
112 
113 	return 1;
114 }
115 
116 /*
117  * If fadump is registered, check if the memory provided
118  * falls within boot memory area.
119  */
120 int is_fadump_boot_memory_area(u64 addr, ulong size)
121 {
122 	if (!fw_dump.dump_registered)
123 		return 0;
124 
125 	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
126 }
127 
128 int should_fadump_crash(void)
129 {
130 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
131 		return 0;
132 	return 1;
133 }
134 
135 int is_fadump_active(void)
136 {
137 	return fw_dump.dump_active;
138 }
139 
140 /*
141  * Returns 1, if there are no holes in boot memory area,
142  * 0 otherwise.
143  */
144 static int is_boot_memory_area_contiguous(void)
145 {
146 	struct memblock_region *reg;
147 	unsigned long tstart, tend;
148 	unsigned long start_pfn = PHYS_PFN(RMA_START);
149 	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
150 	unsigned int ret = 0;
151 
152 	for_each_memblock(memory, reg) {
153 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
154 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
155 		if (tstart < tend) {
156 			/* Memory hole from start_pfn to tstart */
157 			if (tstart > start_pfn)
158 				break;
159 
160 			if (tend == end_pfn) {
161 				ret = 1;
162 				break;
163 			}
164 
165 			start_pfn = tend + 1;
166 		}
167 	}
168 
169 	return ret;
170 }
171 
172 /* Print firmware assisted dump configurations for debugging purpose. */
173 static void fadump_show_config(void)
174 {
175 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
176 			(fw_dump.fadump_supported ? "present" : "no support"));
177 
178 	if (!fw_dump.fadump_supported)
179 		return;
180 
181 	pr_debug("Fadump enabled    : %s\n",
182 				(fw_dump.fadump_enabled ? "yes" : "no"));
183 	pr_debug("Dump Active       : %s\n",
184 				(fw_dump.dump_active ? "yes" : "no"));
185 	pr_debug("Dump section sizes:\n");
186 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
187 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
188 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
189 }
190 
191 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
192 				unsigned long addr)
193 {
194 	if (!fdm)
195 		return 0;
196 
197 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
198 	addr = addr & PAGE_MASK;
199 
200 	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
201 	fdm->header.dump_num_sections = cpu_to_be16(3);
202 	fdm->header.dump_status_flag = 0;
203 	fdm->header.offset_first_dump_section =
204 		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
205 
206 	/*
207 	 * Fields for disk dump option.
208 	 * We are not using disk dump option, hence set these fields to 0.
209 	 */
210 	fdm->header.dd_block_size = 0;
211 	fdm->header.dd_block_offset = 0;
212 	fdm->header.dd_num_blocks = 0;
213 	fdm->header.dd_offset_disk_path = 0;
214 
215 	/* set 0 to disable an automatic dump-reboot. */
216 	fdm->header.max_time_auto = 0;
217 
218 	/* Kernel dump sections */
219 	/* cpu state data section. */
220 	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
221 	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
222 	fdm->cpu_state_data.source_address = 0;
223 	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
224 	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
225 	addr += fw_dump.cpu_state_data_size;
226 
227 	/* hpte region section */
228 	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
229 	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
230 	fdm->hpte_region.source_address = 0;
231 	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
232 	fdm->hpte_region.destination_address = cpu_to_be64(addr);
233 	addr += fw_dump.hpte_region_size;
234 
235 	/* RMA region section */
236 	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
237 	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
238 	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
239 	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
240 	fdm->rmr_region.destination_address = cpu_to_be64(addr);
241 	addr += fw_dump.boot_memory_size;
242 
243 	return addr;
244 }
245 
246 /**
247  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
248  *
249  * Function to find the largest memory size we need to reserve during early
250  * boot process. This will be the size of the memory that is required for a
251  * kernel to boot successfully.
252  *
253  * This function has been taken from phyp-assisted dump feature implementation.
254  *
255  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
256  *
257  * TODO: Come up with better approach to find out more accurate memory size
258  * that is required for a kernel to boot successfully.
259  *
260  */
261 static inline unsigned long fadump_calculate_reserve_size(void)
262 {
263 	int ret;
264 	unsigned long long base, size;
265 
266 	if (fw_dump.reserve_bootvar)
267 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
268 
269 	/*
270 	 * Check if the size is specified through crashkernel= cmdline
271 	 * option. If yes, then use that but ignore base as fadump reserves
272 	 * memory at a predefined offset.
273 	 */
274 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
275 				&size, &base);
276 	if (ret == 0 && size > 0) {
277 		unsigned long max_size;
278 
279 		if (fw_dump.reserve_bootvar)
280 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
281 
282 		fw_dump.reserve_bootvar = (unsigned long)size;
283 
284 		/*
285 		 * Adjust if the boot memory size specified is above
286 		 * the upper limit.
287 		 */
288 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
289 		if (fw_dump.reserve_bootvar > max_size) {
290 			fw_dump.reserve_bootvar = max_size;
291 			pr_info("Adjusted boot memory size to %luMB\n",
292 				(fw_dump.reserve_bootvar >> 20));
293 		}
294 
295 		return fw_dump.reserve_bootvar;
296 	} else if (fw_dump.reserve_bootvar) {
297 		/*
298 		 * 'fadump_reserve_mem=' is being used to reserve memory
299 		 * for firmware-assisted dump.
300 		 */
301 		return fw_dump.reserve_bootvar;
302 	}
303 
304 	/* divide by 20 to get 5% of value */
305 	size = memblock_phys_mem_size() / 20;
306 
307 	/* round it down in multiples of 256 */
308 	size = size & ~0x0FFFFFFFUL;
309 
310 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
311 	if (memory_limit && size > memory_limit)
312 		size = memory_limit;
313 
314 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
315 }
316 
317 /*
318  * Calculate the total memory size required to be reserved for
319  * firmware-assisted dump registration.
320  */
321 static unsigned long get_fadump_area_size(void)
322 {
323 	unsigned long size = 0;
324 
325 	size += fw_dump.cpu_state_data_size;
326 	size += fw_dump.hpte_region_size;
327 	size += fw_dump.boot_memory_size;
328 	size += sizeof(struct fadump_crash_info_header);
329 	size += sizeof(struct elfhdr); /* ELF core header.*/
330 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
331 	/* Program headers for crash memory regions. */
332 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
333 
334 	size = PAGE_ALIGN(size);
335 	return size;
336 }
337 
338 int __init fadump_reserve_mem(void)
339 {
340 	unsigned long base, size, memory_boundary;
341 
342 	if (!fw_dump.fadump_enabled)
343 		return 0;
344 
345 	if (!fw_dump.fadump_supported) {
346 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
347 				" this hardware\n");
348 		fw_dump.fadump_enabled = 0;
349 		return 0;
350 	}
351 	/*
352 	 * Initialize boot memory size
353 	 * If dump is active then we have already calculated the size during
354 	 * first kernel.
355 	 */
356 	if (fdm_active)
357 		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
358 	else
359 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
360 
361 	/*
362 	 * Calculate the memory boundary.
363 	 * If memory_limit is less than actual memory boundary then reserve
364 	 * the memory for fadump beyond the memory_limit and adjust the
365 	 * memory_limit accordingly, so that the running kernel can run with
366 	 * specified memory_limit.
367 	 */
368 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
369 		size = get_fadump_area_size();
370 		if ((memory_limit + size) < memblock_end_of_DRAM())
371 			memory_limit += size;
372 		else
373 			memory_limit = memblock_end_of_DRAM();
374 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
375 				" dump, now %#016llx\n", memory_limit);
376 	}
377 	if (memory_limit)
378 		memory_boundary = memory_limit;
379 	else
380 		memory_boundary = memblock_end_of_DRAM();
381 
382 	if (fw_dump.dump_active) {
383 		printk(KERN_INFO "Firmware-assisted dump is active.\n");
384 		/*
385 		 * If last boot has crashed then reserve all the memory
386 		 * above boot_memory_size so that we don't touch it until
387 		 * dump is written to disk by userspace tool. This memory
388 		 * will be released for general use once the dump is saved.
389 		 */
390 		base = fw_dump.boot_memory_size;
391 		size = memory_boundary - base;
392 		memblock_reserve(base, size);
393 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
394 				"for saving crash dump\n",
395 				(unsigned long)(size >> 20),
396 				(unsigned long)(base >> 20));
397 
398 		fw_dump.fadumphdr_addr =
399 				be64_to_cpu(fdm_active->rmr_region.destination_address) +
400 				be64_to_cpu(fdm_active->rmr_region.source_len);
401 		pr_debug("fadumphdr_addr = %p\n",
402 				(void *) fw_dump.fadumphdr_addr);
403 	} else {
404 		size = get_fadump_area_size();
405 
406 		/*
407 		 * Reserve memory at an offset closer to bottom of the RAM to
408 		 * minimize the impact of memory hot-remove operation. We can't
409 		 * use memblock_find_in_range() here since it doesn't allocate
410 		 * from bottom to top.
411 		 */
412 		for (base = fw_dump.boot_memory_size;
413 		     base <= (memory_boundary - size);
414 		     base += size) {
415 			if (memblock_is_region_memory(base, size) &&
416 			    !memblock_is_region_reserved(base, size))
417 				break;
418 		}
419 		if ((base > (memory_boundary - size)) ||
420 		    memblock_reserve(base, size)) {
421 			pr_err("Failed to reserve memory\n");
422 			return 0;
423 		}
424 
425 		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
426 			"assisted dump (System RAM: %ldMB)\n",
427 			(unsigned long)(size >> 20),
428 			(unsigned long)(base >> 20),
429 			(unsigned long)(memblock_phys_mem_size() >> 20));
430 	}
431 
432 	fw_dump.reserve_dump_area_start = base;
433 	fw_dump.reserve_dump_area_size = size;
434 	return 1;
435 }
436 
437 unsigned long __init arch_reserved_kernel_pages(void)
438 {
439 	return memblock_reserved_size() / PAGE_SIZE;
440 }
441 
442 /* Look for fadump= cmdline option. */
443 static int __init early_fadump_param(char *p)
444 {
445 	if (!p)
446 		return 1;
447 
448 	if (strncmp(p, "on", 2) == 0)
449 		fw_dump.fadump_enabled = 1;
450 	else if (strncmp(p, "off", 3) == 0)
451 		fw_dump.fadump_enabled = 0;
452 
453 	return 0;
454 }
455 early_param("fadump", early_fadump_param);
456 
457 /*
458  * Look for fadump_reserve_mem= cmdline option
459  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
460  *       the sooner 'crashkernel=' parameter is accustomed to.
461  */
462 static int __init early_fadump_reserve_mem(char *p)
463 {
464 	if (p)
465 		fw_dump.reserve_bootvar = memparse(p, &p);
466 	return 0;
467 }
468 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
469 
470 static int register_fw_dump(struct fadump_mem_struct *fdm)
471 {
472 	int rc, err;
473 	unsigned int wait_time;
474 
475 	pr_debug("Registering for firmware-assisted kernel dump...\n");
476 
477 	/* TODO: Add upper time limit for the delay */
478 	do {
479 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
480 			FADUMP_REGISTER, fdm,
481 			sizeof(struct fadump_mem_struct));
482 
483 		wait_time = rtas_busy_delay_time(rc);
484 		if (wait_time)
485 			mdelay(wait_time);
486 
487 	} while (wait_time);
488 
489 	err = -EIO;
490 	switch (rc) {
491 	default:
492 		pr_err("Failed to register. Unknown Error(%d).\n", rc);
493 		break;
494 	case -1:
495 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
496 			" dump. Hardware Error(%d).\n", rc);
497 		break;
498 	case -3:
499 		if (!is_boot_memory_area_contiguous())
500 			pr_err("Can't have holes in boot memory area while "
501 			       "registering fadump\n");
502 
503 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
504 			" dump. Parameter Error(%d).\n", rc);
505 		err = -EINVAL;
506 		break;
507 	case -9:
508 		printk(KERN_ERR "firmware-assisted kernel dump is already "
509 			" registered.");
510 		fw_dump.dump_registered = 1;
511 		err = -EEXIST;
512 		break;
513 	case 0:
514 		printk(KERN_INFO "firmware-assisted kernel dump registration"
515 			" is successful\n");
516 		fw_dump.dump_registered = 1;
517 		err = 0;
518 		break;
519 	}
520 	return err;
521 }
522 
523 void crash_fadump(struct pt_regs *regs, const char *str)
524 {
525 	struct fadump_crash_info_header *fdh = NULL;
526 	int old_cpu, this_cpu;
527 
528 	if (!should_fadump_crash())
529 		return;
530 
531 	/*
532 	 * old_cpu == -1 means this is the first CPU which has come here,
533 	 * go ahead and trigger fadump.
534 	 *
535 	 * old_cpu != -1 means some other CPU has already on it's way
536 	 * to trigger fadump, just keep looping here.
537 	 */
538 	this_cpu = smp_processor_id();
539 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
540 
541 	if (old_cpu != -1) {
542 		/*
543 		 * We can't loop here indefinitely. Wait as long as fadump
544 		 * is in force. If we race with fadump un-registration this
545 		 * loop will break and then we go down to normal panic path
546 		 * and reboot. If fadump is in force the first crashing
547 		 * cpu will definitely trigger fadump.
548 		 */
549 		while (fw_dump.dump_registered)
550 			cpu_relax();
551 		return;
552 	}
553 
554 	fdh = __va(fw_dump.fadumphdr_addr);
555 	fdh->crashing_cpu = crashing_cpu;
556 	crash_save_vmcoreinfo();
557 
558 	if (regs)
559 		fdh->regs = *regs;
560 	else
561 		ppc_save_regs(&fdh->regs);
562 
563 	fdh->online_mask = *cpu_online_mask;
564 
565 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
566 	rtas_os_term((char *)str);
567 }
568 
569 #define GPR_MASK	0xffffff0000000000
570 static inline int fadump_gpr_index(u64 id)
571 {
572 	int i = -1;
573 	char str[3];
574 
575 	if ((id & GPR_MASK) == REG_ID("GPR")) {
576 		/* get the digits at the end */
577 		id &= ~GPR_MASK;
578 		id >>= 24;
579 		str[2] = '\0';
580 		str[1] = id & 0xff;
581 		str[0] = (id >> 8) & 0xff;
582 		sscanf(str, "%d", &i);
583 		if (i > 31)
584 			i = -1;
585 	}
586 	return i;
587 }
588 
589 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
590 								u64 reg_val)
591 {
592 	int i;
593 
594 	i = fadump_gpr_index(reg_id);
595 	if (i >= 0)
596 		regs->gpr[i] = (unsigned long)reg_val;
597 	else if (reg_id == REG_ID("NIA"))
598 		regs->nip = (unsigned long)reg_val;
599 	else if (reg_id == REG_ID("MSR"))
600 		regs->msr = (unsigned long)reg_val;
601 	else if (reg_id == REG_ID("CTR"))
602 		regs->ctr = (unsigned long)reg_val;
603 	else if (reg_id == REG_ID("LR"))
604 		regs->link = (unsigned long)reg_val;
605 	else if (reg_id == REG_ID("XER"))
606 		regs->xer = (unsigned long)reg_val;
607 	else if (reg_id == REG_ID("CR"))
608 		regs->ccr = (unsigned long)reg_val;
609 	else if (reg_id == REG_ID("DAR"))
610 		regs->dar = (unsigned long)reg_val;
611 	else if (reg_id == REG_ID("DSISR"))
612 		regs->dsisr = (unsigned long)reg_val;
613 }
614 
615 static struct fadump_reg_entry*
616 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
617 {
618 	memset(regs, 0, sizeof(struct pt_regs));
619 
620 	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
621 		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
622 					be64_to_cpu(reg_entry->reg_value));
623 		reg_entry++;
624 	}
625 	reg_entry++;
626 	return reg_entry;
627 }
628 
629 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
630 {
631 	struct elf_prstatus prstatus;
632 
633 	memset(&prstatus, 0, sizeof(prstatus));
634 	/*
635 	 * FIXME: How do i get PID? Do I really need it?
636 	 * prstatus.pr_pid = ????
637 	 */
638 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
639 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
640 			      &prstatus, sizeof(prstatus));
641 	return buf;
642 }
643 
644 static void fadump_update_elfcore_header(char *bufp)
645 {
646 	struct elfhdr *elf;
647 	struct elf_phdr *phdr;
648 
649 	elf = (struct elfhdr *)bufp;
650 	bufp += sizeof(struct elfhdr);
651 
652 	/* First note is a place holder for cpu notes info. */
653 	phdr = (struct elf_phdr *)bufp;
654 
655 	if (phdr->p_type == PT_NOTE) {
656 		phdr->p_paddr = fw_dump.cpu_notes_buf;
657 		phdr->p_offset	= phdr->p_paddr;
658 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
659 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
660 	}
661 	return;
662 }
663 
664 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
665 {
666 	void *vaddr;
667 	struct page *page;
668 	unsigned long order, count, i;
669 
670 	order = get_order(size);
671 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
672 	if (!vaddr)
673 		return NULL;
674 
675 	count = 1 << order;
676 	page = virt_to_page(vaddr);
677 	for (i = 0; i < count; i++)
678 		SetPageReserved(page + i);
679 	return vaddr;
680 }
681 
682 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
683 {
684 	struct page *page;
685 	unsigned long order, count, i;
686 
687 	order = get_order(size);
688 	count = 1 << order;
689 	page = virt_to_page(vaddr);
690 	for (i = 0; i < count; i++)
691 		ClearPageReserved(page + i);
692 	__free_pages(page, order);
693 }
694 
695 /*
696  * Read CPU state dump data and convert it into ELF notes.
697  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
698  * used to access the data to allow for additional fields to be added without
699  * affecting compatibility. Each list of registers for a CPU starts with
700  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
701  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
702  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
703  * of register value. For more details refer to PAPR document.
704  *
705  * Only for the crashing cpu we ignore the CPU dump data and get exact
706  * state from fadump crash info structure populated by first kernel at the
707  * time of crash.
708  */
709 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
710 {
711 	struct fadump_reg_save_area_header *reg_header;
712 	struct fadump_reg_entry *reg_entry;
713 	struct fadump_crash_info_header *fdh = NULL;
714 	void *vaddr;
715 	unsigned long addr;
716 	u32 num_cpus, *note_buf;
717 	struct pt_regs regs;
718 	int i, rc = 0, cpu = 0;
719 
720 	if (!fdm->cpu_state_data.bytes_dumped)
721 		return -EINVAL;
722 
723 	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
724 	vaddr = __va(addr);
725 
726 	reg_header = vaddr;
727 	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
728 		printk(KERN_ERR "Unable to read register save area.\n");
729 		return -ENOENT;
730 	}
731 	pr_debug("--------CPU State Data------------\n");
732 	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
733 	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
734 
735 	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
736 	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
737 	pr_debug("NumCpus     : %u\n", num_cpus);
738 	vaddr += sizeof(u32);
739 	reg_entry = (struct fadump_reg_entry *)vaddr;
740 
741 	/* Allocate buffer to hold cpu crash notes. */
742 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
743 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
744 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
745 	if (!note_buf) {
746 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
747 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
748 		return -ENOMEM;
749 	}
750 	fw_dump.cpu_notes_buf = __pa(note_buf);
751 
752 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
753 			(num_cpus * sizeof(note_buf_t)), note_buf);
754 
755 	if (fw_dump.fadumphdr_addr)
756 		fdh = __va(fw_dump.fadumphdr_addr);
757 
758 	for (i = 0; i < num_cpus; i++) {
759 		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
760 			printk(KERN_ERR "Unable to read CPU state data\n");
761 			rc = -ENOENT;
762 			goto error_out;
763 		}
764 		/* Lower 4 bytes of reg_value contains logical cpu id */
765 		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
766 		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
767 			SKIP_TO_NEXT_CPU(reg_entry);
768 			continue;
769 		}
770 		pr_debug("Reading register data for cpu %d...\n", cpu);
771 		if (fdh && fdh->crashing_cpu == cpu) {
772 			regs = fdh->regs;
773 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
774 			SKIP_TO_NEXT_CPU(reg_entry);
775 		} else {
776 			reg_entry++;
777 			reg_entry = fadump_read_registers(reg_entry, &regs);
778 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
779 		}
780 	}
781 	final_note(note_buf);
782 
783 	if (fdh) {
784 		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
785 							fdh->elfcorehdr_addr);
786 		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
787 	}
788 	return 0;
789 
790 error_out:
791 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
792 					fw_dump.cpu_notes_buf_size);
793 	fw_dump.cpu_notes_buf = 0;
794 	fw_dump.cpu_notes_buf_size = 0;
795 	return rc;
796 
797 }
798 
799 /*
800  * Validate and process the dump data stored by firmware before exporting
801  * it through '/proc/vmcore'.
802  */
803 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
804 {
805 	struct fadump_crash_info_header *fdh;
806 	int rc = 0;
807 
808 	if (!fdm_active || !fw_dump.fadumphdr_addr)
809 		return -EINVAL;
810 
811 	/* Check if the dump data is valid. */
812 	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
813 			(fdm_active->cpu_state_data.error_flags != 0) ||
814 			(fdm_active->rmr_region.error_flags != 0)) {
815 		printk(KERN_ERR "Dump taken by platform is not valid\n");
816 		return -EINVAL;
817 	}
818 	if ((fdm_active->rmr_region.bytes_dumped !=
819 			fdm_active->rmr_region.source_len) ||
820 			!fdm_active->cpu_state_data.bytes_dumped) {
821 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
822 		return -EINVAL;
823 	}
824 
825 	/* Validate the fadump crash info header */
826 	fdh = __va(fw_dump.fadumphdr_addr);
827 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
828 		printk(KERN_ERR "Crash info header is not valid.\n");
829 		return -EINVAL;
830 	}
831 
832 	rc = fadump_build_cpu_notes(fdm_active);
833 	if (rc)
834 		return rc;
835 
836 	/*
837 	 * We are done validating dump info and elfcore header is now ready
838 	 * to be exported. set elfcorehdr_addr so that vmcore module will
839 	 * export the elfcore header through '/proc/vmcore'.
840 	 */
841 	elfcorehdr_addr = fdh->elfcorehdr_addr;
842 
843 	return 0;
844 }
845 
846 static inline void fadump_add_crash_memory(unsigned long long base,
847 					unsigned long long end)
848 {
849 	if (base == end)
850 		return;
851 
852 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
853 		crash_mem_ranges, base, end - 1, (end - base));
854 	crash_memory_ranges[crash_mem_ranges].base = base;
855 	crash_memory_ranges[crash_mem_ranges].size = end - base;
856 	crash_mem_ranges++;
857 }
858 
859 static void fadump_exclude_reserved_area(unsigned long long start,
860 					unsigned long long end)
861 {
862 	unsigned long long ra_start, ra_end;
863 
864 	ra_start = fw_dump.reserve_dump_area_start;
865 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
866 
867 	if ((ra_start < end) && (ra_end > start)) {
868 		if ((start < ra_start) && (end > ra_end)) {
869 			fadump_add_crash_memory(start, ra_start);
870 			fadump_add_crash_memory(ra_end, end);
871 		} else if (start < ra_start) {
872 			fadump_add_crash_memory(start, ra_start);
873 		} else if (ra_end < end) {
874 			fadump_add_crash_memory(ra_end, end);
875 		}
876 	} else
877 		fadump_add_crash_memory(start, end);
878 }
879 
880 static int fadump_init_elfcore_header(char *bufp)
881 {
882 	struct elfhdr *elf;
883 
884 	elf = (struct elfhdr *) bufp;
885 	bufp += sizeof(struct elfhdr);
886 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
887 	elf->e_ident[EI_CLASS] = ELF_CLASS;
888 	elf->e_ident[EI_DATA] = ELF_DATA;
889 	elf->e_ident[EI_VERSION] = EV_CURRENT;
890 	elf->e_ident[EI_OSABI] = ELF_OSABI;
891 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
892 	elf->e_type = ET_CORE;
893 	elf->e_machine = ELF_ARCH;
894 	elf->e_version = EV_CURRENT;
895 	elf->e_entry = 0;
896 	elf->e_phoff = sizeof(struct elfhdr);
897 	elf->e_shoff = 0;
898 #if defined(_CALL_ELF)
899 	elf->e_flags = _CALL_ELF;
900 #else
901 	elf->e_flags = 0;
902 #endif
903 	elf->e_ehsize = sizeof(struct elfhdr);
904 	elf->e_phentsize = sizeof(struct elf_phdr);
905 	elf->e_phnum = 0;
906 	elf->e_shentsize = 0;
907 	elf->e_shnum = 0;
908 	elf->e_shstrndx = 0;
909 
910 	return 0;
911 }
912 
913 /*
914  * Traverse through memblock structure and setup crash memory ranges. These
915  * ranges will be used create PT_LOAD program headers in elfcore header.
916  */
917 static void fadump_setup_crash_memory_ranges(void)
918 {
919 	struct memblock_region *reg;
920 	unsigned long long start, end;
921 
922 	pr_debug("Setup crash memory ranges.\n");
923 	crash_mem_ranges = 0;
924 	/*
925 	 * add the first memory chunk (RMA_START through boot_memory_size) as
926 	 * a separate memory chunk. The reason is, at the time crash firmware
927 	 * will move the content of this memory chunk to different location
928 	 * specified during fadump registration. We need to create a separate
929 	 * program header for this chunk with the correct offset.
930 	 */
931 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
932 
933 	for_each_memblock(memory, reg) {
934 		start = (unsigned long long)reg->base;
935 		end = start + (unsigned long long)reg->size;
936 
937 		/*
938 		 * skip the first memory chunk that is already added (RMA_START
939 		 * through boot_memory_size). This logic needs a relook if and
940 		 * when RMA_START changes to a non-zero value.
941 		 */
942 		BUILD_BUG_ON(RMA_START != 0);
943 		if (start < fw_dump.boot_memory_size) {
944 			if (end > fw_dump.boot_memory_size)
945 				start = fw_dump.boot_memory_size;
946 			else
947 				continue;
948 		}
949 
950 		/* add this range excluding the reserved dump area. */
951 		fadump_exclude_reserved_area(start, end);
952 	}
953 }
954 
955 /*
956  * If the given physical address falls within the boot memory region then
957  * return the relocated address that points to the dump region reserved
958  * for saving initial boot memory contents.
959  */
960 static inline unsigned long fadump_relocate(unsigned long paddr)
961 {
962 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
963 		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
964 	else
965 		return paddr;
966 }
967 
968 static int fadump_create_elfcore_headers(char *bufp)
969 {
970 	struct elfhdr *elf;
971 	struct elf_phdr *phdr;
972 	int i;
973 
974 	fadump_init_elfcore_header(bufp);
975 	elf = (struct elfhdr *)bufp;
976 	bufp += sizeof(struct elfhdr);
977 
978 	/*
979 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
980 	 * will be populated during second kernel boot after crash. Hence
981 	 * this PT_NOTE will always be the first elf note.
982 	 *
983 	 * NOTE: Any new ELF note addition should be placed after this note.
984 	 */
985 	phdr = (struct elf_phdr *)bufp;
986 	bufp += sizeof(struct elf_phdr);
987 	phdr->p_type = PT_NOTE;
988 	phdr->p_flags = 0;
989 	phdr->p_vaddr = 0;
990 	phdr->p_align = 0;
991 
992 	phdr->p_offset = 0;
993 	phdr->p_paddr = 0;
994 	phdr->p_filesz = 0;
995 	phdr->p_memsz = 0;
996 
997 	(elf->e_phnum)++;
998 
999 	/* setup ELF PT_NOTE for vmcoreinfo */
1000 	phdr = (struct elf_phdr *)bufp;
1001 	bufp += sizeof(struct elf_phdr);
1002 	phdr->p_type	= PT_NOTE;
1003 	phdr->p_flags	= 0;
1004 	phdr->p_vaddr	= 0;
1005 	phdr->p_align	= 0;
1006 
1007 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1008 	phdr->p_offset	= phdr->p_paddr;
1009 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1010 
1011 	/* Increment number of program headers. */
1012 	(elf->e_phnum)++;
1013 
1014 	/* setup PT_LOAD sections. */
1015 
1016 	for (i = 0; i < crash_mem_ranges; i++) {
1017 		unsigned long long mbase, msize;
1018 		mbase = crash_memory_ranges[i].base;
1019 		msize = crash_memory_ranges[i].size;
1020 
1021 		if (!msize)
1022 			continue;
1023 
1024 		phdr = (struct elf_phdr *)bufp;
1025 		bufp += sizeof(struct elf_phdr);
1026 		phdr->p_type	= PT_LOAD;
1027 		phdr->p_flags	= PF_R|PF_W|PF_X;
1028 		phdr->p_offset	= mbase;
1029 
1030 		if (mbase == RMA_START) {
1031 			/*
1032 			 * The entire RMA region will be moved by firmware
1033 			 * to the specified destination_address. Hence set
1034 			 * the correct offset.
1035 			 */
1036 			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1037 		}
1038 
1039 		phdr->p_paddr = mbase;
1040 		phdr->p_vaddr = (unsigned long)__va(mbase);
1041 		phdr->p_filesz = msize;
1042 		phdr->p_memsz = msize;
1043 		phdr->p_align = 0;
1044 
1045 		/* Increment number of program headers. */
1046 		(elf->e_phnum)++;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static unsigned long init_fadump_header(unsigned long addr)
1052 {
1053 	struct fadump_crash_info_header *fdh;
1054 
1055 	if (!addr)
1056 		return 0;
1057 
1058 	fw_dump.fadumphdr_addr = addr;
1059 	fdh = __va(addr);
1060 	addr += sizeof(struct fadump_crash_info_header);
1061 
1062 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064 	fdh->elfcorehdr_addr = addr;
1065 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1066 	fdh->crashing_cpu = CPU_UNKNOWN;
1067 
1068 	return addr;
1069 }
1070 
1071 static int register_fadump(void)
1072 {
1073 	unsigned long addr;
1074 	void *vaddr;
1075 
1076 	/*
1077 	 * If no memory is reserved then we can not register for firmware-
1078 	 * assisted dump.
1079 	 */
1080 	if (!fw_dump.reserve_dump_area_size)
1081 		return -ENODEV;
1082 
1083 	fadump_setup_crash_memory_ranges();
1084 
1085 	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086 	/* Initialize fadump crash info header. */
1087 	addr = init_fadump_header(addr);
1088 	vaddr = __va(addr);
1089 
1090 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091 	fadump_create_elfcore_headers(vaddr);
1092 
1093 	/* register the future kernel dump with firmware. */
1094 	return register_fw_dump(&fdm);
1095 }
1096 
1097 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098 {
1099 	int rc = 0;
1100 	unsigned int wait_time;
1101 
1102 	pr_debug("Un-register firmware-assisted dump\n");
1103 
1104 	/* TODO: Add upper time limit for the delay */
1105 	do {
1106 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107 			FADUMP_UNREGISTER, fdm,
1108 			sizeof(struct fadump_mem_struct));
1109 
1110 		wait_time = rtas_busy_delay_time(rc);
1111 		if (wait_time)
1112 			mdelay(wait_time);
1113 	} while (wait_time);
1114 
1115 	if (rc) {
1116 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117 			" unexpected error(%d).\n", rc);
1118 		return rc;
1119 	}
1120 	fw_dump.dump_registered = 0;
1121 	return 0;
1122 }
1123 
1124 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125 {
1126 	int rc = 0;
1127 	unsigned int wait_time;
1128 
1129 	pr_debug("Invalidating firmware-assisted dump registration\n");
1130 
1131 	/* TODO: Add upper time limit for the delay */
1132 	do {
1133 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134 			FADUMP_INVALIDATE, fdm,
1135 			sizeof(struct fadump_mem_struct));
1136 
1137 		wait_time = rtas_busy_delay_time(rc);
1138 		if (wait_time)
1139 			mdelay(wait_time);
1140 	} while (wait_time);
1141 
1142 	if (rc) {
1143 		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1144 		return rc;
1145 	}
1146 	fw_dump.dump_active = 0;
1147 	fdm_active = NULL;
1148 	return 0;
1149 }
1150 
1151 void fadump_cleanup(void)
1152 {
1153 	/* Invalidate the registration only if dump is active. */
1154 	if (fw_dump.dump_active) {
1155 		init_fadump_mem_struct(&fdm,
1156 			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157 		fadump_invalidate_dump(&fdm);
1158 	}
1159 }
1160 
1161 static void fadump_free_reserved_memory(unsigned long start_pfn,
1162 					unsigned long end_pfn)
1163 {
1164 	unsigned long pfn;
1165 	unsigned long time_limit = jiffies + HZ;
1166 
1167 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169 
1170 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171 		free_reserved_page(pfn_to_page(pfn));
1172 
1173 		if (time_after(jiffies, time_limit)) {
1174 			cond_resched();
1175 			time_limit = jiffies + HZ;
1176 		}
1177 	}
1178 }
1179 
1180 /*
1181  * Skip memory holes and free memory that was actually reserved.
1182  */
1183 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184 {
1185 	struct memblock_region *reg;
1186 	unsigned long tstart, tend;
1187 	unsigned long start_pfn = PHYS_PFN(start);
1188 	unsigned long end_pfn = PHYS_PFN(end);
1189 
1190 	for_each_memblock(memory, reg) {
1191 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1193 		if (tstart < tend) {
1194 			fadump_free_reserved_memory(tstart, tend);
1195 
1196 			if (tend == end_pfn)
1197 				break;
1198 
1199 			start_pfn = tend + 1;
1200 		}
1201 	}
1202 }
1203 
1204 /*
1205  * Release the memory that was reserved in early boot to preserve the memory
1206  * contents. The released memory will be available for general use.
1207  */
1208 static void fadump_release_memory(unsigned long begin, unsigned long end)
1209 {
1210 	unsigned long ra_start, ra_end;
1211 
1212 	ra_start = fw_dump.reserve_dump_area_start;
1213 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214 
1215 	/*
1216 	 * exclude the dump reserve area. Will reuse it for next
1217 	 * fadump registration.
1218 	 */
1219 	if (begin < ra_end && end > ra_start) {
1220 		if (begin < ra_start)
1221 			fadump_release_reserved_area(begin, ra_start);
1222 		if (end > ra_end)
1223 			fadump_release_reserved_area(ra_end, end);
1224 	} else
1225 		fadump_release_reserved_area(begin, end);
1226 }
1227 
1228 static void fadump_invalidate_release_mem(void)
1229 {
1230 	unsigned long reserved_area_start, reserved_area_end;
1231 	unsigned long destination_address;
1232 
1233 	mutex_lock(&fadump_mutex);
1234 	if (!fw_dump.dump_active) {
1235 		mutex_unlock(&fadump_mutex);
1236 		return;
1237 	}
1238 
1239 	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240 	fadump_cleanup();
1241 	mutex_unlock(&fadump_mutex);
1242 
1243 	/*
1244 	 * Save the current reserved memory bounds we will require them
1245 	 * later for releasing the memory for general use.
1246 	 */
1247 	reserved_area_start = fw_dump.reserve_dump_area_start;
1248 	reserved_area_end = reserved_area_start +
1249 			fw_dump.reserve_dump_area_size;
1250 	/*
1251 	 * Setup reserve_dump_area_start and its size so that we can
1252 	 * reuse this reserved memory for Re-registration.
1253 	 */
1254 	fw_dump.reserve_dump_area_start = destination_address;
1255 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256 
1257 	fadump_release_memory(reserved_area_start, reserved_area_end);
1258 	if (fw_dump.cpu_notes_buf) {
1259 		fadump_cpu_notes_buf_free(
1260 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1261 				fw_dump.cpu_notes_buf_size);
1262 		fw_dump.cpu_notes_buf = 0;
1263 		fw_dump.cpu_notes_buf_size = 0;
1264 	}
1265 	/* Initialize the kernel dump memory structure for FAD registration. */
1266 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267 }
1268 
1269 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270 					struct kobj_attribute *attr,
1271 					const char *buf, size_t count)
1272 {
1273 	if (!fw_dump.dump_active)
1274 		return -EPERM;
1275 
1276 	if (buf[0] == '1') {
1277 		/*
1278 		 * Take away the '/proc/vmcore'. We are releasing the dump
1279 		 * memory, hence it will not be valid anymore.
1280 		 */
1281 #ifdef CONFIG_PROC_VMCORE
1282 		vmcore_cleanup();
1283 #endif
1284 		fadump_invalidate_release_mem();
1285 
1286 	} else
1287 		return -EINVAL;
1288 	return count;
1289 }
1290 
1291 static ssize_t fadump_enabled_show(struct kobject *kobj,
1292 					struct kobj_attribute *attr,
1293 					char *buf)
1294 {
1295 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1296 }
1297 
1298 static ssize_t fadump_register_show(struct kobject *kobj,
1299 					struct kobj_attribute *attr,
1300 					char *buf)
1301 {
1302 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1303 }
1304 
1305 static ssize_t fadump_register_store(struct kobject *kobj,
1306 					struct kobj_attribute *attr,
1307 					const char *buf, size_t count)
1308 {
1309 	int ret = 0;
1310 
1311 	if (!fw_dump.fadump_enabled || fdm_active)
1312 		return -EPERM;
1313 
1314 	mutex_lock(&fadump_mutex);
1315 
1316 	switch (buf[0]) {
1317 	case '0':
1318 		if (fw_dump.dump_registered == 0) {
1319 			goto unlock_out;
1320 		}
1321 		/* Un-register Firmware-assisted dump */
1322 		fadump_unregister_dump(&fdm);
1323 		break;
1324 	case '1':
1325 		if (fw_dump.dump_registered == 1) {
1326 			ret = -EEXIST;
1327 			goto unlock_out;
1328 		}
1329 		/* Register Firmware-assisted dump */
1330 		ret = register_fadump();
1331 		break;
1332 	default:
1333 		ret = -EINVAL;
1334 		break;
1335 	}
1336 
1337 unlock_out:
1338 	mutex_unlock(&fadump_mutex);
1339 	return ret < 0 ? ret : count;
1340 }
1341 
1342 static int fadump_region_show(struct seq_file *m, void *private)
1343 {
1344 	const struct fadump_mem_struct *fdm_ptr;
1345 
1346 	if (!fw_dump.fadump_enabled)
1347 		return 0;
1348 
1349 	mutex_lock(&fadump_mutex);
1350 	if (fdm_active)
1351 		fdm_ptr = fdm_active;
1352 	else {
1353 		mutex_unlock(&fadump_mutex);
1354 		fdm_ptr = &fdm;
1355 	}
1356 
1357 	seq_printf(m,
1358 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1359 			"Dumped: %#llx\n",
1360 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1361 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1362 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1363 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1364 			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1365 	seq_printf(m,
1366 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1367 			"Dumped: %#llx\n",
1368 			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1369 			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1370 			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1371 			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1372 			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1373 	seq_printf(m,
1374 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1375 			"Dumped: %#llx\n",
1376 			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1377 			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1378 			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1379 			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1380 			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1381 
1382 	if (!fdm_active ||
1383 		(fw_dump.reserve_dump_area_start ==
1384 		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1385 		goto out;
1386 
1387 	/* Dump is active. Show reserved memory region. */
1388 	seq_printf(m,
1389 			"    : [%#016llx-%#016llx] %#llx bytes, "
1390 			"Dumped: %#llx\n",
1391 			(unsigned long long)fw_dump.reserve_dump_area_start,
1392 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1393 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1394 			fw_dump.reserve_dump_area_start,
1395 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1396 			fw_dump.reserve_dump_area_start);
1397 out:
1398 	if (fdm_active)
1399 		mutex_unlock(&fadump_mutex);
1400 	return 0;
1401 }
1402 
1403 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1404 						0200, NULL,
1405 						fadump_release_memory_store);
1406 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1407 						0444, fadump_enabled_show,
1408 						NULL);
1409 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1410 						0644, fadump_register_show,
1411 						fadump_register_store);
1412 
1413 static int fadump_region_open(struct inode *inode, struct file *file)
1414 {
1415 	return single_open(file, fadump_region_show, inode->i_private);
1416 }
1417 
1418 static const struct file_operations fadump_region_fops = {
1419 	.open    = fadump_region_open,
1420 	.read    = seq_read,
1421 	.llseek  = seq_lseek,
1422 	.release = single_release,
1423 };
1424 
1425 static void fadump_init_files(void)
1426 {
1427 	struct dentry *debugfs_file;
1428 	int rc = 0;
1429 
1430 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1431 	if (rc)
1432 		printk(KERN_ERR "fadump: unable to create sysfs file"
1433 			" fadump_enabled (%d)\n", rc);
1434 
1435 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1436 	if (rc)
1437 		printk(KERN_ERR "fadump: unable to create sysfs file"
1438 			" fadump_registered (%d)\n", rc);
1439 
1440 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1441 					powerpc_debugfs_root, NULL,
1442 					&fadump_region_fops);
1443 	if (!debugfs_file)
1444 		printk(KERN_ERR "fadump: unable to create debugfs file"
1445 				" fadump_region\n");
1446 
1447 	if (fw_dump.dump_active) {
1448 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1449 		if (rc)
1450 			printk(KERN_ERR "fadump: unable to create sysfs file"
1451 				" fadump_release_mem (%d)\n", rc);
1452 	}
1453 	return;
1454 }
1455 
1456 static int fadump_panic_event(struct notifier_block *this,
1457 			      unsigned long event, void *ptr)
1458 {
1459 	/*
1460 	 * If firmware-assisted dump has been registered then trigger
1461 	 * firmware-assisted dump and let firmware handle everything
1462 	 * else. If this returns, then fadump was not registered, so
1463 	 * go through the rest of the panic path.
1464 	 */
1465 	crash_fadump(NULL, ptr);
1466 
1467 	return NOTIFY_DONE;
1468 }
1469 
1470 static struct notifier_block fadump_panic_block = {
1471 	.notifier_call = fadump_panic_event,
1472 	.priority = INT_MIN /* may not return; must be done last */
1473 };
1474 
1475 /*
1476  * Prepare for firmware-assisted dump.
1477  */
1478 int __init setup_fadump(void)
1479 {
1480 	if (!fw_dump.fadump_enabled)
1481 		return 0;
1482 
1483 	if (!fw_dump.fadump_supported) {
1484 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1485 			" this hardware\n");
1486 		return 0;
1487 	}
1488 
1489 	fadump_show_config();
1490 	/*
1491 	 * If dump data is available then see if it is valid and prepare for
1492 	 * saving it to the disk.
1493 	 */
1494 	if (fw_dump.dump_active) {
1495 		/*
1496 		 * if dump process fails then invalidate the registration
1497 		 * and release memory before proceeding for re-registration.
1498 		 */
1499 		if (process_fadump(fdm_active) < 0)
1500 			fadump_invalidate_release_mem();
1501 	}
1502 	/* Initialize the kernel dump memory structure for FAD registration. */
1503 	else if (fw_dump.reserve_dump_area_size)
1504 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1505 	fadump_init_files();
1506 
1507 	atomic_notifier_chain_register(&panic_notifier_list,
1508 					&fadump_panic_block);
1509 
1510 	return 1;
1511 }
1512 subsys_initcall(setup_fadump);
1513