1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/debugfs.h> 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 35 /* 36 * The CPU who acquired the lock to trigger the fadump crash should 37 * wait for other CPUs to enter. 38 * 39 * The timeout is in milliseconds. 40 */ 41 #define CRASH_TIMEOUT 500 42 43 static struct fw_dump fw_dump; 44 45 static void __init fadump_reserve_crash_area(u64 base); 46 47 struct kobject *fadump_kobj; 48 49 #ifndef CONFIG_PRESERVE_FA_DUMP 50 51 static atomic_t cpus_in_fadump; 52 static DEFINE_MUTEX(fadump_mutex); 53 54 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false }; 55 56 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */ 57 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \ 58 sizeof(struct fadump_memory_range)) 59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT]; 60 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs, 61 RESERVED_RNGS_SZ, 0, 62 RESERVED_RNGS_CNT, true }; 63 64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node); 65 66 #ifdef CONFIG_CMA 67 static struct cma *fadump_cma; 68 69 /* 70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 71 * 72 * This function initializes CMA area from fadump reserved memory. 73 * The total size of fadump reserved memory covers for boot memory size 74 * + cpu data size + hpte size and metadata. 75 * Initialize only the area equivalent to boot memory size for CMA use. 76 * The reamining portion of fadump reserved memory will be not given 77 * to CMA and pages for thoes will stay reserved. boot memory size is 78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 79 * But for some reason even if it fails we still have the memory reservation 80 * with us and we can still continue doing fadump. 81 */ 82 int __init fadump_cma_init(void) 83 { 84 unsigned long long base, size; 85 int rc; 86 87 if (!fw_dump.fadump_enabled) 88 return 0; 89 90 /* 91 * Do not use CMA if user has provided fadump=nocma kernel parameter. 92 * Return 1 to continue with fadump old behaviour. 93 */ 94 if (fw_dump.nocma) 95 return 1; 96 97 base = fw_dump.reserve_dump_area_start; 98 size = fw_dump.boot_memory_size; 99 100 if (!size) 101 return 0; 102 103 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 104 if (rc) { 105 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 106 /* 107 * Though the CMA init has failed we still have memory 108 * reservation with us. The reserved memory will be 109 * blocked from production system usage. Hence return 1, 110 * so that we can continue with fadump. 111 */ 112 return 1; 113 } 114 115 /* 116 * So we now have successfully initialized cma area for fadump. 117 */ 118 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 119 "bytes of memory reserved for firmware-assisted dump\n", 120 cma_get_size(fadump_cma), 121 (unsigned long)cma_get_base(fadump_cma) >> 20, 122 fw_dump.reserve_dump_area_size); 123 return 1; 124 } 125 #else 126 static int __init fadump_cma_init(void) { return 1; } 127 #endif /* CONFIG_CMA */ 128 129 /* Scan the Firmware Assisted dump configuration details. */ 130 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 131 int depth, void *data) 132 { 133 if (depth == 0) { 134 early_init_dt_scan_reserved_ranges(node); 135 return 0; 136 } 137 138 if (depth != 1) 139 return 0; 140 141 if (strcmp(uname, "rtas") == 0) { 142 rtas_fadump_dt_scan(&fw_dump, node); 143 return 1; 144 } 145 146 if (strcmp(uname, "ibm,opal") == 0) { 147 opal_fadump_dt_scan(&fw_dump, node); 148 return 1; 149 } 150 151 return 0; 152 } 153 154 /* 155 * If fadump is registered, check if the memory provided 156 * falls within boot memory area and reserved memory area. 157 */ 158 int is_fadump_memory_area(u64 addr, unsigned long size) 159 { 160 u64 d_start, d_end; 161 162 if (!fw_dump.dump_registered) 163 return 0; 164 165 if (!size) 166 return 0; 167 168 d_start = fw_dump.reserve_dump_area_start; 169 d_end = d_start + fw_dump.reserve_dump_area_size; 170 if (((addr + size) > d_start) && (addr <= d_end)) 171 return 1; 172 173 return (addr <= fw_dump.boot_mem_top); 174 } 175 176 int should_fadump_crash(void) 177 { 178 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 179 return 0; 180 return 1; 181 } 182 183 int is_fadump_active(void) 184 { 185 return fw_dump.dump_active; 186 } 187 188 /* 189 * Returns true, if there are no holes in memory area between d_start to d_end, 190 * false otherwise. 191 */ 192 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 193 { 194 phys_addr_t reg_start, reg_end; 195 bool ret = false; 196 u64 i, start, end; 197 198 for_each_mem_range(i, ®_start, ®_end) { 199 start = max_t(u64, d_start, reg_start); 200 end = min_t(u64, d_end, reg_end); 201 if (d_start < end) { 202 /* Memory hole from d_start to start */ 203 if (start > d_start) 204 break; 205 206 if (end == d_end) { 207 ret = true; 208 break; 209 } 210 211 d_start = end + 1; 212 } 213 } 214 215 return ret; 216 } 217 218 /* 219 * Returns true, if there are no holes in boot memory area, 220 * false otherwise. 221 */ 222 bool is_fadump_boot_mem_contiguous(void) 223 { 224 unsigned long d_start, d_end; 225 bool ret = false; 226 int i; 227 228 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 229 d_start = fw_dump.boot_mem_addr[i]; 230 d_end = d_start + fw_dump.boot_mem_sz[i]; 231 232 ret = is_fadump_mem_area_contiguous(d_start, d_end); 233 if (!ret) 234 break; 235 } 236 237 return ret; 238 } 239 240 /* 241 * Returns true, if there are no holes in reserved memory area, 242 * false otherwise. 243 */ 244 bool is_fadump_reserved_mem_contiguous(void) 245 { 246 u64 d_start, d_end; 247 248 d_start = fw_dump.reserve_dump_area_start; 249 d_end = d_start + fw_dump.reserve_dump_area_size; 250 return is_fadump_mem_area_contiguous(d_start, d_end); 251 } 252 253 /* Print firmware assisted dump configurations for debugging purpose. */ 254 static void fadump_show_config(void) 255 { 256 int i; 257 258 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 259 (fw_dump.fadump_supported ? "present" : "no support")); 260 261 if (!fw_dump.fadump_supported) 262 return; 263 264 pr_debug("Fadump enabled : %s\n", 265 (fw_dump.fadump_enabled ? "yes" : "no")); 266 pr_debug("Dump Active : %s\n", 267 (fw_dump.dump_active ? "yes" : "no")); 268 pr_debug("Dump section sizes:\n"); 269 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 270 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 271 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 272 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 273 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 274 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 275 pr_debug("[%03d] base = %llx, size = %llx\n", i, 276 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 277 } 278 } 279 280 /** 281 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 282 * 283 * Function to find the largest memory size we need to reserve during early 284 * boot process. This will be the size of the memory that is required for a 285 * kernel to boot successfully. 286 * 287 * This function has been taken from phyp-assisted dump feature implementation. 288 * 289 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 290 * 291 * TODO: Come up with better approach to find out more accurate memory size 292 * that is required for a kernel to boot successfully. 293 * 294 */ 295 static __init u64 fadump_calculate_reserve_size(void) 296 { 297 u64 base, size, bootmem_min; 298 int ret; 299 300 if (fw_dump.reserve_bootvar) 301 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 302 303 /* 304 * Check if the size is specified through crashkernel= cmdline 305 * option. If yes, then use that but ignore base as fadump reserves 306 * memory at a predefined offset. 307 */ 308 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 309 &size, &base); 310 if (ret == 0 && size > 0) { 311 unsigned long max_size; 312 313 if (fw_dump.reserve_bootvar) 314 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 315 316 fw_dump.reserve_bootvar = (unsigned long)size; 317 318 /* 319 * Adjust if the boot memory size specified is above 320 * the upper limit. 321 */ 322 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 323 if (fw_dump.reserve_bootvar > max_size) { 324 fw_dump.reserve_bootvar = max_size; 325 pr_info("Adjusted boot memory size to %luMB\n", 326 (fw_dump.reserve_bootvar >> 20)); 327 } 328 329 return fw_dump.reserve_bootvar; 330 } else if (fw_dump.reserve_bootvar) { 331 /* 332 * 'fadump_reserve_mem=' is being used to reserve memory 333 * for firmware-assisted dump. 334 */ 335 return fw_dump.reserve_bootvar; 336 } 337 338 /* divide by 20 to get 5% of value */ 339 size = memblock_phys_mem_size() / 20; 340 341 /* round it down in multiples of 256 */ 342 size = size & ~0x0FFFFFFFUL; 343 344 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 345 if (memory_limit && size > memory_limit) 346 size = memory_limit; 347 348 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 349 return (size > bootmem_min ? size : bootmem_min); 350 } 351 352 /* 353 * Calculate the total memory size required to be reserved for 354 * firmware-assisted dump registration. 355 */ 356 static unsigned long get_fadump_area_size(void) 357 { 358 unsigned long size = 0; 359 360 size += fw_dump.cpu_state_data_size; 361 size += fw_dump.hpte_region_size; 362 size += fw_dump.boot_memory_size; 363 size += sizeof(struct fadump_crash_info_header); 364 size += sizeof(struct elfhdr); /* ELF core header.*/ 365 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 366 /* Program headers for crash memory regions. */ 367 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 368 369 size = PAGE_ALIGN(size); 370 371 /* This is to hold kernel metadata on platforms that support it */ 372 size += (fw_dump.ops->fadump_get_metadata_size ? 373 fw_dump.ops->fadump_get_metadata_size() : 0); 374 return size; 375 } 376 377 static int __init add_boot_mem_region(unsigned long rstart, 378 unsigned long rsize) 379 { 380 int i = fw_dump.boot_mem_regs_cnt++; 381 382 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { 383 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; 384 return 0; 385 } 386 387 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 388 i, rstart, (rstart + rsize)); 389 fw_dump.boot_mem_addr[i] = rstart; 390 fw_dump.boot_mem_sz[i] = rsize; 391 return 1; 392 } 393 394 /* 395 * Firmware usually has a hard limit on the data it can copy per region. 396 * Honour that by splitting a memory range into multiple regions. 397 */ 398 static int __init add_boot_mem_regions(unsigned long mstart, 399 unsigned long msize) 400 { 401 unsigned long rstart, rsize, max_size; 402 int ret = 1; 403 404 rstart = mstart; 405 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 406 while (msize) { 407 if (msize > max_size) 408 rsize = max_size; 409 else 410 rsize = msize; 411 412 ret = add_boot_mem_region(rstart, rsize); 413 if (!ret) 414 break; 415 416 msize -= rsize; 417 rstart += rsize; 418 } 419 420 return ret; 421 } 422 423 static int __init fadump_get_boot_mem_regions(void) 424 { 425 unsigned long size, cur_size, hole_size, last_end; 426 unsigned long mem_size = fw_dump.boot_memory_size; 427 phys_addr_t reg_start, reg_end; 428 int ret = 1; 429 u64 i; 430 431 fw_dump.boot_mem_regs_cnt = 0; 432 433 last_end = 0; 434 hole_size = 0; 435 cur_size = 0; 436 for_each_mem_range(i, ®_start, ®_end) { 437 size = reg_end - reg_start; 438 hole_size += (reg_start - last_end); 439 440 if ((cur_size + size) >= mem_size) { 441 size = (mem_size - cur_size); 442 ret = add_boot_mem_regions(reg_start, size); 443 break; 444 } 445 446 mem_size -= size; 447 cur_size += size; 448 ret = add_boot_mem_regions(reg_start, size); 449 if (!ret) 450 break; 451 452 last_end = reg_end; 453 } 454 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 455 456 return ret; 457 } 458 459 /* 460 * Returns true, if the given range overlaps with reserved memory ranges 461 * starting at idx. Also, updates idx to index of overlapping memory range 462 * with the given memory range. 463 * False, otherwise. 464 */ 465 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx) 466 { 467 bool ret = false; 468 int i; 469 470 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) { 471 u64 rbase = reserved_mrange_info.mem_ranges[i].base; 472 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size; 473 474 if (end <= rbase) 475 break; 476 477 if ((end > rbase) && (base < rend)) { 478 *idx = i; 479 ret = true; 480 break; 481 } 482 } 483 484 return ret; 485 } 486 487 /* 488 * Locate a suitable memory area to reserve memory for FADump. While at it, 489 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W. 490 */ 491 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size) 492 { 493 struct fadump_memory_range *mrngs; 494 phys_addr_t mstart, mend; 495 int idx = 0; 496 u64 i, ret = 0; 497 498 mrngs = reserved_mrange_info.mem_ranges; 499 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 500 &mstart, &mend, NULL) { 501 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n", 502 i, mstart, mend, base); 503 504 if (mstart > base) 505 base = PAGE_ALIGN(mstart); 506 507 while ((mend > base) && ((mend - base) >= size)) { 508 if (!overlaps_reserved_ranges(base, base+size, &idx)) { 509 ret = base; 510 goto out; 511 } 512 513 base = mrngs[idx].base + mrngs[idx].size; 514 base = PAGE_ALIGN(base); 515 } 516 } 517 518 out: 519 return ret; 520 } 521 522 int __init fadump_reserve_mem(void) 523 { 524 u64 base, size, mem_boundary, bootmem_min; 525 int ret = 1; 526 527 if (!fw_dump.fadump_enabled) 528 return 0; 529 530 if (!fw_dump.fadump_supported) { 531 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 532 goto error_out; 533 } 534 535 /* 536 * Initialize boot memory size 537 * If dump is active then we have already calculated the size during 538 * first kernel. 539 */ 540 if (!fw_dump.dump_active) { 541 fw_dump.boot_memory_size = 542 PAGE_ALIGN(fadump_calculate_reserve_size()); 543 #ifdef CONFIG_CMA 544 if (!fw_dump.nocma) { 545 fw_dump.boot_memory_size = 546 ALIGN(fw_dump.boot_memory_size, 547 FADUMP_CMA_ALIGNMENT); 548 } 549 #endif 550 551 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 552 if (fw_dump.boot_memory_size < bootmem_min) { 553 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 554 fw_dump.boot_memory_size, bootmem_min); 555 goto error_out; 556 } 557 558 if (!fadump_get_boot_mem_regions()) { 559 pr_err("Too many holes in boot memory area to enable fadump\n"); 560 goto error_out; 561 } 562 } 563 564 /* 565 * Calculate the memory boundary. 566 * If memory_limit is less than actual memory boundary then reserve 567 * the memory for fadump beyond the memory_limit and adjust the 568 * memory_limit accordingly, so that the running kernel can run with 569 * specified memory_limit. 570 */ 571 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 572 size = get_fadump_area_size(); 573 if ((memory_limit + size) < memblock_end_of_DRAM()) 574 memory_limit += size; 575 else 576 memory_limit = memblock_end_of_DRAM(); 577 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 578 " dump, now %#016llx\n", memory_limit); 579 } 580 if (memory_limit) 581 mem_boundary = memory_limit; 582 else 583 mem_boundary = memblock_end_of_DRAM(); 584 585 base = fw_dump.boot_mem_top; 586 size = get_fadump_area_size(); 587 fw_dump.reserve_dump_area_size = size; 588 if (fw_dump.dump_active) { 589 pr_info("Firmware-assisted dump is active.\n"); 590 591 #ifdef CONFIG_HUGETLB_PAGE 592 /* 593 * FADump capture kernel doesn't care much about hugepages. 594 * In fact, handling hugepages in capture kernel is asking for 595 * trouble. So, disable HugeTLB support when fadump is active. 596 */ 597 hugetlb_disabled = true; 598 #endif 599 /* 600 * If last boot has crashed then reserve all the memory 601 * above boot memory size so that we don't touch it until 602 * dump is written to disk by userspace tool. This memory 603 * can be released for general use by invalidating fadump. 604 */ 605 fadump_reserve_crash_area(base); 606 607 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 608 pr_debug("Reserve dump area start address: 0x%lx\n", 609 fw_dump.reserve_dump_area_start); 610 } else { 611 /* 612 * Reserve memory at an offset closer to bottom of the RAM to 613 * minimize the impact of memory hot-remove operation. 614 */ 615 base = fadump_locate_reserve_mem(base, size); 616 617 if (!base || (base + size > mem_boundary)) { 618 pr_err("Failed to find memory chunk for reservation!\n"); 619 goto error_out; 620 } 621 fw_dump.reserve_dump_area_start = base; 622 623 /* 624 * Calculate the kernel metadata address and register it with 625 * f/w if the platform supports. 626 */ 627 if (fw_dump.ops->fadump_setup_metadata && 628 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 629 goto error_out; 630 631 if (memblock_reserve(base, size)) { 632 pr_err("Failed to reserve memory!\n"); 633 goto error_out; 634 } 635 636 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 637 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 638 639 ret = fadump_cma_init(); 640 } 641 642 return ret; 643 error_out: 644 fw_dump.fadump_enabled = 0; 645 return 0; 646 } 647 648 /* Look for fadump= cmdline option. */ 649 static int __init early_fadump_param(char *p) 650 { 651 if (!p) 652 return 1; 653 654 if (strncmp(p, "on", 2) == 0) 655 fw_dump.fadump_enabled = 1; 656 else if (strncmp(p, "off", 3) == 0) 657 fw_dump.fadump_enabled = 0; 658 else if (strncmp(p, "nocma", 5) == 0) { 659 fw_dump.fadump_enabled = 1; 660 fw_dump.nocma = 1; 661 } 662 663 return 0; 664 } 665 early_param("fadump", early_fadump_param); 666 667 /* 668 * Look for fadump_reserve_mem= cmdline option 669 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 670 * the sooner 'crashkernel=' parameter is accustomed to. 671 */ 672 static int __init early_fadump_reserve_mem(char *p) 673 { 674 if (p) 675 fw_dump.reserve_bootvar = memparse(p, &p); 676 return 0; 677 } 678 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 679 680 void crash_fadump(struct pt_regs *regs, const char *str) 681 { 682 unsigned int msecs; 683 struct fadump_crash_info_header *fdh = NULL; 684 int old_cpu, this_cpu; 685 /* Do not include first CPU */ 686 unsigned int ncpus = num_online_cpus() - 1; 687 688 if (!should_fadump_crash()) 689 return; 690 691 /* 692 * old_cpu == -1 means this is the first CPU which has come here, 693 * go ahead and trigger fadump. 694 * 695 * old_cpu != -1 means some other CPU has already on it's way 696 * to trigger fadump, just keep looping here. 697 */ 698 this_cpu = smp_processor_id(); 699 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 700 701 if (old_cpu != -1) { 702 atomic_inc(&cpus_in_fadump); 703 704 /* 705 * We can't loop here indefinitely. Wait as long as fadump 706 * is in force. If we race with fadump un-registration this 707 * loop will break and then we go down to normal panic path 708 * and reboot. If fadump is in force the first crashing 709 * cpu will definitely trigger fadump. 710 */ 711 while (fw_dump.dump_registered) 712 cpu_relax(); 713 return; 714 } 715 716 fdh = __va(fw_dump.fadumphdr_addr); 717 fdh->crashing_cpu = crashing_cpu; 718 crash_save_vmcoreinfo(); 719 720 if (regs) 721 fdh->regs = *regs; 722 else 723 ppc_save_regs(&fdh->regs); 724 725 fdh->online_mask = *cpu_online_mask; 726 727 /* 728 * If we came in via system reset, wait a while for the secondary 729 * CPUs to enter. 730 */ 731 if (TRAP(&(fdh->regs)) == 0x100) { 732 msecs = CRASH_TIMEOUT; 733 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0)) 734 mdelay(1); 735 } 736 737 fw_dump.ops->fadump_trigger(fdh, str); 738 } 739 740 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 741 { 742 struct elf_prstatus prstatus; 743 744 memset(&prstatus, 0, sizeof(prstatus)); 745 /* 746 * FIXME: How do i get PID? Do I really need it? 747 * prstatus.pr_pid = ???? 748 */ 749 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 750 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 751 &prstatus, sizeof(prstatus)); 752 return buf; 753 } 754 755 void fadump_update_elfcore_header(char *bufp) 756 { 757 struct elf_phdr *phdr; 758 759 bufp += sizeof(struct elfhdr); 760 761 /* First note is a place holder for cpu notes info. */ 762 phdr = (struct elf_phdr *)bufp; 763 764 if (phdr->p_type == PT_NOTE) { 765 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 766 phdr->p_offset = phdr->p_paddr; 767 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 768 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 769 } 770 return; 771 } 772 773 static void *fadump_alloc_buffer(unsigned long size) 774 { 775 unsigned long count, i; 776 struct page *page; 777 void *vaddr; 778 779 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 780 if (!vaddr) 781 return NULL; 782 783 count = PAGE_ALIGN(size) / PAGE_SIZE; 784 page = virt_to_page(vaddr); 785 for (i = 0; i < count; i++) 786 mark_page_reserved(page + i); 787 return vaddr; 788 } 789 790 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 791 { 792 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 793 } 794 795 s32 fadump_setup_cpu_notes_buf(u32 num_cpus) 796 { 797 /* Allocate buffer to hold cpu crash notes. */ 798 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 799 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 800 fw_dump.cpu_notes_buf_vaddr = 801 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 802 if (!fw_dump.cpu_notes_buf_vaddr) { 803 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 804 fw_dump.cpu_notes_buf_size); 805 return -ENOMEM; 806 } 807 808 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 809 fw_dump.cpu_notes_buf_size, 810 fw_dump.cpu_notes_buf_vaddr); 811 return 0; 812 } 813 814 void fadump_free_cpu_notes_buf(void) 815 { 816 if (!fw_dump.cpu_notes_buf_vaddr) 817 return; 818 819 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 820 fw_dump.cpu_notes_buf_size); 821 fw_dump.cpu_notes_buf_vaddr = 0; 822 fw_dump.cpu_notes_buf_size = 0; 823 } 824 825 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 826 { 827 if (mrange_info->is_static) { 828 mrange_info->mem_range_cnt = 0; 829 return; 830 } 831 832 kfree(mrange_info->mem_ranges); 833 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0, 834 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ)); 835 } 836 837 /* 838 * Allocate or reallocate mem_ranges array in incremental units 839 * of PAGE_SIZE. 840 */ 841 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 842 { 843 struct fadump_memory_range *new_array; 844 u64 new_size; 845 846 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 847 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 848 new_size, mrange_info->name); 849 850 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 851 if (new_array == NULL) { 852 pr_err("Insufficient memory for setting up %s memory ranges\n", 853 mrange_info->name); 854 fadump_free_mem_ranges(mrange_info); 855 return -ENOMEM; 856 } 857 858 mrange_info->mem_ranges = new_array; 859 mrange_info->mem_ranges_sz = new_size; 860 mrange_info->max_mem_ranges = (new_size / 861 sizeof(struct fadump_memory_range)); 862 return 0; 863 } 864 865 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 866 u64 base, u64 end) 867 { 868 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 869 bool is_adjacent = false; 870 u64 start, size; 871 872 if (base == end) 873 return 0; 874 875 /* 876 * Fold adjacent memory ranges to bring down the memory ranges/ 877 * PT_LOAD segments count. 878 */ 879 if (mrange_info->mem_range_cnt) { 880 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 881 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 882 883 if ((start + size) == base) 884 is_adjacent = true; 885 } 886 if (!is_adjacent) { 887 /* resize the array on reaching the limit */ 888 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 889 int ret; 890 891 if (mrange_info->is_static) { 892 pr_err("Reached array size limit for %s memory ranges\n", 893 mrange_info->name); 894 return -ENOSPC; 895 } 896 897 ret = fadump_alloc_mem_ranges(mrange_info); 898 if (ret) 899 return ret; 900 901 /* Update to the new resized array */ 902 mem_ranges = mrange_info->mem_ranges; 903 } 904 905 start = base; 906 mem_ranges[mrange_info->mem_range_cnt].base = start; 907 mrange_info->mem_range_cnt++; 908 } 909 910 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 911 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 912 mrange_info->name, (mrange_info->mem_range_cnt - 1), 913 start, end - 1, (end - start)); 914 return 0; 915 } 916 917 static int fadump_exclude_reserved_area(u64 start, u64 end) 918 { 919 u64 ra_start, ra_end; 920 int ret = 0; 921 922 ra_start = fw_dump.reserve_dump_area_start; 923 ra_end = ra_start + fw_dump.reserve_dump_area_size; 924 925 if ((ra_start < end) && (ra_end > start)) { 926 if ((start < ra_start) && (end > ra_end)) { 927 ret = fadump_add_mem_range(&crash_mrange_info, 928 start, ra_start); 929 if (ret) 930 return ret; 931 932 ret = fadump_add_mem_range(&crash_mrange_info, 933 ra_end, end); 934 } else if (start < ra_start) { 935 ret = fadump_add_mem_range(&crash_mrange_info, 936 start, ra_start); 937 } else if (ra_end < end) { 938 ret = fadump_add_mem_range(&crash_mrange_info, 939 ra_end, end); 940 } 941 } else 942 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 943 944 return ret; 945 } 946 947 static int fadump_init_elfcore_header(char *bufp) 948 { 949 struct elfhdr *elf; 950 951 elf = (struct elfhdr *) bufp; 952 bufp += sizeof(struct elfhdr); 953 memcpy(elf->e_ident, ELFMAG, SELFMAG); 954 elf->e_ident[EI_CLASS] = ELF_CLASS; 955 elf->e_ident[EI_DATA] = ELF_DATA; 956 elf->e_ident[EI_VERSION] = EV_CURRENT; 957 elf->e_ident[EI_OSABI] = ELF_OSABI; 958 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 959 elf->e_type = ET_CORE; 960 elf->e_machine = ELF_ARCH; 961 elf->e_version = EV_CURRENT; 962 elf->e_entry = 0; 963 elf->e_phoff = sizeof(struct elfhdr); 964 elf->e_shoff = 0; 965 #if defined(_CALL_ELF) 966 elf->e_flags = _CALL_ELF; 967 #else 968 elf->e_flags = 0; 969 #endif 970 elf->e_ehsize = sizeof(struct elfhdr); 971 elf->e_phentsize = sizeof(struct elf_phdr); 972 elf->e_phnum = 0; 973 elf->e_shentsize = 0; 974 elf->e_shnum = 0; 975 elf->e_shstrndx = 0; 976 977 return 0; 978 } 979 980 /* 981 * Traverse through memblock structure and setup crash memory ranges. These 982 * ranges will be used create PT_LOAD program headers in elfcore header. 983 */ 984 static int fadump_setup_crash_memory_ranges(void) 985 { 986 u64 i, start, end; 987 int ret; 988 989 pr_debug("Setup crash memory ranges.\n"); 990 crash_mrange_info.mem_range_cnt = 0; 991 992 /* 993 * Boot memory region(s) registered with firmware are moved to 994 * different location at the time of crash. Create separate program 995 * header(s) for this memory chunk(s) with the correct offset. 996 */ 997 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 998 start = fw_dump.boot_mem_addr[i]; 999 end = start + fw_dump.boot_mem_sz[i]; 1000 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 1001 if (ret) 1002 return ret; 1003 } 1004 1005 for_each_mem_range(i, &start, &end) { 1006 /* 1007 * skip the memory chunk that is already added 1008 * (0 through boot_memory_top). 1009 */ 1010 if (start < fw_dump.boot_mem_top) { 1011 if (end > fw_dump.boot_mem_top) 1012 start = fw_dump.boot_mem_top; 1013 else 1014 continue; 1015 } 1016 1017 /* add this range excluding the reserved dump area. */ 1018 ret = fadump_exclude_reserved_area(start, end); 1019 if (ret) 1020 return ret; 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * If the given physical address falls within the boot memory region then 1028 * return the relocated address that points to the dump region reserved 1029 * for saving initial boot memory contents. 1030 */ 1031 static inline unsigned long fadump_relocate(unsigned long paddr) 1032 { 1033 unsigned long raddr, rstart, rend, rlast, hole_size; 1034 int i; 1035 1036 hole_size = 0; 1037 rlast = 0; 1038 raddr = paddr; 1039 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 1040 rstart = fw_dump.boot_mem_addr[i]; 1041 rend = rstart + fw_dump.boot_mem_sz[i]; 1042 hole_size += (rstart - rlast); 1043 1044 if (paddr >= rstart && paddr < rend) { 1045 raddr += fw_dump.boot_mem_dest_addr - hole_size; 1046 break; 1047 } 1048 1049 rlast = rend; 1050 } 1051 1052 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 1053 return raddr; 1054 } 1055 1056 static int fadump_create_elfcore_headers(char *bufp) 1057 { 1058 unsigned long long raddr, offset; 1059 struct elf_phdr *phdr; 1060 struct elfhdr *elf; 1061 int i, j; 1062 1063 fadump_init_elfcore_header(bufp); 1064 elf = (struct elfhdr *)bufp; 1065 bufp += sizeof(struct elfhdr); 1066 1067 /* 1068 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 1069 * will be populated during second kernel boot after crash. Hence 1070 * this PT_NOTE will always be the first elf note. 1071 * 1072 * NOTE: Any new ELF note addition should be placed after this note. 1073 */ 1074 phdr = (struct elf_phdr *)bufp; 1075 bufp += sizeof(struct elf_phdr); 1076 phdr->p_type = PT_NOTE; 1077 phdr->p_flags = 0; 1078 phdr->p_vaddr = 0; 1079 phdr->p_align = 0; 1080 1081 phdr->p_offset = 0; 1082 phdr->p_paddr = 0; 1083 phdr->p_filesz = 0; 1084 phdr->p_memsz = 0; 1085 1086 (elf->e_phnum)++; 1087 1088 /* setup ELF PT_NOTE for vmcoreinfo */ 1089 phdr = (struct elf_phdr *)bufp; 1090 bufp += sizeof(struct elf_phdr); 1091 phdr->p_type = PT_NOTE; 1092 phdr->p_flags = 0; 1093 phdr->p_vaddr = 0; 1094 phdr->p_align = 0; 1095 1096 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 1097 phdr->p_offset = phdr->p_paddr; 1098 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 1099 1100 /* Increment number of program headers. */ 1101 (elf->e_phnum)++; 1102 1103 /* setup PT_LOAD sections. */ 1104 j = 0; 1105 offset = 0; 1106 raddr = fw_dump.boot_mem_addr[0]; 1107 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { 1108 u64 mbase, msize; 1109 1110 mbase = crash_mrange_info.mem_ranges[i].base; 1111 msize = crash_mrange_info.mem_ranges[i].size; 1112 if (!msize) 1113 continue; 1114 1115 phdr = (struct elf_phdr *)bufp; 1116 bufp += sizeof(struct elf_phdr); 1117 phdr->p_type = PT_LOAD; 1118 phdr->p_flags = PF_R|PF_W|PF_X; 1119 phdr->p_offset = mbase; 1120 1121 if (mbase == raddr) { 1122 /* 1123 * The entire real memory region will be moved by 1124 * firmware to the specified destination_address. 1125 * Hence set the correct offset. 1126 */ 1127 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; 1128 if (j < (fw_dump.boot_mem_regs_cnt - 1)) { 1129 offset += fw_dump.boot_mem_sz[j]; 1130 raddr = fw_dump.boot_mem_addr[++j]; 1131 } 1132 } 1133 1134 phdr->p_paddr = mbase; 1135 phdr->p_vaddr = (unsigned long)__va(mbase); 1136 phdr->p_filesz = msize; 1137 phdr->p_memsz = msize; 1138 phdr->p_align = 0; 1139 1140 /* Increment number of program headers. */ 1141 (elf->e_phnum)++; 1142 } 1143 return 0; 1144 } 1145 1146 static unsigned long init_fadump_header(unsigned long addr) 1147 { 1148 struct fadump_crash_info_header *fdh; 1149 1150 if (!addr) 1151 return 0; 1152 1153 fdh = __va(addr); 1154 addr += sizeof(struct fadump_crash_info_header); 1155 1156 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1157 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1158 fdh->elfcorehdr_addr = addr; 1159 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1160 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1161 1162 return addr; 1163 } 1164 1165 static int register_fadump(void) 1166 { 1167 unsigned long addr; 1168 void *vaddr; 1169 int ret; 1170 1171 /* 1172 * If no memory is reserved then we can not register for firmware- 1173 * assisted dump. 1174 */ 1175 if (!fw_dump.reserve_dump_area_size) 1176 return -ENODEV; 1177 1178 ret = fadump_setup_crash_memory_ranges(); 1179 if (ret) 1180 return ret; 1181 1182 addr = fw_dump.fadumphdr_addr; 1183 1184 /* Initialize fadump crash info header. */ 1185 addr = init_fadump_header(addr); 1186 vaddr = __va(addr); 1187 1188 pr_debug("Creating ELF core headers at %#016lx\n", addr); 1189 fadump_create_elfcore_headers(vaddr); 1190 1191 /* register the future kernel dump with firmware. */ 1192 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1193 return fw_dump.ops->fadump_register(&fw_dump); 1194 } 1195 1196 void fadump_cleanup(void) 1197 { 1198 if (!fw_dump.fadump_supported) 1199 return; 1200 1201 /* Invalidate the registration only if dump is active. */ 1202 if (fw_dump.dump_active) { 1203 pr_debug("Invalidating firmware-assisted dump registration\n"); 1204 fw_dump.ops->fadump_invalidate(&fw_dump); 1205 } else if (fw_dump.dump_registered) { 1206 /* Un-register Firmware-assisted dump if it was registered. */ 1207 fw_dump.ops->fadump_unregister(&fw_dump); 1208 fadump_free_mem_ranges(&crash_mrange_info); 1209 } 1210 1211 if (fw_dump.ops->fadump_cleanup) 1212 fw_dump.ops->fadump_cleanup(&fw_dump); 1213 } 1214 1215 static void fadump_free_reserved_memory(unsigned long start_pfn, 1216 unsigned long end_pfn) 1217 { 1218 unsigned long pfn; 1219 unsigned long time_limit = jiffies + HZ; 1220 1221 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1222 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1223 1224 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1225 free_reserved_page(pfn_to_page(pfn)); 1226 1227 if (time_after(jiffies, time_limit)) { 1228 cond_resched(); 1229 time_limit = jiffies + HZ; 1230 } 1231 } 1232 } 1233 1234 /* 1235 * Skip memory holes and free memory that was actually reserved. 1236 */ 1237 static void fadump_release_reserved_area(u64 start, u64 end) 1238 { 1239 unsigned long reg_spfn, reg_epfn; 1240 u64 tstart, tend, spfn, epfn; 1241 int i; 1242 1243 spfn = PHYS_PFN(start); 1244 epfn = PHYS_PFN(end); 1245 1246 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) { 1247 tstart = max_t(u64, spfn, reg_spfn); 1248 tend = min_t(u64, epfn, reg_epfn); 1249 1250 if (tstart < tend) { 1251 fadump_free_reserved_memory(tstart, tend); 1252 1253 if (tend == epfn) 1254 break; 1255 1256 spfn = tend; 1257 } 1258 } 1259 } 1260 1261 /* 1262 * Sort the mem ranges in-place and merge adjacent ranges 1263 * to minimize the memory ranges count. 1264 */ 1265 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1266 { 1267 struct fadump_memory_range *mem_ranges; 1268 struct fadump_memory_range tmp_range; 1269 u64 base, size; 1270 int i, j, idx; 1271 1272 if (!reserved_mrange_info.mem_range_cnt) 1273 return; 1274 1275 /* Sort the memory ranges */ 1276 mem_ranges = mrange_info->mem_ranges; 1277 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1278 idx = i; 1279 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1280 if (mem_ranges[idx].base > mem_ranges[j].base) 1281 idx = j; 1282 } 1283 if (idx != i) { 1284 tmp_range = mem_ranges[idx]; 1285 mem_ranges[idx] = mem_ranges[i]; 1286 mem_ranges[i] = tmp_range; 1287 } 1288 } 1289 1290 /* Merge adjacent reserved ranges */ 1291 idx = 0; 1292 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1293 base = mem_ranges[i-1].base; 1294 size = mem_ranges[i-1].size; 1295 if (mem_ranges[i].base == (base + size)) 1296 mem_ranges[idx].size += mem_ranges[i].size; 1297 else { 1298 idx++; 1299 if (i == idx) 1300 continue; 1301 1302 mem_ranges[idx] = mem_ranges[i]; 1303 } 1304 } 1305 mrange_info->mem_range_cnt = idx + 1; 1306 } 1307 1308 /* 1309 * Scan reserved-ranges to consider them while reserving/releasing 1310 * memory for FADump. 1311 */ 1312 static void __init early_init_dt_scan_reserved_ranges(unsigned long node) 1313 { 1314 const __be32 *prop; 1315 int len, ret = -1; 1316 unsigned long i; 1317 1318 /* reserved-ranges already scanned */ 1319 if (reserved_mrange_info.mem_range_cnt != 0) 1320 return; 1321 1322 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len); 1323 if (!prop) 1324 return; 1325 1326 /* 1327 * Each reserved range is an (address,size) pair, 2 cells each, 1328 * totalling 4 cells per range. 1329 */ 1330 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1331 u64 base, size; 1332 1333 base = of_read_number(prop + (i * 4) + 0, 2); 1334 size = of_read_number(prop + (i * 4) + 2, 2); 1335 1336 if (size) { 1337 ret = fadump_add_mem_range(&reserved_mrange_info, 1338 base, base + size); 1339 if (ret < 0) { 1340 pr_warn("some reserved ranges are ignored!\n"); 1341 break; 1342 } 1343 } 1344 } 1345 1346 /* Compact reserved ranges */ 1347 sort_and_merge_mem_ranges(&reserved_mrange_info); 1348 } 1349 1350 /* 1351 * Release the memory that was reserved during early boot to preserve the 1352 * crash'ed kernel's memory contents except reserved dump area (permanent 1353 * reservation) and reserved ranges used by F/W. The released memory will 1354 * be available for general use. 1355 */ 1356 static void fadump_release_memory(u64 begin, u64 end) 1357 { 1358 u64 ra_start, ra_end, tstart; 1359 int i, ret; 1360 1361 ra_start = fw_dump.reserve_dump_area_start; 1362 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1363 1364 /* 1365 * If reserved ranges array limit is hit, overwrite the last reserved 1366 * memory range with reserved dump area to ensure it is excluded from 1367 * the memory being released (reused for next FADump registration). 1368 */ 1369 if (reserved_mrange_info.mem_range_cnt == 1370 reserved_mrange_info.max_mem_ranges) 1371 reserved_mrange_info.mem_range_cnt--; 1372 1373 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1374 if (ret != 0) 1375 return; 1376 1377 /* Get the reserved ranges list in order first. */ 1378 sort_and_merge_mem_ranges(&reserved_mrange_info); 1379 1380 /* Exclude reserved ranges and release remaining memory */ 1381 tstart = begin; 1382 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1383 ra_start = reserved_mrange_info.mem_ranges[i].base; 1384 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1385 1386 if (tstart >= ra_end) 1387 continue; 1388 1389 if (tstart < ra_start) 1390 fadump_release_reserved_area(tstart, ra_start); 1391 tstart = ra_end; 1392 } 1393 1394 if (tstart < end) 1395 fadump_release_reserved_area(tstart, end); 1396 } 1397 1398 static void fadump_invalidate_release_mem(void) 1399 { 1400 mutex_lock(&fadump_mutex); 1401 if (!fw_dump.dump_active) { 1402 mutex_unlock(&fadump_mutex); 1403 return; 1404 } 1405 1406 fadump_cleanup(); 1407 mutex_unlock(&fadump_mutex); 1408 1409 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1410 fadump_free_cpu_notes_buf(); 1411 1412 /* 1413 * Setup kernel metadata and initialize the kernel dump 1414 * memory structure for FADump re-registration. 1415 */ 1416 if (fw_dump.ops->fadump_setup_metadata && 1417 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1418 pr_warn("Failed to setup kernel metadata!\n"); 1419 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1420 } 1421 1422 static ssize_t release_mem_store(struct kobject *kobj, 1423 struct kobj_attribute *attr, 1424 const char *buf, size_t count) 1425 { 1426 int input = -1; 1427 1428 if (!fw_dump.dump_active) 1429 return -EPERM; 1430 1431 if (kstrtoint(buf, 0, &input)) 1432 return -EINVAL; 1433 1434 if (input == 1) { 1435 /* 1436 * Take away the '/proc/vmcore'. We are releasing the dump 1437 * memory, hence it will not be valid anymore. 1438 */ 1439 #ifdef CONFIG_PROC_VMCORE 1440 vmcore_cleanup(); 1441 #endif 1442 fadump_invalidate_release_mem(); 1443 1444 } else 1445 return -EINVAL; 1446 return count; 1447 } 1448 1449 /* Release the reserved memory and disable the FADump */ 1450 static void unregister_fadump(void) 1451 { 1452 fadump_cleanup(); 1453 fadump_release_memory(fw_dump.reserve_dump_area_start, 1454 fw_dump.reserve_dump_area_size); 1455 fw_dump.fadump_enabled = 0; 1456 kobject_put(fadump_kobj); 1457 } 1458 1459 static ssize_t enabled_show(struct kobject *kobj, 1460 struct kobj_attribute *attr, 1461 char *buf) 1462 { 1463 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1464 } 1465 1466 static ssize_t mem_reserved_show(struct kobject *kobj, 1467 struct kobj_attribute *attr, 1468 char *buf) 1469 { 1470 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); 1471 } 1472 1473 static ssize_t registered_show(struct kobject *kobj, 1474 struct kobj_attribute *attr, 1475 char *buf) 1476 { 1477 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1478 } 1479 1480 static ssize_t registered_store(struct kobject *kobj, 1481 struct kobj_attribute *attr, 1482 const char *buf, size_t count) 1483 { 1484 int ret = 0; 1485 int input = -1; 1486 1487 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1488 return -EPERM; 1489 1490 if (kstrtoint(buf, 0, &input)) 1491 return -EINVAL; 1492 1493 mutex_lock(&fadump_mutex); 1494 1495 switch (input) { 1496 case 0: 1497 if (fw_dump.dump_registered == 0) { 1498 goto unlock_out; 1499 } 1500 1501 /* Un-register Firmware-assisted dump */ 1502 pr_debug("Un-register firmware-assisted dump\n"); 1503 fw_dump.ops->fadump_unregister(&fw_dump); 1504 break; 1505 case 1: 1506 if (fw_dump.dump_registered == 1) { 1507 /* Un-register Firmware-assisted dump */ 1508 fw_dump.ops->fadump_unregister(&fw_dump); 1509 } 1510 /* Register Firmware-assisted dump */ 1511 ret = register_fadump(); 1512 break; 1513 default: 1514 ret = -EINVAL; 1515 break; 1516 } 1517 1518 unlock_out: 1519 mutex_unlock(&fadump_mutex); 1520 return ret < 0 ? ret : count; 1521 } 1522 1523 static int fadump_region_show(struct seq_file *m, void *private) 1524 { 1525 if (!fw_dump.fadump_enabled) 1526 return 0; 1527 1528 mutex_lock(&fadump_mutex); 1529 fw_dump.ops->fadump_region_show(&fw_dump, m); 1530 mutex_unlock(&fadump_mutex); 1531 return 0; 1532 } 1533 1534 static struct kobj_attribute release_attr = __ATTR_WO(release_mem); 1535 static struct kobj_attribute enable_attr = __ATTR_RO(enabled); 1536 static struct kobj_attribute register_attr = __ATTR_RW(registered); 1537 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); 1538 1539 static struct attribute *fadump_attrs[] = { 1540 &enable_attr.attr, 1541 ®ister_attr.attr, 1542 &mem_reserved_attr.attr, 1543 NULL, 1544 }; 1545 1546 ATTRIBUTE_GROUPS(fadump); 1547 1548 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1549 1550 static void fadump_init_files(void) 1551 { 1552 int rc = 0; 1553 1554 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); 1555 if (!fadump_kobj) { 1556 pr_err("failed to create fadump kobject\n"); 1557 return; 1558 } 1559 1560 debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL, 1561 &fadump_region_fops); 1562 1563 if (fw_dump.dump_active) { 1564 rc = sysfs_create_file(fadump_kobj, &release_attr.attr); 1565 if (rc) 1566 pr_err("unable to create release_mem sysfs file (%d)\n", 1567 rc); 1568 } 1569 1570 rc = sysfs_create_groups(fadump_kobj, fadump_groups); 1571 if (rc) { 1572 pr_err("sysfs group creation failed (%d), unregistering FADump", 1573 rc); 1574 unregister_fadump(); 1575 return; 1576 } 1577 1578 /* 1579 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to 1580 * create symlink at old location to maintain backward compatibility. 1581 * 1582 * - fadump_enabled -> fadump/enabled 1583 * - fadump_registered -> fadump/registered 1584 * - fadump_release_mem -> fadump/release_mem 1585 */ 1586 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1587 "enabled", "fadump_enabled"); 1588 if (rc) { 1589 pr_err("unable to create fadump_enabled symlink (%d)", rc); 1590 return; 1591 } 1592 1593 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1594 "registered", 1595 "fadump_registered"); 1596 if (rc) { 1597 pr_err("unable to create fadump_registered symlink (%d)", rc); 1598 sysfs_remove_link(kernel_kobj, "fadump_enabled"); 1599 return; 1600 } 1601 1602 if (fw_dump.dump_active) { 1603 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, 1604 fadump_kobj, 1605 "release_mem", 1606 "fadump_release_mem"); 1607 if (rc) 1608 pr_err("unable to create fadump_release_mem symlink (%d)", 1609 rc); 1610 } 1611 return; 1612 } 1613 1614 /* 1615 * Prepare for firmware-assisted dump. 1616 */ 1617 int __init setup_fadump(void) 1618 { 1619 if (!fw_dump.fadump_supported) 1620 return 0; 1621 1622 fadump_init_files(); 1623 fadump_show_config(); 1624 1625 if (!fw_dump.fadump_enabled) 1626 return 1; 1627 1628 /* 1629 * If dump data is available then see if it is valid and prepare for 1630 * saving it to the disk. 1631 */ 1632 if (fw_dump.dump_active) { 1633 /* 1634 * if dump process fails then invalidate the registration 1635 * and release memory before proceeding for re-registration. 1636 */ 1637 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1638 fadump_invalidate_release_mem(); 1639 } 1640 /* Initialize the kernel dump memory structure for FAD registration. */ 1641 else if (fw_dump.reserve_dump_area_size) 1642 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1643 1644 return 1; 1645 } 1646 subsys_initcall(setup_fadump); 1647 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1648 1649 /* Scan the Firmware Assisted dump configuration details. */ 1650 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1651 int depth, void *data) 1652 { 1653 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1654 return 0; 1655 1656 opal_fadump_dt_scan(&fw_dump, node); 1657 return 1; 1658 } 1659 1660 /* 1661 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1662 * preserve crash data. The subsequent memory preserving kernel boot 1663 * is likely to process this crash data. 1664 */ 1665 int __init fadump_reserve_mem(void) 1666 { 1667 if (fw_dump.dump_active) { 1668 /* 1669 * If last boot has crashed then reserve all the memory 1670 * above boot memory to preserve crash data. 1671 */ 1672 pr_info("Preserving crash data for processing in next boot.\n"); 1673 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1674 } else 1675 pr_debug("FADump-aware kernel..\n"); 1676 1677 return 1; 1678 } 1679 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1680 1681 /* Preserve everything above the base address */ 1682 static void __init fadump_reserve_crash_area(u64 base) 1683 { 1684 u64 i, mstart, mend, msize; 1685 1686 for_each_mem_range(i, &mstart, &mend) { 1687 msize = mend - mstart; 1688 1689 if ((mstart + msize) < base) 1690 continue; 1691 1692 if (mstart < base) { 1693 msize -= (base - mstart); 1694 mstart = base; 1695 } 1696 1697 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1698 (msize >> 20), mstart); 1699 memblock_reserve(mstart, msize); 1700 } 1701 } 1702 1703 unsigned long __init arch_reserved_kernel_pages(void) 1704 { 1705 return memblock_reserved_size() / PAGE_SIZE; 1706 } 1707