1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/debugfs.h> 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 35 static struct fw_dump fw_dump; 36 37 static void __init fadump_reserve_crash_area(u64 base); 38 39 #ifndef CONFIG_PRESERVE_FA_DUMP 40 static DEFINE_MUTEX(fadump_mutex); 41 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 }; 42 struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 }; 43 44 #ifdef CONFIG_CMA 45 static struct cma *fadump_cma; 46 47 /* 48 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 49 * 50 * This function initializes CMA area from fadump reserved memory. 51 * The total size of fadump reserved memory covers for boot memory size 52 * + cpu data size + hpte size and metadata. 53 * Initialize only the area equivalent to boot memory size for CMA use. 54 * The reamining portion of fadump reserved memory will be not given 55 * to CMA and pages for thoes will stay reserved. boot memory size is 56 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 57 * But for some reason even if it fails we still have the memory reservation 58 * with us and we can still continue doing fadump. 59 */ 60 int __init fadump_cma_init(void) 61 { 62 unsigned long long base, size; 63 int rc; 64 65 if (!fw_dump.fadump_enabled) 66 return 0; 67 68 /* 69 * Do not use CMA if user has provided fadump=nocma kernel parameter. 70 * Return 1 to continue with fadump old behaviour. 71 */ 72 if (fw_dump.nocma) 73 return 1; 74 75 base = fw_dump.reserve_dump_area_start; 76 size = fw_dump.boot_memory_size; 77 78 if (!size) 79 return 0; 80 81 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 82 if (rc) { 83 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 84 /* 85 * Though the CMA init has failed we still have memory 86 * reservation with us. The reserved memory will be 87 * blocked from production system usage. Hence return 1, 88 * so that we can continue with fadump. 89 */ 90 return 1; 91 } 92 93 /* 94 * So we now have successfully initialized cma area for fadump. 95 */ 96 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 97 "bytes of memory reserved for firmware-assisted dump\n", 98 cma_get_size(fadump_cma), 99 (unsigned long)cma_get_base(fadump_cma) >> 20, 100 fw_dump.reserve_dump_area_size); 101 return 1; 102 } 103 #else 104 static int __init fadump_cma_init(void) { return 1; } 105 #endif /* CONFIG_CMA */ 106 107 /* Scan the Firmware Assisted dump configuration details. */ 108 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 109 int depth, void *data) 110 { 111 if (depth != 1) 112 return 0; 113 114 if (strcmp(uname, "rtas") == 0) { 115 rtas_fadump_dt_scan(&fw_dump, node); 116 return 1; 117 } 118 119 if (strcmp(uname, "ibm,opal") == 0) { 120 opal_fadump_dt_scan(&fw_dump, node); 121 return 1; 122 } 123 124 return 0; 125 } 126 127 /* 128 * If fadump is registered, check if the memory provided 129 * falls within boot memory area and reserved memory area. 130 */ 131 int is_fadump_memory_area(u64 addr, unsigned long size) 132 { 133 u64 d_start, d_end; 134 135 if (!fw_dump.dump_registered) 136 return 0; 137 138 if (!size) 139 return 0; 140 141 d_start = fw_dump.reserve_dump_area_start; 142 d_end = d_start + fw_dump.reserve_dump_area_size; 143 if (((addr + size) > d_start) && (addr <= d_end)) 144 return 1; 145 146 return (addr <= fw_dump.boot_mem_top); 147 } 148 149 int should_fadump_crash(void) 150 { 151 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 152 return 0; 153 return 1; 154 } 155 156 int is_fadump_active(void) 157 { 158 return fw_dump.dump_active; 159 } 160 161 /* 162 * Returns true, if there are no holes in memory area between d_start to d_end, 163 * false otherwise. 164 */ 165 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 166 { 167 struct memblock_region *reg; 168 bool ret = false; 169 u64 start, end; 170 171 for_each_memblock(memory, reg) { 172 start = max_t(u64, d_start, reg->base); 173 end = min_t(u64, d_end, (reg->base + reg->size)); 174 if (d_start < end) { 175 /* Memory hole from d_start to start */ 176 if (start > d_start) 177 break; 178 179 if (end == d_end) { 180 ret = true; 181 break; 182 } 183 184 d_start = end + 1; 185 } 186 } 187 188 return ret; 189 } 190 191 /* 192 * Returns true, if there are no holes in boot memory area, 193 * false otherwise. 194 */ 195 bool is_fadump_boot_mem_contiguous(void) 196 { 197 unsigned long d_start, d_end; 198 bool ret = false; 199 int i; 200 201 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 202 d_start = fw_dump.boot_mem_addr[i]; 203 d_end = d_start + fw_dump.boot_mem_sz[i]; 204 205 ret = is_fadump_mem_area_contiguous(d_start, d_end); 206 if (!ret) 207 break; 208 } 209 210 return ret; 211 } 212 213 /* 214 * Returns true, if there are no holes in reserved memory area, 215 * false otherwise. 216 */ 217 bool is_fadump_reserved_mem_contiguous(void) 218 { 219 u64 d_start, d_end; 220 221 d_start = fw_dump.reserve_dump_area_start; 222 d_end = d_start + fw_dump.reserve_dump_area_size; 223 return is_fadump_mem_area_contiguous(d_start, d_end); 224 } 225 226 /* Print firmware assisted dump configurations for debugging purpose. */ 227 static void fadump_show_config(void) 228 { 229 int i; 230 231 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 232 (fw_dump.fadump_supported ? "present" : "no support")); 233 234 if (!fw_dump.fadump_supported) 235 return; 236 237 pr_debug("Fadump enabled : %s\n", 238 (fw_dump.fadump_enabled ? "yes" : "no")); 239 pr_debug("Dump Active : %s\n", 240 (fw_dump.dump_active ? "yes" : "no")); 241 pr_debug("Dump section sizes:\n"); 242 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 243 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 244 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 245 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 246 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 247 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 248 pr_debug("[%03d] base = %llx, size = %llx\n", i, 249 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 250 } 251 } 252 253 /** 254 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 255 * 256 * Function to find the largest memory size we need to reserve during early 257 * boot process. This will be the size of the memory that is required for a 258 * kernel to boot successfully. 259 * 260 * This function has been taken from phyp-assisted dump feature implementation. 261 * 262 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 263 * 264 * TODO: Come up with better approach to find out more accurate memory size 265 * that is required for a kernel to boot successfully. 266 * 267 */ 268 static inline u64 fadump_calculate_reserve_size(void) 269 { 270 u64 base, size, bootmem_min; 271 int ret; 272 273 if (fw_dump.reserve_bootvar) 274 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 275 276 /* 277 * Check if the size is specified through crashkernel= cmdline 278 * option. If yes, then use that but ignore base as fadump reserves 279 * memory at a predefined offset. 280 */ 281 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 282 &size, &base); 283 if (ret == 0 && size > 0) { 284 unsigned long max_size; 285 286 if (fw_dump.reserve_bootvar) 287 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 288 289 fw_dump.reserve_bootvar = (unsigned long)size; 290 291 /* 292 * Adjust if the boot memory size specified is above 293 * the upper limit. 294 */ 295 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 296 if (fw_dump.reserve_bootvar > max_size) { 297 fw_dump.reserve_bootvar = max_size; 298 pr_info("Adjusted boot memory size to %luMB\n", 299 (fw_dump.reserve_bootvar >> 20)); 300 } 301 302 return fw_dump.reserve_bootvar; 303 } else if (fw_dump.reserve_bootvar) { 304 /* 305 * 'fadump_reserve_mem=' is being used to reserve memory 306 * for firmware-assisted dump. 307 */ 308 return fw_dump.reserve_bootvar; 309 } 310 311 /* divide by 20 to get 5% of value */ 312 size = memblock_phys_mem_size() / 20; 313 314 /* round it down in multiples of 256 */ 315 size = size & ~0x0FFFFFFFUL; 316 317 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 318 if (memory_limit && size > memory_limit) 319 size = memory_limit; 320 321 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 322 return (size > bootmem_min ? size : bootmem_min); 323 } 324 325 /* 326 * Calculate the total memory size required to be reserved for 327 * firmware-assisted dump registration. 328 */ 329 static unsigned long get_fadump_area_size(void) 330 { 331 unsigned long size = 0; 332 333 size += fw_dump.cpu_state_data_size; 334 size += fw_dump.hpte_region_size; 335 size += fw_dump.boot_memory_size; 336 size += sizeof(struct fadump_crash_info_header); 337 size += sizeof(struct elfhdr); /* ELF core header.*/ 338 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 339 /* Program headers for crash memory regions. */ 340 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 341 342 size = PAGE_ALIGN(size); 343 344 /* This is to hold kernel metadata on platforms that support it */ 345 size += (fw_dump.ops->fadump_get_metadata_size ? 346 fw_dump.ops->fadump_get_metadata_size() : 0); 347 return size; 348 } 349 350 static int __init add_boot_mem_region(unsigned long rstart, 351 unsigned long rsize) 352 { 353 int i = fw_dump.boot_mem_regs_cnt++; 354 355 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { 356 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; 357 return 0; 358 } 359 360 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 361 i, rstart, (rstart + rsize)); 362 fw_dump.boot_mem_addr[i] = rstart; 363 fw_dump.boot_mem_sz[i] = rsize; 364 return 1; 365 } 366 367 /* 368 * Firmware usually has a hard limit on the data it can copy per region. 369 * Honour that by splitting a memory range into multiple regions. 370 */ 371 static int __init add_boot_mem_regions(unsigned long mstart, 372 unsigned long msize) 373 { 374 unsigned long rstart, rsize, max_size; 375 int ret = 1; 376 377 rstart = mstart; 378 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 379 while (msize) { 380 if (msize > max_size) 381 rsize = max_size; 382 else 383 rsize = msize; 384 385 ret = add_boot_mem_region(rstart, rsize); 386 if (!ret) 387 break; 388 389 msize -= rsize; 390 rstart += rsize; 391 } 392 393 return ret; 394 } 395 396 static int __init fadump_get_boot_mem_regions(void) 397 { 398 unsigned long base, size, cur_size, hole_size, last_end; 399 unsigned long mem_size = fw_dump.boot_memory_size; 400 struct memblock_region *reg; 401 int ret = 1; 402 403 fw_dump.boot_mem_regs_cnt = 0; 404 405 last_end = 0; 406 hole_size = 0; 407 cur_size = 0; 408 for_each_memblock(memory, reg) { 409 base = reg->base; 410 size = reg->size; 411 hole_size += (base - last_end); 412 413 if ((cur_size + size) >= mem_size) { 414 size = (mem_size - cur_size); 415 ret = add_boot_mem_regions(base, size); 416 break; 417 } 418 419 mem_size -= size; 420 cur_size += size; 421 ret = add_boot_mem_regions(base, size); 422 if (!ret) 423 break; 424 425 last_end = base + size; 426 } 427 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 428 429 return ret; 430 } 431 432 int __init fadump_reserve_mem(void) 433 { 434 u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE; 435 bool is_memblock_bottom_up = memblock_bottom_up(); 436 int ret = 1; 437 438 if (!fw_dump.fadump_enabled) 439 return 0; 440 441 if (!fw_dump.fadump_supported) { 442 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 443 goto error_out; 444 } 445 446 /* 447 * Initialize boot memory size 448 * If dump is active then we have already calculated the size during 449 * first kernel. 450 */ 451 if (!fw_dump.dump_active) { 452 fw_dump.boot_memory_size = 453 PAGE_ALIGN(fadump_calculate_reserve_size()); 454 #ifdef CONFIG_CMA 455 if (!fw_dump.nocma) { 456 align = FADUMP_CMA_ALIGNMENT; 457 fw_dump.boot_memory_size = 458 ALIGN(fw_dump.boot_memory_size, align); 459 } 460 #endif 461 462 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 463 if (fw_dump.boot_memory_size < bootmem_min) { 464 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 465 fw_dump.boot_memory_size, bootmem_min); 466 goto error_out; 467 } 468 469 if (!fadump_get_boot_mem_regions()) { 470 pr_err("Too many holes in boot memory area to enable fadump\n"); 471 goto error_out; 472 } 473 } 474 475 /* 476 * Calculate the memory boundary. 477 * If memory_limit is less than actual memory boundary then reserve 478 * the memory for fadump beyond the memory_limit and adjust the 479 * memory_limit accordingly, so that the running kernel can run with 480 * specified memory_limit. 481 */ 482 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 483 size = get_fadump_area_size(); 484 if ((memory_limit + size) < memblock_end_of_DRAM()) 485 memory_limit += size; 486 else 487 memory_limit = memblock_end_of_DRAM(); 488 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 489 " dump, now %#016llx\n", memory_limit); 490 } 491 if (memory_limit) 492 mem_boundary = memory_limit; 493 else 494 mem_boundary = memblock_end_of_DRAM(); 495 496 base = fw_dump.boot_mem_top; 497 size = get_fadump_area_size(); 498 fw_dump.reserve_dump_area_size = size; 499 if (fw_dump.dump_active) { 500 pr_info("Firmware-assisted dump is active.\n"); 501 502 #ifdef CONFIG_HUGETLB_PAGE 503 /* 504 * FADump capture kernel doesn't care much about hugepages. 505 * In fact, handling hugepages in capture kernel is asking for 506 * trouble. So, disable HugeTLB support when fadump is active. 507 */ 508 hugetlb_disabled = true; 509 #endif 510 /* 511 * If last boot has crashed then reserve all the memory 512 * above boot memory size so that we don't touch it until 513 * dump is written to disk by userspace tool. This memory 514 * can be released for general use by invalidating fadump. 515 */ 516 fadump_reserve_crash_area(base); 517 518 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 519 pr_debug("Reserve dump area start address: 0x%lx\n", 520 fw_dump.reserve_dump_area_start); 521 } else { 522 /* 523 * Reserve memory at an offset closer to bottom of the RAM to 524 * minimize the impact of memory hot-remove operation. 525 */ 526 memblock_set_bottom_up(true); 527 base = memblock_find_in_range(base, mem_boundary, size, align); 528 529 /* Restore the previous allocation mode */ 530 memblock_set_bottom_up(is_memblock_bottom_up); 531 532 if (!base) { 533 pr_err("Failed to find memory chunk for reservation!\n"); 534 goto error_out; 535 } 536 fw_dump.reserve_dump_area_start = base; 537 538 /* 539 * Calculate the kernel metadata address and register it with 540 * f/w if the platform supports. 541 */ 542 if (fw_dump.ops->fadump_setup_metadata && 543 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 544 goto error_out; 545 546 if (memblock_reserve(base, size)) { 547 pr_err("Failed to reserve memory!\n"); 548 goto error_out; 549 } 550 551 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 552 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 553 554 ret = fadump_cma_init(); 555 } 556 557 return ret; 558 error_out: 559 fw_dump.fadump_enabled = 0; 560 return 0; 561 } 562 563 /* Look for fadump= cmdline option. */ 564 static int __init early_fadump_param(char *p) 565 { 566 if (!p) 567 return 1; 568 569 if (strncmp(p, "on", 2) == 0) 570 fw_dump.fadump_enabled = 1; 571 else if (strncmp(p, "off", 3) == 0) 572 fw_dump.fadump_enabled = 0; 573 else if (strncmp(p, "nocma", 5) == 0) { 574 fw_dump.fadump_enabled = 1; 575 fw_dump.nocma = 1; 576 } 577 578 return 0; 579 } 580 early_param("fadump", early_fadump_param); 581 582 /* 583 * Look for fadump_reserve_mem= cmdline option 584 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 585 * the sooner 'crashkernel=' parameter is accustomed to. 586 */ 587 static int __init early_fadump_reserve_mem(char *p) 588 { 589 if (p) 590 fw_dump.reserve_bootvar = memparse(p, &p); 591 return 0; 592 } 593 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 594 595 void crash_fadump(struct pt_regs *regs, const char *str) 596 { 597 struct fadump_crash_info_header *fdh = NULL; 598 int old_cpu, this_cpu; 599 600 if (!should_fadump_crash()) 601 return; 602 603 /* 604 * old_cpu == -1 means this is the first CPU which has come here, 605 * go ahead and trigger fadump. 606 * 607 * old_cpu != -1 means some other CPU has already on it's way 608 * to trigger fadump, just keep looping here. 609 */ 610 this_cpu = smp_processor_id(); 611 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 612 613 if (old_cpu != -1) { 614 /* 615 * We can't loop here indefinitely. Wait as long as fadump 616 * is in force. If we race with fadump un-registration this 617 * loop will break and then we go down to normal panic path 618 * and reboot. If fadump is in force the first crashing 619 * cpu will definitely trigger fadump. 620 */ 621 while (fw_dump.dump_registered) 622 cpu_relax(); 623 return; 624 } 625 626 fdh = __va(fw_dump.fadumphdr_addr); 627 fdh->crashing_cpu = crashing_cpu; 628 crash_save_vmcoreinfo(); 629 630 if (regs) 631 fdh->regs = *regs; 632 else 633 ppc_save_regs(&fdh->regs); 634 635 fdh->online_mask = *cpu_online_mask; 636 637 fw_dump.ops->fadump_trigger(fdh, str); 638 } 639 640 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 641 { 642 struct elf_prstatus prstatus; 643 644 memset(&prstatus, 0, sizeof(prstatus)); 645 /* 646 * FIXME: How do i get PID? Do I really need it? 647 * prstatus.pr_pid = ???? 648 */ 649 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 650 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 651 &prstatus, sizeof(prstatus)); 652 return buf; 653 } 654 655 void fadump_update_elfcore_header(char *bufp) 656 { 657 struct elfhdr *elf; 658 struct elf_phdr *phdr; 659 660 elf = (struct elfhdr *)bufp; 661 bufp += sizeof(struct elfhdr); 662 663 /* First note is a place holder for cpu notes info. */ 664 phdr = (struct elf_phdr *)bufp; 665 666 if (phdr->p_type == PT_NOTE) { 667 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 668 phdr->p_offset = phdr->p_paddr; 669 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 670 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 671 } 672 return; 673 } 674 675 static void *fadump_alloc_buffer(unsigned long size) 676 { 677 unsigned long count, i; 678 struct page *page; 679 void *vaddr; 680 681 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 682 if (!vaddr) 683 return NULL; 684 685 count = PAGE_ALIGN(size) / PAGE_SIZE; 686 page = virt_to_page(vaddr); 687 for (i = 0; i < count; i++) 688 mark_page_reserved(page + i); 689 return vaddr; 690 } 691 692 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 693 { 694 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 695 } 696 697 s32 fadump_setup_cpu_notes_buf(u32 num_cpus) 698 { 699 /* Allocate buffer to hold cpu crash notes. */ 700 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 701 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 702 fw_dump.cpu_notes_buf_vaddr = 703 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 704 if (!fw_dump.cpu_notes_buf_vaddr) { 705 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 706 fw_dump.cpu_notes_buf_size); 707 return -ENOMEM; 708 } 709 710 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 711 fw_dump.cpu_notes_buf_size, 712 fw_dump.cpu_notes_buf_vaddr); 713 return 0; 714 } 715 716 void fadump_free_cpu_notes_buf(void) 717 { 718 if (!fw_dump.cpu_notes_buf_vaddr) 719 return; 720 721 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 722 fw_dump.cpu_notes_buf_size); 723 fw_dump.cpu_notes_buf_vaddr = 0; 724 fw_dump.cpu_notes_buf_size = 0; 725 } 726 727 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 728 { 729 kfree(mrange_info->mem_ranges); 730 mrange_info->mem_ranges = NULL; 731 mrange_info->mem_ranges_sz = 0; 732 mrange_info->max_mem_ranges = 0; 733 } 734 735 /* 736 * Allocate or reallocate mem_ranges array in incremental units 737 * of PAGE_SIZE. 738 */ 739 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 740 { 741 struct fadump_memory_range *new_array; 742 u64 new_size; 743 744 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 745 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 746 new_size, mrange_info->name); 747 748 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 749 if (new_array == NULL) { 750 pr_err("Insufficient memory for setting up %s memory ranges\n", 751 mrange_info->name); 752 fadump_free_mem_ranges(mrange_info); 753 return -ENOMEM; 754 } 755 756 mrange_info->mem_ranges = new_array; 757 mrange_info->mem_ranges_sz = new_size; 758 mrange_info->max_mem_ranges = (new_size / 759 sizeof(struct fadump_memory_range)); 760 return 0; 761 } 762 763 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 764 u64 base, u64 end) 765 { 766 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 767 bool is_adjacent = false; 768 u64 start, size; 769 770 if (base == end) 771 return 0; 772 773 /* 774 * Fold adjacent memory ranges to bring down the memory ranges/ 775 * PT_LOAD segments count. 776 */ 777 if (mrange_info->mem_range_cnt) { 778 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 779 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 780 781 if ((start + size) == base) 782 is_adjacent = true; 783 } 784 if (!is_adjacent) { 785 /* resize the array on reaching the limit */ 786 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 787 int ret; 788 789 ret = fadump_alloc_mem_ranges(mrange_info); 790 if (ret) 791 return ret; 792 793 /* Update to the new resized array */ 794 mem_ranges = mrange_info->mem_ranges; 795 } 796 797 start = base; 798 mem_ranges[mrange_info->mem_range_cnt].base = start; 799 mrange_info->mem_range_cnt++; 800 } 801 802 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 803 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 804 mrange_info->name, (mrange_info->mem_range_cnt - 1), 805 start, end - 1, (end - start)); 806 return 0; 807 } 808 809 static int fadump_exclude_reserved_area(u64 start, u64 end) 810 { 811 u64 ra_start, ra_end; 812 int ret = 0; 813 814 ra_start = fw_dump.reserve_dump_area_start; 815 ra_end = ra_start + fw_dump.reserve_dump_area_size; 816 817 if ((ra_start < end) && (ra_end > start)) { 818 if ((start < ra_start) && (end > ra_end)) { 819 ret = fadump_add_mem_range(&crash_mrange_info, 820 start, ra_start); 821 if (ret) 822 return ret; 823 824 ret = fadump_add_mem_range(&crash_mrange_info, 825 ra_end, end); 826 } else if (start < ra_start) { 827 ret = fadump_add_mem_range(&crash_mrange_info, 828 start, ra_start); 829 } else if (ra_end < end) { 830 ret = fadump_add_mem_range(&crash_mrange_info, 831 ra_end, end); 832 } 833 } else 834 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 835 836 return ret; 837 } 838 839 static int fadump_init_elfcore_header(char *bufp) 840 { 841 struct elfhdr *elf; 842 843 elf = (struct elfhdr *) bufp; 844 bufp += sizeof(struct elfhdr); 845 memcpy(elf->e_ident, ELFMAG, SELFMAG); 846 elf->e_ident[EI_CLASS] = ELF_CLASS; 847 elf->e_ident[EI_DATA] = ELF_DATA; 848 elf->e_ident[EI_VERSION] = EV_CURRENT; 849 elf->e_ident[EI_OSABI] = ELF_OSABI; 850 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 851 elf->e_type = ET_CORE; 852 elf->e_machine = ELF_ARCH; 853 elf->e_version = EV_CURRENT; 854 elf->e_entry = 0; 855 elf->e_phoff = sizeof(struct elfhdr); 856 elf->e_shoff = 0; 857 #if defined(_CALL_ELF) 858 elf->e_flags = _CALL_ELF; 859 #else 860 elf->e_flags = 0; 861 #endif 862 elf->e_ehsize = sizeof(struct elfhdr); 863 elf->e_phentsize = sizeof(struct elf_phdr); 864 elf->e_phnum = 0; 865 elf->e_shentsize = 0; 866 elf->e_shnum = 0; 867 elf->e_shstrndx = 0; 868 869 return 0; 870 } 871 872 /* 873 * Traverse through memblock structure and setup crash memory ranges. These 874 * ranges will be used create PT_LOAD program headers in elfcore header. 875 */ 876 static int fadump_setup_crash_memory_ranges(void) 877 { 878 struct memblock_region *reg; 879 u64 start, end; 880 int i, ret; 881 882 pr_debug("Setup crash memory ranges.\n"); 883 crash_mrange_info.mem_range_cnt = 0; 884 885 /* 886 * Boot memory region(s) registered with firmware are moved to 887 * different location at the time of crash. Create separate program 888 * header(s) for this memory chunk(s) with the correct offset. 889 */ 890 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 891 start = fw_dump.boot_mem_addr[i]; 892 end = start + fw_dump.boot_mem_sz[i]; 893 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 894 if (ret) 895 return ret; 896 } 897 898 for_each_memblock(memory, reg) { 899 start = (u64)reg->base; 900 end = start + (u64)reg->size; 901 902 /* 903 * skip the memory chunk that is already added 904 * (0 through boot_memory_top). 905 */ 906 if (start < fw_dump.boot_mem_top) { 907 if (end > fw_dump.boot_mem_top) 908 start = fw_dump.boot_mem_top; 909 else 910 continue; 911 } 912 913 /* add this range excluding the reserved dump area. */ 914 ret = fadump_exclude_reserved_area(start, end); 915 if (ret) 916 return ret; 917 } 918 919 return 0; 920 } 921 922 /* 923 * If the given physical address falls within the boot memory region then 924 * return the relocated address that points to the dump region reserved 925 * for saving initial boot memory contents. 926 */ 927 static inline unsigned long fadump_relocate(unsigned long paddr) 928 { 929 unsigned long raddr, rstart, rend, rlast, hole_size; 930 int i; 931 932 hole_size = 0; 933 rlast = 0; 934 raddr = paddr; 935 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 936 rstart = fw_dump.boot_mem_addr[i]; 937 rend = rstart + fw_dump.boot_mem_sz[i]; 938 hole_size += (rstart - rlast); 939 940 if (paddr >= rstart && paddr < rend) { 941 raddr += fw_dump.boot_mem_dest_addr - hole_size; 942 break; 943 } 944 945 rlast = rend; 946 } 947 948 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 949 return raddr; 950 } 951 952 static int fadump_create_elfcore_headers(char *bufp) 953 { 954 unsigned long long raddr, offset; 955 struct elf_phdr *phdr; 956 struct elfhdr *elf; 957 int i, j; 958 959 fadump_init_elfcore_header(bufp); 960 elf = (struct elfhdr *)bufp; 961 bufp += sizeof(struct elfhdr); 962 963 /* 964 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 965 * will be populated during second kernel boot after crash. Hence 966 * this PT_NOTE will always be the first elf note. 967 * 968 * NOTE: Any new ELF note addition should be placed after this note. 969 */ 970 phdr = (struct elf_phdr *)bufp; 971 bufp += sizeof(struct elf_phdr); 972 phdr->p_type = PT_NOTE; 973 phdr->p_flags = 0; 974 phdr->p_vaddr = 0; 975 phdr->p_align = 0; 976 977 phdr->p_offset = 0; 978 phdr->p_paddr = 0; 979 phdr->p_filesz = 0; 980 phdr->p_memsz = 0; 981 982 (elf->e_phnum)++; 983 984 /* setup ELF PT_NOTE for vmcoreinfo */ 985 phdr = (struct elf_phdr *)bufp; 986 bufp += sizeof(struct elf_phdr); 987 phdr->p_type = PT_NOTE; 988 phdr->p_flags = 0; 989 phdr->p_vaddr = 0; 990 phdr->p_align = 0; 991 992 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 993 phdr->p_offset = phdr->p_paddr; 994 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 995 996 /* Increment number of program headers. */ 997 (elf->e_phnum)++; 998 999 /* setup PT_LOAD sections. */ 1000 j = 0; 1001 offset = 0; 1002 raddr = fw_dump.boot_mem_addr[0]; 1003 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { 1004 u64 mbase, msize; 1005 1006 mbase = crash_mrange_info.mem_ranges[i].base; 1007 msize = crash_mrange_info.mem_ranges[i].size; 1008 if (!msize) 1009 continue; 1010 1011 phdr = (struct elf_phdr *)bufp; 1012 bufp += sizeof(struct elf_phdr); 1013 phdr->p_type = PT_LOAD; 1014 phdr->p_flags = PF_R|PF_W|PF_X; 1015 phdr->p_offset = mbase; 1016 1017 if (mbase == raddr) { 1018 /* 1019 * The entire real memory region will be moved by 1020 * firmware to the specified destination_address. 1021 * Hence set the correct offset. 1022 */ 1023 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; 1024 if (j < (fw_dump.boot_mem_regs_cnt - 1)) { 1025 offset += fw_dump.boot_mem_sz[j]; 1026 raddr = fw_dump.boot_mem_addr[++j]; 1027 } 1028 } 1029 1030 phdr->p_paddr = mbase; 1031 phdr->p_vaddr = (unsigned long)__va(mbase); 1032 phdr->p_filesz = msize; 1033 phdr->p_memsz = msize; 1034 phdr->p_align = 0; 1035 1036 /* Increment number of program headers. */ 1037 (elf->e_phnum)++; 1038 } 1039 return 0; 1040 } 1041 1042 static unsigned long init_fadump_header(unsigned long addr) 1043 { 1044 struct fadump_crash_info_header *fdh; 1045 1046 if (!addr) 1047 return 0; 1048 1049 fdh = __va(addr); 1050 addr += sizeof(struct fadump_crash_info_header); 1051 1052 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1053 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1054 fdh->elfcorehdr_addr = addr; 1055 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1056 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1057 1058 return addr; 1059 } 1060 1061 static int register_fadump(void) 1062 { 1063 unsigned long addr; 1064 void *vaddr; 1065 int ret; 1066 1067 /* 1068 * If no memory is reserved then we can not register for firmware- 1069 * assisted dump. 1070 */ 1071 if (!fw_dump.reserve_dump_area_size) 1072 return -ENODEV; 1073 1074 ret = fadump_setup_crash_memory_ranges(); 1075 if (ret) 1076 return ret; 1077 1078 addr = fw_dump.fadumphdr_addr; 1079 1080 /* Initialize fadump crash info header. */ 1081 addr = init_fadump_header(addr); 1082 vaddr = __va(addr); 1083 1084 pr_debug("Creating ELF core headers at %#016lx\n", addr); 1085 fadump_create_elfcore_headers(vaddr); 1086 1087 /* register the future kernel dump with firmware. */ 1088 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1089 return fw_dump.ops->fadump_register(&fw_dump); 1090 } 1091 1092 void fadump_cleanup(void) 1093 { 1094 if (!fw_dump.fadump_supported) 1095 return; 1096 1097 /* Invalidate the registration only if dump is active. */ 1098 if (fw_dump.dump_active) { 1099 pr_debug("Invalidating firmware-assisted dump registration\n"); 1100 fw_dump.ops->fadump_invalidate(&fw_dump); 1101 } else if (fw_dump.dump_registered) { 1102 /* Un-register Firmware-assisted dump if it was registered. */ 1103 fw_dump.ops->fadump_unregister(&fw_dump); 1104 fadump_free_mem_ranges(&crash_mrange_info); 1105 } 1106 1107 if (fw_dump.ops->fadump_cleanup) 1108 fw_dump.ops->fadump_cleanup(&fw_dump); 1109 } 1110 1111 static void fadump_free_reserved_memory(unsigned long start_pfn, 1112 unsigned long end_pfn) 1113 { 1114 unsigned long pfn; 1115 unsigned long time_limit = jiffies + HZ; 1116 1117 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1118 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1119 1120 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1121 free_reserved_page(pfn_to_page(pfn)); 1122 1123 if (time_after(jiffies, time_limit)) { 1124 cond_resched(); 1125 time_limit = jiffies + HZ; 1126 } 1127 } 1128 } 1129 1130 /* 1131 * Skip memory holes and free memory that was actually reserved. 1132 */ 1133 static void fadump_release_reserved_area(u64 start, u64 end) 1134 { 1135 u64 tstart, tend, spfn, epfn; 1136 struct memblock_region *reg; 1137 1138 spfn = PHYS_PFN(start); 1139 epfn = PHYS_PFN(end); 1140 for_each_memblock(memory, reg) { 1141 tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg)); 1142 tend = min_t(u64, epfn, memblock_region_memory_end_pfn(reg)); 1143 if (tstart < tend) { 1144 fadump_free_reserved_memory(tstart, tend); 1145 1146 if (tend == epfn) 1147 break; 1148 1149 spfn = tend; 1150 } 1151 } 1152 } 1153 1154 /* 1155 * Sort the mem ranges in-place and merge adjacent ranges 1156 * to minimize the memory ranges count. 1157 */ 1158 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1159 { 1160 struct fadump_memory_range *mem_ranges; 1161 struct fadump_memory_range tmp_range; 1162 u64 base, size; 1163 int i, j, idx; 1164 1165 if (!reserved_mrange_info.mem_range_cnt) 1166 return; 1167 1168 /* Sort the memory ranges */ 1169 mem_ranges = mrange_info->mem_ranges; 1170 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1171 idx = i; 1172 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1173 if (mem_ranges[idx].base > mem_ranges[j].base) 1174 idx = j; 1175 } 1176 if (idx != i) { 1177 tmp_range = mem_ranges[idx]; 1178 mem_ranges[idx] = mem_ranges[i]; 1179 mem_ranges[i] = tmp_range; 1180 } 1181 } 1182 1183 /* Merge adjacent reserved ranges */ 1184 idx = 0; 1185 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1186 base = mem_ranges[i-1].base; 1187 size = mem_ranges[i-1].size; 1188 if (mem_ranges[i].base == (base + size)) 1189 mem_ranges[idx].size += mem_ranges[i].size; 1190 else { 1191 idx++; 1192 if (i == idx) 1193 continue; 1194 1195 mem_ranges[idx] = mem_ranges[i]; 1196 } 1197 } 1198 mrange_info->mem_range_cnt = idx + 1; 1199 } 1200 1201 /* 1202 * Scan reserved-ranges to consider them while reserving/releasing 1203 * memory for FADump. 1204 */ 1205 static inline int fadump_scan_reserved_mem_ranges(void) 1206 { 1207 struct device_node *root; 1208 const __be32 *prop; 1209 int len, ret = -1; 1210 unsigned long i; 1211 1212 root = of_find_node_by_path("/"); 1213 if (!root) 1214 return ret; 1215 1216 prop = of_get_property(root, "reserved-ranges", &len); 1217 if (!prop) 1218 return ret; 1219 1220 /* 1221 * Each reserved range is an (address,size) pair, 2 cells each, 1222 * totalling 4 cells per range. 1223 */ 1224 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1225 u64 base, size; 1226 1227 base = of_read_number(prop + (i * 4) + 0, 2); 1228 size = of_read_number(prop + (i * 4) + 2, 2); 1229 1230 if (size) { 1231 ret = fadump_add_mem_range(&reserved_mrange_info, 1232 base, base + size); 1233 if (ret < 0) { 1234 pr_warn("some reserved ranges are ignored!\n"); 1235 break; 1236 } 1237 } 1238 } 1239 1240 return ret; 1241 } 1242 1243 /* 1244 * Release the memory that was reserved during early boot to preserve the 1245 * crash'ed kernel's memory contents except reserved dump area (permanent 1246 * reservation) and reserved ranges used by F/W. The released memory will 1247 * be available for general use. 1248 */ 1249 static void fadump_release_memory(u64 begin, u64 end) 1250 { 1251 u64 ra_start, ra_end, tstart; 1252 int i, ret; 1253 1254 fadump_scan_reserved_mem_ranges(); 1255 1256 ra_start = fw_dump.reserve_dump_area_start; 1257 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1258 1259 /* 1260 * Add reserved dump area to reserved ranges list 1261 * and exclude all these ranges while releasing memory. 1262 */ 1263 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1264 if (ret != 0) { 1265 /* 1266 * Not enough memory to setup reserved ranges but the system is 1267 * running shortage of memory. So, release all the memory except 1268 * Reserved dump area (reused for next fadump registration). 1269 */ 1270 if (begin < ra_end && end > ra_start) { 1271 if (begin < ra_start) 1272 fadump_release_reserved_area(begin, ra_start); 1273 if (end > ra_end) 1274 fadump_release_reserved_area(ra_end, end); 1275 } else 1276 fadump_release_reserved_area(begin, end); 1277 1278 return; 1279 } 1280 1281 /* Get the reserved ranges list in order first. */ 1282 sort_and_merge_mem_ranges(&reserved_mrange_info); 1283 1284 /* Exclude reserved ranges and release remaining memory */ 1285 tstart = begin; 1286 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1287 ra_start = reserved_mrange_info.mem_ranges[i].base; 1288 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1289 1290 if (tstart >= ra_end) 1291 continue; 1292 1293 if (tstart < ra_start) 1294 fadump_release_reserved_area(tstart, ra_start); 1295 tstart = ra_end; 1296 } 1297 1298 if (tstart < end) 1299 fadump_release_reserved_area(tstart, end); 1300 } 1301 1302 static void fadump_invalidate_release_mem(void) 1303 { 1304 mutex_lock(&fadump_mutex); 1305 if (!fw_dump.dump_active) { 1306 mutex_unlock(&fadump_mutex); 1307 return; 1308 } 1309 1310 fadump_cleanup(); 1311 mutex_unlock(&fadump_mutex); 1312 1313 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1314 fadump_free_cpu_notes_buf(); 1315 1316 /* 1317 * Setup kernel metadata and initialize the kernel dump 1318 * memory structure for FADump re-registration. 1319 */ 1320 if (fw_dump.ops->fadump_setup_metadata && 1321 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1322 pr_warn("Failed to setup kernel metadata!\n"); 1323 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1324 } 1325 1326 static ssize_t fadump_release_memory_store(struct kobject *kobj, 1327 struct kobj_attribute *attr, 1328 const char *buf, size_t count) 1329 { 1330 int input = -1; 1331 1332 if (!fw_dump.dump_active) 1333 return -EPERM; 1334 1335 if (kstrtoint(buf, 0, &input)) 1336 return -EINVAL; 1337 1338 if (input == 1) { 1339 /* 1340 * Take away the '/proc/vmcore'. We are releasing the dump 1341 * memory, hence it will not be valid anymore. 1342 */ 1343 #ifdef CONFIG_PROC_VMCORE 1344 vmcore_cleanup(); 1345 #endif 1346 fadump_invalidate_release_mem(); 1347 1348 } else 1349 return -EINVAL; 1350 return count; 1351 } 1352 1353 static ssize_t fadump_enabled_show(struct kobject *kobj, 1354 struct kobj_attribute *attr, 1355 char *buf) 1356 { 1357 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1358 } 1359 1360 static ssize_t fadump_register_show(struct kobject *kobj, 1361 struct kobj_attribute *attr, 1362 char *buf) 1363 { 1364 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1365 } 1366 1367 static ssize_t fadump_register_store(struct kobject *kobj, 1368 struct kobj_attribute *attr, 1369 const char *buf, size_t count) 1370 { 1371 int ret = 0; 1372 int input = -1; 1373 1374 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1375 return -EPERM; 1376 1377 if (kstrtoint(buf, 0, &input)) 1378 return -EINVAL; 1379 1380 mutex_lock(&fadump_mutex); 1381 1382 switch (input) { 1383 case 0: 1384 if (fw_dump.dump_registered == 0) { 1385 goto unlock_out; 1386 } 1387 1388 /* Un-register Firmware-assisted dump */ 1389 pr_debug("Un-register firmware-assisted dump\n"); 1390 fw_dump.ops->fadump_unregister(&fw_dump); 1391 break; 1392 case 1: 1393 if (fw_dump.dump_registered == 1) { 1394 /* Un-register Firmware-assisted dump */ 1395 fw_dump.ops->fadump_unregister(&fw_dump); 1396 } 1397 /* Register Firmware-assisted dump */ 1398 ret = register_fadump(); 1399 break; 1400 default: 1401 ret = -EINVAL; 1402 break; 1403 } 1404 1405 unlock_out: 1406 mutex_unlock(&fadump_mutex); 1407 return ret < 0 ? ret : count; 1408 } 1409 1410 static int fadump_region_show(struct seq_file *m, void *private) 1411 { 1412 if (!fw_dump.fadump_enabled) 1413 return 0; 1414 1415 mutex_lock(&fadump_mutex); 1416 fw_dump.ops->fadump_region_show(&fw_dump, m); 1417 mutex_unlock(&fadump_mutex); 1418 return 0; 1419 } 1420 1421 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, 1422 0200, NULL, 1423 fadump_release_memory_store); 1424 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, 1425 0444, fadump_enabled_show, 1426 NULL); 1427 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, 1428 0644, fadump_register_show, 1429 fadump_register_store); 1430 1431 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1432 1433 static void fadump_init_files(void) 1434 { 1435 struct dentry *debugfs_file; 1436 int rc = 0; 1437 1438 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); 1439 if (rc) 1440 printk(KERN_ERR "fadump: unable to create sysfs file" 1441 " fadump_enabled (%d)\n", rc); 1442 1443 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); 1444 if (rc) 1445 printk(KERN_ERR "fadump: unable to create sysfs file" 1446 " fadump_registered (%d)\n", rc); 1447 1448 debugfs_file = debugfs_create_file("fadump_region", 0444, 1449 powerpc_debugfs_root, NULL, 1450 &fadump_region_fops); 1451 if (!debugfs_file) 1452 printk(KERN_ERR "fadump: unable to create debugfs file" 1453 " fadump_region\n"); 1454 1455 if (fw_dump.dump_active) { 1456 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); 1457 if (rc) 1458 printk(KERN_ERR "fadump: unable to create sysfs file" 1459 " fadump_release_mem (%d)\n", rc); 1460 } 1461 return; 1462 } 1463 1464 /* 1465 * Prepare for firmware-assisted dump. 1466 */ 1467 int __init setup_fadump(void) 1468 { 1469 if (!fw_dump.fadump_enabled) 1470 return 0; 1471 1472 if (!fw_dump.fadump_supported) { 1473 printk(KERN_ERR "Firmware-assisted dump is not supported on" 1474 " this hardware\n"); 1475 return 0; 1476 } 1477 1478 fadump_show_config(); 1479 /* 1480 * If dump data is available then see if it is valid and prepare for 1481 * saving it to the disk. 1482 */ 1483 if (fw_dump.dump_active) { 1484 /* 1485 * if dump process fails then invalidate the registration 1486 * and release memory before proceeding for re-registration. 1487 */ 1488 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1489 fadump_invalidate_release_mem(); 1490 } 1491 /* Initialize the kernel dump memory structure for FAD registration. */ 1492 else if (fw_dump.reserve_dump_area_size) 1493 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1494 1495 fadump_init_files(); 1496 1497 return 1; 1498 } 1499 subsys_initcall(setup_fadump); 1500 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1501 1502 /* Scan the Firmware Assisted dump configuration details. */ 1503 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1504 int depth, void *data) 1505 { 1506 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1507 return 0; 1508 1509 opal_fadump_dt_scan(&fw_dump, node); 1510 return 1; 1511 } 1512 1513 /* 1514 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1515 * preserve crash data. The subsequent memory preserving kernel boot 1516 * is likely to process this crash data. 1517 */ 1518 int __init fadump_reserve_mem(void) 1519 { 1520 if (fw_dump.dump_active) { 1521 /* 1522 * If last boot has crashed then reserve all the memory 1523 * above boot memory to preserve crash data. 1524 */ 1525 pr_info("Preserving crash data for processing in next boot.\n"); 1526 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1527 } else 1528 pr_debug("FADump-aware kernel..\n"); 1529 1530 return 1; 1531 } 1532 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1533 1534 /* Preserve everything above the base address */ 1535 static void __init fadump_reserve_crash_area(u64 base) 1536 { 1537 struct memblock_region *reg; 1538 u64 mstart, msize; 1539 1540 for_each_memblock(memory, reg) { 1541 mstart = reg->base; 1542 msize = reg->size; 1543 1544 if ((mstart + msize) < base) 1545 continue; 1546 1547 if (mstart < base) { 1548 msize -= (base - mstart); 1549 mstart = base; 1550 } 1551 1552 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1553 (msize >> 20), mstart); 1554 memblock_reserve(mstart, msize); 1555 } 1556 } 1557 1558 unsigned long __init arch_reserved_kernel_pages(void) 1559 { 1560 return memblock_reserved_size() / PAGE_SIZE; 1561 } 1562