xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision 0d456bad)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38 
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45 
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49 
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53 
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56 			const char *uname, int depth, void *data)
57 {
58 	__be32 *sections;
59 	int i, num_sections;
60 	unsigned long size;
61 	const int *token;
62 
63 	if (depth != 1 || strcmp(uname, "rtas") != 0)
64 		return 0;
65 
66 	/*
67 	 * Check if Firmware Assisted dump is supported. if yes, check
68 	 * if dump has been initiated on last reboot.
69 	 */
70 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71 	if (!token)
72 		return 0;
73 
74 	fw_dump.fadump_supported = 1;
75 	fw_dump.ibm_configure_kernel_dump = *token;
76 
77 	/*
78 	 * The 'ibm,kernel-dump' rtas node is present only if there is
79 	 * dump data waiting for us.
80 	 */
81 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82 	if (fdm_active)
83 		fw_dump.dump_active = 1;
84 
85 	/* Get the sizes required to store dump data for the firmware provided
86 	 * dump sections.
87 	 * For each dump section type supported, a 32bit cell which defines
88 	 * the ID of a supported section followed by two 32 bit cells which
89 	 * gives teh size of the section in bytes.
90 	 */
91 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92 					&size);
93 
94 	if (!sections)
95 		return 0;
96 
97 	num_sections = size / (3 * sizeof(u32));
98 
99 	for (i = 0; i < num_sections; i++, sections += 3) {
100 		u32 type = (u32)of_read_number(sections, 1);
101 
102 		switch (type) {
103 		case FADUMP_CPU_STATE_DATA:
104 			fw_dump.cpu_state_data_size =
105 					of_read_ulong(&sections[1], 2);
106 			break;
107 		case FADUMP_HPTE_REGION:
108 			fw_dump.hpte_region_size =
109 					of_read_ulong(&sections[1], 2);
110 			break;
111 		}
112 	}
113 	return 1;
114 }
115 
116 int is_fadump_active(void)
117 {
118 	return fw_dump.dump_active;
119 }
120 
121 /* Print firmware assisted dump configurations for debugging purpose. */
122 static void fadump_show_config(void)
123 {
124 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
125 			(fw_dump.fadump_supported ? "present" : "no support"));
126 
127 	if (!fw_dump.fadump_supported)
128 		return;
129 
130 	pr_debug("Fadump enabled    : %s\n",
131 				(fw_dump.fadump_enabled ? "yes" : "no"));
132 	pr_debug("Dump Active       : %s\n",
133 				(fw_dump.dump_active ? "yes" : "no"));
134 	pr_debug("Dump section sizes:\n");
135 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
136 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
137 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
138 }
139 
140 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
141 				unsigned long addr)
142 {
143 	if (!fdm)
144 		return 0;
145 
146 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
147 	addr = addr & PAGE_MASK;
148 
149 	fdm->header.dump_format_version = 0x00000001;
150 	fdm->header.dump_num_sections = 3;
151 	fdm->header.dump_status_flag = 0;
152 	fdm->header.offset_first_dump_section =
153 		(u32)offsetof(struct fadump_mem_struct, cpu_state_data);
154 
155 	/*
156 	 * Fields for disk dump option.
157 	 * We are not using disk dump option, hence set these fields to 0.
158 	 */
159 	fdm->header.dd_block_size = 0;
160 	fdm->header.dd_block_offset = 0;
161 	fdm->header.dd_num_blocks = 0;
162 	fdm->header.dd_offset_disk_path = 0;
163 
164 	/* set 0 to disable an automatic dump-reboot. */
165 	fdm->header.max_time_auto = 0;
166 
167 	/* Kernel dump sections */
168 	/* cpu state data section. */
169 	fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
170 	fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
171 	fdm->cpu_state_data.source_address = 0;
172 	fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
173 	fdm->cpu_state_data.destination_address = addr;
174 	addr += fw_dump.cpu_state_data_size;
175 
176 	/* hpte region section */
177 	fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
178 	fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
179 	fdm->hpte_region.source_address = 0;
180 	fdm->hpte_region.source_len = fw_dump.hpte_region_size;
181 	fdm->hpte_region.destination_address = addr;
182 	addr += fw_dump.hpte_region_size;
183 
184 	/* RMA region section */
185 	fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
186 	fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
187 	fdm->rmr_region.source_address = RMA_START;
188 	fdm->rmr_region.source_len = fw_dump.boot_memory_size;
189 	fdm->rmr_region.destination_address = addr;
190 	addr += fw_dump.boot_memory_size;
191 
192 	return addr;
193 }
194 
195 /**
196  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
197  *
198  * Function to find the largest memory size we need to reserve during early
199  * boot process. This will be the size of the memory that is required for a
200  * kernel to boot successfully.
201  *
202  * This function has been taken from phyp-assisted dump feature implementation.
203  *
204  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
205  *
206  * TODO: Come up with better approach to find out more accurate memory size
207  * that is required for a kernel to boot successfully.
208  *
209  */
210 static inline unsigned long fadump_calculate_reserve_size(void)
211 {
212 	unsigned long size;
213 
214 	/*
215 	 * Check if the size is specified through fadump_reserve_mem= cmdline
216 	 * option. If yes, then use that.
217 	 */
218 	if (fw_dump.reserve_bootvar)
219 		return fw_dump.reserve_bootvar;
220 
221 	/* divide by 20 to get 5% of value */
222 	size = memblock_end_of_DRAM() / 20;
223 
224 	/* round it down in multiples of 256 */
225 	size = size & ~0x0FFFFFFFUL;
226 
227 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
228 	if (memory_limit && size > memory_limit)
229 		size = memory_limit;
230 
231 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
232 }
233 
234 /*
235  * Calculate the total memory size required to be reserved for
236  * firmware-assisted dump registration.
237  */
238 static unsigned long get_fadump_area_size(void)
239 {
240 	unsigned long size = 0;
241 
242 	size += fw_dump.cpu_state_data_size;
243 	size += fw_dump.hpte_region_size;
244 	size += fw_dump.boot_memory_size;
245 	size += sizeof(struct fadump_crash_info_header);
246 	size += sizeof(struct elfhdr); /* ELF core header.*/
247 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
248 	/* Program headers for crash memory regions. */
249 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
250 
251 	size = PAGE_ALIGN(size);
252 	return size;
253 }
254 
255 int __init fadump_reserve_mem(void)
256 {
257 	unsigned long base, size, memory_boundary;
258 
259 	if (!fw_dump.fadump_enabled)
260 		return 0;
261 
262 	if (!fw_dump.fadump_supported) {
263 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
264 				" this hardware\n");
265 		fw_dump.fadump_enabled = 0;
266 		return 0;
267 	}
268 	/*
269 	 * Initialize boot memory size
270 	 * If dump is active then we have already calculated the size during
271 	 * first kernel.
272 	 */
273 	if (fdm_active)
274 		fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
275 	else
276 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
277 
278 	/*
279 	 * Calculate the memory boundary.
280 	 * If memory_limit is less than actual memory boundary then reserve
281 	 * the memory for fadump beyond the memory_limit and adjust the
282 	 * memory_limit accordingly, so that the running kernel can run with
283 	 * specified memory_limit.
284 	 */
285 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
286 		size = get_fadump_area_size();
287 		if ((memory_limit + size) < memblock_end_of_DRAM())
288 			memory_limit += size;
289 		else
290 			memory_limit = memblock_end_of_DRAM();
291 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
292 				" dump, now %#016llx\n", memory_limit);
293 	}
294 	if (memory_limit)
295 		memory_boundary = memory_limit;
296 	else
297 		memory_boundary = memblock_end_of_DRAM();
298 
299 	if (fw_dump.dump_active) {
300 		printk(KERN_INFO "Firmware-assisted dump is active.\n");
301 		/*
302 		 * If last boot has crashed then reserve all the memory
303 		 * above boot_memory_size so that we don't touch it until
304 		 * dump is written to disk by userspace tool. This memory
305 		 * will be released for general use once the dump is saved.
306 		 */
307 		base = fw_dump.boot_memory_size;
308 		size = memory_boundary - base;
309 		memblock_reserve(base, size);
310 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
311 				"for saving crash dump\n",
312 				(unsigned long)(size >> 20),
313 				(unsigned long)(base >> 20));
314 
315 		fw_dump.fadumphdr_addr =
316 				fdm_active->rmr_region.destination_address +
317 				fdm_active->rmr_region.source_len;
318 		pr_debug("fadumphdr_addr = %p\n",
319 				(void *) fw_dump.fadumphdr_addr);
320 	} else {
321 		/* Reserve the memory at the top of memory. */
322 		size = get_fadump_area_size();
323 		base = memory_boundary - size;
324 		memblock_reserve(base, size);
325 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
326 				"for firmware-assisted dump\n",
327 				(unsigned long)(size >> 20),
328 				(unsigned long)(base >> 20));
329 	}
330 	fw_dump.reserve_dump_area_start = base;
331 	fw_dump.reserve_dump_area_size = size;
332 	return 1;
333 }
334 
335 /* Look for fadump= cmdline option. */
336 static int __init early_fadump_param(char *p)
337 {
338 	if (!p)
339 		return 1;
340 
341 	if (strncmp(p, "on", 2) == 0)
342 		fw_dump.fadump_enabled = 1;
343 	else if (strncmp(p, "off", 3) == 0)
344 		fw_dump.fadump_enabled = 0;
345 
346 	return 0;
347 }
348 early_param("fadump", early_fadump_param);
349 
350 /* Look for fadump_reserve_mem= cmdline option */
351 static int __init early_fadump_reserve_mem(char *p)
352 {
353 	if (p)
354 		fw_dump.reserve_bootvar = memparse(p, &p);
355 	return 0;
356 }
357 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
358 
359 static void register_fw_dump(struct fadump_mem_struct *fdm)
360 {
361 	int rc;
362 	unsigned int wait_time;
363 
364 	pr_debug("Registering for firmware-assisted kernel dump...\n");
365 
366 	/* TODO: Add upper time limit for the delay */
367 	do {
368 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
369 			FADUMP_REGISTER, fdm,
370 			sizeof(struct fadump_mem_struct));
371 
372 		wait_time = rtas_busy_delay_time(rc);
373 		if (wait_time)
374 			mdelay(wait_time);
375 
376 	} while (wait_time);
377 
378 	switch (rc) {
379 	case -1:
380 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
381 			" dump. Hardware Error(%d).\n", rc);
382 		break;
383 	case -3:
384 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
385 			" dump. Parameter Error(%d).\n", rc);
386 		break;
387 	case -9:
388 		printk(KERN_ERR "firmware-assisted kernel dump is already "
389 			" registered.");
390 		fw_dump.dump_registered = 1;
391 		break;
392 	case 0:
393 		printk(KERN_INFO "firmware-assisted kernel dump registration"
394 			" is successful\n");
395 		fw_dump.dump_registered = 1;
396 		break;
397 	}
398 }
399 
400 void crash_fadump(struct pt_regs *regs, const char *str)
401 {
402 	struct fadump_crash_info_header *fdh = NULL;
403 
404 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
405 		return;
406 
407 	fdh = __va(fw_dump.fadumphdr_addr);
408 	crashing_cpu = smp_processor_id();
409 	fdh->crashing_cpu = crashing_cpu;
410 	crash_save_vmcoreinfo();
411 
412 	if (regs)
413 		fdh->regs = *regs;
414 	else
415 		ppc_save_regs(&fdh->regs);
416 
417 	fdh->cpu_online_mask = *cpu_online_mask;
418 
419 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
420 	rtas_os_term((char *)str);
421 }
422 
423 #define GPR_MASK	0xffffff0000000000
424 static inline int fadump_gpr_index(u64 id)
425 {
426 	int i = -1;
427 	char str[3];
428 
429 	if ((id & GPR_MASK) == REG_ID("GPR")) {
430 		/* get the digits at the end */
431 		id &= ~GPR_MASK;
432 		id >>= 24;
433 		str[2] = '\0';
434 		str[1] = id & 0xff;
435 		str[0] = (id >> 8) & 0xff;
436 		sscanf(str, "%d", &i);
437 		if (i > 31)
438 			i = -1;
439 	}
440 	return i;
441 }
442 
443 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
444 								u64 reg_val)
445 {
446 	int i;
447 
448 	i = fadump_gpr_index(reg_id);
449 	if (i >= 0)
450 		regs->gpr[i] = (unsigned long)reg_val;
451 	else if (reg_id == REG_ID("NIA"))
452 		regs->nip = (unsigned long)reg_val;
453 	else if (reg_id == REG_ID("MSR"))
454 		regs->msr = (unsigned long)reg_val;
455 	else if (reg_id == REG_ID("CTR"))
456 		regs->ctr = (unsigned long)reg_val;
457 	else if (reg_id == REG_ID("LR"))
458 		regs->link = (unsigned long)reg_val;
459 	else if (reg_id == REG_ID("XER"))
460 		regs->xer = (unsigned long)reg_val;
461 	else if (reg_id == REG_ID("CR"))
462 		regs->ccr = (unsigned long)reg_val;
463 	else if (reg_id == REG_ID("DAR"))
464 		regs->dar = (unsigned long)reg_val;
465 	else if (reg_id == REG_ID("DSISR"))
466 		regs->dsisr = (unsigned long)reg_val;
467 }
468 
469 static struct fadump_reg_entry*
470 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
471 {
472 	memset(regs, 0, sizeof(struct pt_regs));
473 
474 	while (reg_entry->reg_id != REG_ID("CPUEND")) {
475 		fadump_set_regval(regs, reg_entry->reg_id,
476 					reg_entry->reg_value);
477 		reg_entry++;
478 	}
479 	reg_entry++;
480 	return reg_entry;
481 }
482 
483 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
484 						void *data, size_t data_len)
485 {
486 	struct elf_note note;
487 
488 	note.n_namesz = strlen(name) + 1;
489 	note.n_descsz = data_len;
490 	note.n_type   = type;
491 	memcpy(buf, &note, sizeof(note));
492 	buf += (sizeof(note) + 3)/4;
493 	memcpy(buf, name, note.n_namesz);
494 	buf += (note.n_namesz + 3)/4;
495 	memcpy(buf, data, note.n_descsz);
496 	buf += (note.n_descsz + 3)/4;
497 
498 	return buf;
499 }
500 
501 static void fadump_final_note(u32 *buf)
502 {
503 	struct elf_note note;
504 
505 	note.n_namesz = 0;
506 	note.n_descsz = 0;
507 	note.n_type   = 0;
508 	memcpy(buf, &note, sizeof(note));
509 }
510 
511 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
512 {
513 	struct elf_prstatus prstatus;
514 
515 	memset(&prstatus, 0, sizeof(prstatus));
516 	/*
517 	 * FIXME: How do i get PID? Do I really need it?
518 	 * prstatus.pr_pid = ????
519 	 */
520 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
521 	buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
522 				&prstatus, sizeof(prstatus));
523 	return buf;
524 }
525 
526 static void fadump_update_elfcore_header(char *bufp)
527 {
528 	struct elfhdr *elf;
529 	struct elf_phdr *phdr;
530 
531 	elf = (struct elfhdr *)bufp;
532 	bufp += sizeof(struct elfhdr);
533 
534 	/* First note is a place holder for cpu notes info. */
535 	phdr = (struct elf_phdr *)bufp;
536 
537 	if (phdr->p_type == PT_NOTE) {
538 		phdr->p_paddr = fw_dump.cpu_notes_buf;
539 		phdr->p_offset	= phdr->p_paddr;
540 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
541 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
542 	}
543 	return;
544 }
545 
546 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
547 {
548 	void *vaddr;
549 	struct page *page;
550 	unsigned long order, count, i;
551 
552 	order = get_order(size);
553 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
554 	if (!vaddr)
555 		return NULL;
556 
557 	count = 1 << order;
558 	page = virt_to_page(vaddr);
559 	for (i = 0; i < count; i++)
560 		SetPageReserved(page + i);
561 	return vaddr;
562 }
563 
564 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
565 {
566 	struct page *page;
567 	unsigned long order, count, i;
568 
569 	order = get_order(size);
570 	count = 1 << order;
571 	page = virt_to_page(vaddr);
572 	for (i = 0; i < count; i++)
573 		ClearPageReserved(page + i);
574 	__free_pages(page, order);
575 }
576 
577 /*
578  * Read CPU state dump data and convert it into ELF notes.
579  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
580  * used to access the data to allow for additional fields to be added without
581  * affecting compatibility. Each list of registers for a CPU starts with
582  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
583  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
584  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
585  * of register value. For more details refer to PAPR document.
586  *
587  * Only for the crashing cpu we ignore the CPU dump data and get exact
588  * state from fadump crash info structure populated by first kernel at the
589  * time of crash.
590  */
591 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
592 {
593 	struct fadump_reg_save_area_header *reg_header;
594 	struct fadump_reg_entry *reg_entry;
595 	struct fadump_crash_info_header *fdh = NULL;
596 	void *vaddr;
597 	unsigned long addr;
598 	u32 num_cpus, *note_buf;
599 	struct pt_regs regs;
600 	int i, rc = 0, cpu = 0;
601 
602 	if (!fdm->cpu_state_data.bytes_dumped)
603 		return -EINVAL;
604 
605 	addr = fdm->cpu_state_data.destination_address;
606 	vaddr = __va(addr);
607 
608 	reg_header = vaddr;
609 	if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
610 		printk(KERN_ERR "Unable to read register save area.\n");
611 		return -ENOENT;
612 	}
613 	pr_debug("--------CPU State Data------------\n");
614 	pr_debug("Magic Number: %llx\n", reg_header->magic_number);
615 	pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
616 
617 	vaddr += reg_header->num_cpu_offset;
618 	num_cpus = *((u32 *)(vaddr));
619 	pr_debug("NumCpus     : %u\n", num_cpus);
620 	vaddr += sizeof(u32);
621 	reg_entry = (struct fadump_reg_entry *)vaddr;
622 
623 	/* Allocate buffer to hold cpu crash notes. */
624 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
625 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
626 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
627 	if (!note_buf) {
628 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
629 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
630 		return -ENOMEM;
631 	}
632 	fw_dump.cpu_notes_buf = __pa(note_buf);
633 
634 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
635 			(num_cpus * sizeof(note_buf_t)), note_buf);
636 
637 	if (fw_dump.fadumphdr_addr)
638 		fdh = __va(fw_dump.fadumphdr_addr);
639 
640 	for (i = 0; i < num_cpus; i++) {
641 		if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
642 			printk(KERN_ERR "Unable to read CPU state data\n");
643 			rc = -ENOENT;
644 			goto error_out;
645 		}
646 		/* Lower 4 bytes of reg_value contains logical cpu id */
647 		cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
648 		if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
649 			SKIP_TO_NEXT_CPU(reg_entry);
650 			continue;
651 		}
652 		pr_debug("Reading register data for cpu %d...\n", cpu);
653 		if (fdh && fdh->crashing_cpu == cpu) {
654 			regs = fdh->regs;
655 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
656 			SKIP_TO_NEXT_CPU(reg_entry);
657 		} else {
658 			reg_entry++;
659 			reg_entry = fadump_read_registers(reg_entry, &regs);
660 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
661 		}
662 	}
663 	fadump_final_note(note_buf);
664 
665 	pr_debug("Updating elfcore header (%llx) with cpu notes\n",
666 							fdh->elfcorehdr_addr);
667 	fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
668 	return 0;
669 
670 error_out:
671 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
672 					fw_dump.cpu_notes_buf_size);
673 	fw_dump.cpu_notes_buf = 0;
674 	fw_dump.cpu_notes_buf_size = 0;
675 	return rc;
676 
677 }
678 
679 /*
680  * Validate and process the dump data stored by firmware before exporting
681  * it through '/proc/vmcore'.
682  */
683 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
684 {
685 	struct fadump_crash_info_header *fdh;
686 	int rc = 0;
687 
688 	if (!fdm_active || !fw_dump.fadumphdr_addr)
689 		return -EINVAL;
690 
691 	/* Check if the dump data is valid. */
692 	if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
693 			(fdm_active->cpu_state_data.error_flags != 0) ||
694 			(fdm_active->rmr_region.error_flags != 0)) {
695 		printk(KERN_ERR "Dump taken by platform is not valid\n");
696 		return -EINVAL;
697 	}
698 	if ((fdm_active->rmr_region.bytes_dumped !=
699 			fdm_active->rmr_region.source_len) ||
700 			!fdm_active->cpu_state_data.bytes_dumped) {
701 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
702 		return -EINVAL;
703 	}
704 
705 	/* Validate the fadump crash info header */
706 	fdh = __va(fw_dump.fadumphdr_addr);
707 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
708 		printk(KERN_ERR "Crash info header is not valid.\n");
709 		return -EINVAL;
710 	}
711 
712 	rc = fadump_build_cpu_notes(fdm_active);
713 	if (rc)
714 		return rc;
715 
716 	/*
717 	 * We are done validating dump info and elfcore header is now ready
718 	 * to be exported. set elfcorehdr_addr so that vmcore module will
719 	 * export the elfcore header through '/proc/vmcore'.
720 	 */
721 	elfcorehdr_addr = fdh->elfcorehdr_addr;
722 
723 	return 0;
724 }
725 
726 static inline void fadump_add_crash_memory(unsigned long long base,
727 					unsigned long long end)
728 {
729 	if (base == end)
730 		return;
731 
732 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
733 		crash_mem_ranges, base, end - 1, (end - base));
734 	crash_memory_ranges[crash_mem_ranges].base = base;
735 	crash_memory_ranges[crash_mem_ranges].size = end - base;
736 	crash_mem_ranges++;
737 }
738 
739 static void fadump_exclude_reserved_area(unsigned long long start,
740 					unsigned long long end)
741 {
742 	unsigned long long ra_start, ra_end;
743 
744 	ra_start = fw_dump.reserve_dump_area_start;
745 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
746 
747 	if ((ra_start < end) && (ra_end > start)) {
748 		if ((start < ra_start) && (end > ra_end)) {
749 			fadump_add_crash_memory(start, ra_start);
750 			fadump_add_crash_memory(ra_end, end);
751 		} else if (start < ra_start) {
752 			fadump_add_crash_memory(start, ra_start);
753 		} else if (ra_end < end) {
754 			fadump_add_crash_memory(ra_end, end);
755 		}
756 	} else
757 		fadump_add_crash_memory(start, end);
758 }
759 
760 static int fadump_init_elfcore_header(char *bufp)
761 {
762 	struct elfhdr *elf;
763 
764 	elf = (struct elfhdr *) bufp;
765 	bufp += sizeof(struct elfhdr);
766 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
767 	elf->e_ident[EI_CLASS] = ELF_CLASS;
768 	elf->e_ident[EI_DATA] = ELF_DATA;
769 	elf->e_ident[EI_VERSION] = EV_CURRENT;
770 	elf->e_ident[EI_OSABI] = ELF_OSABI;
771 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
772 	elf->e_type = ET_CORE;
773 	elf->e_machine = ELF_ARCH;
774 	elf->e_version = EV_CURRENT;
775 	elf->e_entry = 0;
776 	elf->e_phoff = sizeof(struct elfhdr);
777 	elf->e_shoff = 0;
778 	elf->e_flags = ELF_CORE_EFLAGS;
779 	elf->e_ehsize = sizeof(struct elfhdr);
780 	elf->e_phentsize = sizeof(struct elf_phdr);
781 	elf->e_phnum = 0;
782 	elf->e_shentsize = 0;
783 	elf->e_shnum = 0;
784 	elf->e_shstrndx = 0;
785 
786 	return 0;
787 }
788 
789 /*
790  * Traverse through memblock structure and setup crash memory ranges. These
791  * ranges will be used create PT_LOAD program headers in elfcore header.
792  */
793 static void fadump_setup_crash_memory_ranges(void)
794 {
795 	struct memblock_region *reg;
796 	unsigned long long start, end;
797 
798 	pr_debug("Setup crash memory ranges.\n");
799 	crash_mem_ranges = 0;
800 	/*
801 	 * add the first memory chunk (RMA_START through boot_memory_size) as
802 	 * a separate memory chunk. The reason is, at the time crash firmware
803 	 * will move the content of this memory chunk to different location
804 	 * specified during fadump registration. We need to create a separate
805 	 * program header for this chunk with the correct offset.
806 	 */
807 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
808 
809 	for_each_memblock(memory, reg) {
810 		start = (unsigned long long)reg->base;
811 		end = start + (unsigned long long)reg->size;
812 		if (start == RMA_START && end >= fw_dump.boot_memory_size)
813 			start = fw_dump.boot_memory_size;
814 
815 		/* add this range excluding the reserved dump area. */
816 		fadump_exclude_reserved_area(start, end);
817 	}
818 }
819 
820 /*
821  * If the given physical address falls within the boot memory region then
822  * return the relocated address that points to the dump region reserved
823  * for saving initial boot memory contents.
824  */
825 static inline unsigned long fadump_relocate(unsigned long paddr)
826 {
827 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
828 		return fdm.rmr_region.destination_address + paddr;
829 	else
830 		return paddr;
831 }
832 
833 static int fadump_create_elfcore_headers(char *bufp)
834 {
835 	struct elfhdr *elf;
836 	struct elf_phdr *phdr;
837 	int i;
838 
839 	fadump_init_elfcore_header(bufp);
840 	elf = (struct elfhdr *)bufp;
841 	bufp += sizeof(struct elfhdr);
842 
843 	/*
844 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
845 	 * will be populated during second kernel boot after crash. Hence
846 	 * this PT_NOTE will always be the first elf note.
847 	 *
848 	 * NOTE: Any new ELF note addition should be placed after this note.
849 	 */
850 	phdr = (struct elf_phdr *)bufp;
851 	bufp += sizeof(struct elf_phdr);
852 	phdr->p_type = PT_NOTE;
853 	phdr->p_flags = 0;
854 	phdr->p_vaddr = 0;
855 	phdr->p_align = 0;
856 
857 	phdr->p_offset = 0;
858 	phdr->p_paddr = 0;
859 	phdr->p_filesz = 0;
860 	phdr->p_memsz = 0;
861 
862 	(elf->e_phnum)++;
863 
864 	/* setup ELF PT_NOTE for vmcoreinfo */
865 	phdr = (struct elf_phdr *)bufp;
866 	bufp += sizeof(struct elf_phdr);
867 	phdr->p_type	= PT_NOTE;
868 	phdr->p_flags	= 0;
869 	phdr->p_vaddr	= 0;
870 	phdr->p_align	= 0;
871 
872 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
873 	phdr->p_offset	= phdr->p_paddr;
874 	phdr->p_memsz	= vmcoreinfo_max_size;
875 	phdr->p_filesz	= vmcoreinfo_max_size;
876 
877 	/* Increment number of program headers. */
878 	(elf->e_phnum)++;
879 
880 	/* setup PT_LOAD sections. */
881 
882 	for (i = 0; i < crash_mem_ranges; i++) {
883 		unsigned long long mbase, msize;
884 		mbase = crash_memory_ranges[i].base;
885 		msize = crash_memory_ranges[i].size;
886 
887 		if (!msize)
888 			continue;
889 
890 		phdr = (struct elf_phdr *)bufp;
891 		bufp += sizeof(struct elf_phdr);
892 		phdr->p_type	= PT_LOAD;
893 		phdr->p_flags	= PF_R|PF_W|PF_X;
894 		phdr->p_offset	= mbase;
895 
896 		if (mbase == RMA_START) {
897 			/*
898 			 * The entire RMA region will be moved by firmware
899 			 * to the specified destination_address. Hence set
900 			 * the correct offset.
901 			 */
902 			phdr->p_offset = fdm.rmr_region.destination_address;
903 		}
904 
905 		phdr->p_paddr = mbase;
906 		phdr->p_vaddr = (unsigned long)__va(mbase);
907 		phdr->p_filesz = msize;
908 		phdr->p_memsz = msize;
909 		phdr->p_align = 0;
910 
911 		/* Increment number of program headers. */
912 		(elf->e_phnum)++;
913 	}
914 	return 0;
915 }
916 
917 static unsigned long init_fadump_header(unsigned long addr)
918 {
919 	struct fadump_crash_info_header *fdh;
920 
921 	if (!addr)
922 		return 0;
923 
924 	fw_dump.fadumphdr_addr = addr;
925 	fdh = __va(addr);
926 	addr += sizeof(struct fadump_crash_info_header);
927 
928 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
929 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
930 	fdh->elfcorehdr_addr = addr;
931 	/* We will set the crashing cpu id in crash_fadump() during crash. */
932 	fdh->crashing_cpu = CPU_UNKNOWN;
933 
934 	return addr;
935 }
936 
937 static void register_fadump(void)
938 {
939 	unsigned long addr;
940 	void *vaddr;
941 
942 	/*
943 	 * If no memory is reserved then we can not register for firmware-
944 	 * assisted dump.
945 	 */
946 	if (!fw_dump.reserve_dump_area_size)
947 		return;
948 
949 	fadump_setup_crash_memory_ranges();
950 
951 	addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
952 	/* Initialize fadump crash info header. */
953 	addr = init_fadump_header(addr);
954 	vaddr = __va(addr);
955 
956 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
957 	fadump_create_elfcore_headers(vaddr);
958 
959 	/* register the future kernel dump with firmware. */
960 	register_fw_dump(&fdm);
961 }
962 
963 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
964 {
965 	int rc = 0;
966 	unsigned int wait_time;
967 
968 	pr_debug("Un-register firmware-assisted dump\n");
969 
970 	/* TODO: Add upper time limit for the delay */
971 	do {
972 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
973 			FADUMP_UNREGISTER, fdm,
974 			sizeof(struct fadump_mem_struct));
975 
976 		wait_time = rtas_busy_delay_time(rc);
977 		if (wait_time)
978 			mdelay(wait_time);
979 	} while (wait_time);
980 
981 	if (rc) {
982 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
983 			" unexpected error(%d).\n", rc);
984 		return rc;
985 	}
986 	fw_dump.dump_registered = 0;
987 	return 0;
988 }
989 
990 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
991 {
992 	int rc = 0;
993 	unsigned int wait_time;
994 
995 	pr_debug("Invalidating firmware-assisted dump registration\n");
996 
997 	/* TODO: Add upper time limit for the delay */
998 	do {
999 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1000 			FADUMP_INVALIDATE, fdm,
1001 			sizeof(struct fadump_mem_struct));
1002 
1003 		wait_time = rtas_busy_delay_time(rc);
1004 		if (wait_time)
1005 			mdelay(wait_time);
1006 	} while (wait_time);
1007 
1008 	if (rc) {
1009 		printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1010 			"rgistration. unexpected error(%d).\n", rc);
1011 		return rc;
1012 	}
1013 	fw_dump.dump_active = 0;
1014 	fdm_active = NULL;
1015 	return 0;
1016 }
1017 
1018 void fadump_cleanup(void)
1019 {
1020 	/* Invalidate the registration only if dump is active. */
1021 	if (fw_dump.dump_active) {
1022 		init_fadump_mem_struct(&fdm,
1023 			fdm_active->cpu_state_data.destination_address);
1024 		fadump_invalidate_dump(&fdm);
1025 	}
1026 }
1027 
1028 /*
1029  * Release the memory that was reserved in early boot to preserve the memory
1030  * contents. The released memory will be available for general use.
1031  */
1032 static void fadump_release_memory(unsigned long begin, unsigned long end)
1033 {
1034 	unsigned long addr;
1035 	unsigned long ra_start, ra_end;
1036 
1037 	ra_start = fw_dump.reserve_dump_area_start;
1038 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1039 
1040 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1041 		/*
1042 		 * exclude the dump reserve area. Will reuse it for next
1043 		 * fadump registration.
1044 		 */
1045 		if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1046 			continue;
1047 
1048 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1049 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1050 		free_page((unsigned long)__va(addr));
1051 		totalram_pages++;
1052 	}
1053 }
1054 
1055 static void fadump_invalidate_release_mem(void)
1056 {
1057 	unsigned long reserved_area_start, reserved_area_end;
1058 	unsigned long destination_address;
1059 
1060 	mutex_lock(&fadump_mutex);
1061 	if (!fw_dump.dump_active) {
1062 		mutex_unlock(&fadump_mutex);
1063 		return;
1064 	}
1065 
1066 	destination_address = fdm_active->cpu_state_data.destination_address;
1067 	fadump_cleanup();
1068 	mutex_unlock(&fadump_mutex);
1069 
1070 	/*
1071 	 * Save the current reserved memory bounds we will require them
1072 	 * later for releasing the memory for general use.
1073 	 */
1074 	reserved_area_start = fw_dump.reserve_dump_area_start;
1075 	reserved_area_end = reserved_area_start +
1076 			fw_dump.reserve_dump_area_size;
1077 	/*
1078 	 * Setup reserve_dump_area_start and its size so that we can
1079 	 * reuse this reserved memory for Re-registration.
1080 	 */
1081 	fw_dump.reserve_dump_area_start = destination_address;
1082 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1083 
1084 	fadump_release_memory(reserved_area_start, reserved_area_end);
1085 	if (fw_dump.cpu_notes_buf) {
1086 		fadump_cpu_notes_buf_free(
1087 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1088 				fw_dump.cpu_notes_buf_size);
1089 		fw_dump.cpu_notes_buf = 0;
1090 		fw_dump.cpu_notes_buf_size = 0;
1091 	}
1092 	/* Initialize the kernel dump memory structure for FAD registration. */
1093 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1094 }
1095 
1096 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1097 					struct kobj_attribute *attr,
1098 					const char *buf, size_t count)
1099 {
1100 	if (!fw_dump.dump_active)
1101 		return -EPERM;
1102 
1103 	if (buf[0] == '1') {
1104 		/*
1105 		 * Take away the '/proc/vmcore'. We are releasing the dump
1106 		 * memory, hence it will not be valid anymore.
1107 		 */
1108 		vmcore_cleanup();
1109 		fadump_invalidate_release_mem();
1110 
1111 	} else
1112 		return -EINVAL;
1113 	return count;
1114 }
1115 
1116 static ssize_t fadump_enabled_show(struct kobject *kobj,
1117 					struct kobj_attribute *attr,
1118 					char *buf)
1119 {
1120 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1121 }
1122 
1123 static ssize_t fadump_register_show(struct kobject *kobj,
1124 					struct kobj_attribute *attr,
1125 					char *buf)
1126 {
1127 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1128 }
1129 
1130 static ssize_t fadump_register_store(struct kobject *kobj,
1131 					struct kobj_attribute *attr,
1132 					const char *buf, size_t count)
1133 {
1134 	int ret = 0;
1135 
1136 	if (!fw_dump.fadump_enabled || fdm_active)
1137 		return -EPERM;
1138 
1139 	mutex_lock(&fadump_mutex);
1140 
1141 	switch (buf[0]) {
1142 	case '0':
1143 		if (fw_dump.dump_registered == 0) {
1144 			ret = -EINVAL;
1145 			goto unlock_out;
1146 		}
1147 		/* Un-register Firmware-assisted dump */
1148 		fadump_unregister_dump(&fdm);
1149 		break;
1150 	case '1':
1151 		if (fw_dump.dump_registered == 1) {
1152 			ret = -EINVAL;
1153 			goto unlock_out;
1154 		}
1155 		/* Register Firmware-assisted dump */
1156 		register_fadump();
1157 		break;
1158 	default:
1159 		ret = -EINVAL;
1160 		break;
1161 	}
1162 
1163 unlock_out:
1164 	mutex_unlock(&fadump_mutex);
1165 	return ret < 0 ? ret : count;
1166 }
1167 
1168 static int fadump_region_show(struct seq_file *m, void *private)
1169 {
1170 	const struct fadump_mem_struct *fdm_ptr;
1171 
1172 	if (!fw_dump.fadump_enabled)
1173 		return 0;
1174 
1175 	mutex_lock(&fadump_mutex);
1176 	if (fdm_active)
1177 		fdm_ptr = fdm_active;
1178 	else {
1179 		mutex_unlock(&fadump_mutex);
1180 		fdm_ptr = &fdm;
1181 	}
1182 
1183 	seq_printf(m,
1184 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1185 			"Dumped: %#llx\n",
1186 			fdm_ptr->cpu_state_data.destination_address,
1187 			fdm_ptr->cpu_state_data.destination_address +
1188 			fdm_ptr->cpu_state_data.source_len - 1,
1189 			fdm_ptr->cpu_state_data.source_len,
1190 			fdm_ptr->cpu_state_data.bytes_dumped);
1191 	seq_printf(m,
1192 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1193 			"Dumped: %#llx\n",
1194 			fdm_ptr->hpte_region.destination_address,
1195 			fdm_ptr->hpte_region.destination_address +
1196 			fdm_ptr->hpte_region.source_len - 1,
1197 			fdm_ptr->hpte_region.source_len,
1198 			fdm_ptr->hpte_region.bytes_dumped);
1199 	seq_printf(m,
1200 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1201 			"Dumped: %#llx\n",
1202 			fdm_ptr->rmr_region.destination_address,
1203 			fdm_ptr->rmr_region.destination_address +
1204 			fdm_ptr->rmr_region.source_len - 1,
1205 			fdm_ptr->rmr_region.source_len,
1206 			fdm_ptr->rmr_region.bytes_dumped);
1207 
1208 	if (!fdm_active ||
1209 		(fw_dump.reserve_dump_area_start ==
1210 		fdm_ptr->cpu_state_data.destination_address))
1211 		goto out;
1212 
1213 	/* Dump is active. Show reserved memory region. */
1214 	seq_printf(m,
1215 			"    : [%#016llx-%#016llx] %#llx bytes, "
1216 			"Dumped: %#llx\n",
1217 			(unsigned long long)fw_dump.reserve_dump_area_start,
1218 			fdm_ptr->cpu_state_data.destination_address - 1,
1219 			fdm_ptr->cpu_state_data.destination_address -
1220 			fw_dump.reserve_dump_area_start,
1221 			fdm_ptr->cpu_state_data.destination_address -
1222 			fw_dump.reserve_dump_area_start);
1223 out:
1224 	if (fdm_active)
1225 		mutex_unlock(&fadump_mutex);
1226 	return 0;
1227 }
1228 
1229 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1230 						0200, NULL,
1231 						fadump_release_memory_store);
1232 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1233 						0444, fadump_enabled_show,
1234 						NULL);
1235 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1236 						0644, fadump_register_show,
1237 						fadump_register_store);
1238 
1239 static int fadump_region_open(struct inode *inode, struct file *file)
1240 {
1241 	return single_open(file, fadump_region_show, inode->i_private);
1242 }
1243 
1244 static const struct file_operations fadump_region_fops = {
1245 	.open    = fadump_region_open,
1246 	.read    = seq_read,
1247 	.llseek  = seq_lseek,
1248 	.release = single_release,
1249 };
1250 
1251 static void fadump_init_files(void)
1252 {
1253 	struct dentry *debugfs_file;
1254 	int rc = 0;
1255 
1256 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1257 	if (rc)
1258 		printk(KERN_ERR "fadump: unable to create sysfs file"
1259 			" fadump_enabled (%d)\n", rc);
1260 
1261 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1262 	if (rc)
1263 		printk(KERN_ERR "fadump: unable to create sysfs file"
1264 			" fadump_registered (%d)\n", rc);
1265 
1266 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1267 					powerpc_debugfs_root, NULL,
1268 					&fadump_region_fops);
1269 	if (!debugfs_file)
1270 		printk(KERN_ERR "fadump: unable to create debugfs file"
1271 				" fadump_region\n");
1272 
1273 	if (fw_dump.dump_active) {
1274 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1275 		if (rc)
1276 			printk(KERN_ERR "fadump: unable to create sysfs file"
1277 				" fadump_release_mem (%d)\n", rc);
1278 	}
1279 	return;
1280 }
1281 
1282 /*
1283  * Prepare for firmware-assisted dump.
1284  */
1285 int __init setup_fadump(void)
1286 {
1287 	if (!fw_dump.fadump_enabled)
1288 		return 0;
1289 
1290 	if (!fw_dump.fadump_supported) {
1291 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1292 			" this hardware\n");
1293 		return 0;
1294 	}
1295 
1296 	fadump_show_config();
1297 	/*
1298 	 * If dump data is available then see if it is valid and prepare for
1299 	 * saving it to the disk.
1300 	 */
1301 	if (fw_dump.dump_active) {
1302 		/*
1303 		 * if dump process fails then invalidate the registration
1304 		 * and release memory before proceeding for re-registration.
1305 		 */
1306 		if (process_fadump(fdm_active) < 0)
1307 			fadump_invalidate_release_mem();
1308 	}
1309 	/* Initialize the kernel dump memory structure for FAD registration. */
1310 	else if (fw_dump.reserve_dump_area_size)
1311 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1312 	fadump_init_files();
1313 
1314 	return 1;
1315 }
1316 subsys_initcall(setup_fadump);
1317