xref: /openbmc/linux/arch/powerpc/kernel/exceptions-64s.S (revision 447395e18ae084b1ac96d4efeca43a711cf5a36b)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16#include <asm/hw_irq.h>
17#include <asm/exception-64s.h>
18#include <asm/ptrace.h>
19#include <asm/cpuidle.h>
20#include <asm/head-64.h>
21#include <asm/feature-fixups.h>
22#include <asm/kup.h>
23
24/*
25 * Following are fixed section helper macros.
26 *
27 * EXC_REAL_BEGIN/END  - real, unrelocated exception vectors
28 * EXC_VIRT_BEGIN/END  - virt (AIL), unrelocated exception vectors
29 * TRAMP_REAL_BEGIN    - real, unrelocated helpers (virt may call these)
30 * TRAMP_VIRT_BEGIN    - virt, unreloc helpers (in practice, real can use)
31 * EXC_COMMON          - After switching to virtual, relocated mode.
32 */
33
34#define EXC_REAL_BEGIN(name, start, size)			\
35	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
36
37#define EXC_REAL_END(name, start, size)				\
38	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
39
40#define EXC_VIRT_BEGIN(name, start, size)			\
41	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
42
43#define EXC_VIRT_END(name, start, size)				\
44	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
45
46#define EXC_COMMON_BEGIN(name)					\
47	USE_TEXT_SECTION();					\
48	.balign IFETCH_ALIGN_BYTES;				\
49	.global name;						\
50	_ASM_NOKPROBE_SYMBOL(name);				\
51	DEFINE_FIXED_SYMBOL(name, text);			\
52name:
53
54#define TRAMP_REAL_BEGIN(name)					\
55	FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
56
57#define TRAMP_VIRT_BEGIN(name)					\
58	FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
59
60#define EXC_REAL_NONE(start, size)				\
61	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
62	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
63
64#define EXC_VIRT_NONE(start, size)				\
65	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
66	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
67
68/*
69 * We're short on space and time in the exception prolog, so we can't
70 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
71 * Instead we get the base of the kernel from paca->kernelbase and or in the low
72 * part of label. This requires that the label be within 64KB of kernelbase, and
73 * that kernelbase be 64K aligned.
74 */
75#define LOAD_HANDLER(reg, label)					\
76	ld	reg,PACAKBASE(r13);	/* get high part of &label */	\
77	ori	reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
78
79#define __LOAD_HANDLER(reg, label, section)					\
80	ld	reg,PACAKBASE(r13);					\
81	ori	reg,reg,(ABS_ADDR(label, section))@l
82
83/*
84 * Branches from unrelocated code (e.g., interrupts) to labels outside
85 * head-y require >64K offsets.
86 */
87#define __LOAD_FAR_HANDLER(reg, label, section)					\
88	ld	reg,PACAKBASE(r13);					\
89	ori	reg,reg,(ABS_ADDR(label, section))@l;				\
90	addis	reg,reg,(ABS_ADDR(label, section))@h
91
92/*
93 * Interrupt code generation macros
94 */
95#define IVEC		.L_IVEC_\name\()	/* Interrupt vector address */
96#define IHSRR		.L_IHSRR_\name\()	/* Sets SRR or HSRR registers */
97#define IHSRR_IF_HVMODE	.L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
98#define IAREA		.L_IAREA_\name\()	/* PACA save area */
99#define IVIRT		.L_IVIRT_\name\()	/* Has virt mode entry point */
100#define IISIDE		.L_IISIDE_\name\()	/* Uses SRR0/1 not DAR/DSISR */
101#define ICFAR		.L_ICFAR_\name\()	/* Uses CFAR */
102#define ICFAR_IF_HVMODE	.L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */
103#define IDAR		.L_IDAR_\name\()	/* Uses DAR (or SRR0) */
104#define IDSISR		.L_IDSISR_\name\()	/* Uses DSISR (or SRR1) */
105#define IBRANCH_TO_COMMON	.L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
106#define IREALMODE_COMMON	.L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
107#define IMASK		.L_IMASK_\name\()	/* IRQ soft-mask bit */
108#define IKVM_REAL	.L_IKVM_REAL_\name\()	/* Real entry tests KVM */
109#define __IKVM_REAL(name)	.L_IKVM_REAL_ ## name
110#define IKVM_VIRT	.L_IKVM_VIRT_\name\()	/* Virt entry tests KVM */
111#define ISTACK		.L_ISTACK_\name\()	/* Set regular kernel stack */
112#define __ISTACK(name)	.L_ISTACK_ ## name
113#define IKUAP		.L_IKUAP_\name\()	/* Do KUAP lock */
114
115#define INT_DEFINE_BEGIN(n)						\
116.macro int_define_ ## n name
117
118#define INT_DEFINE_END(n)						\
119.endm ;									\
120int_define_ ## n n ;							\
121do_define_int n
122
123.macro do_define_int name
124	.ifndef IVEC
125		.error "IVEC not defined"
126	.endif
127	.ifndef IHSRR
128		IHSRR=0
129	.endif
130	.ifndef IHSRR_IF_HVMODE
131		IHSRR_IF_HVMODE=0
132	.endif
133	.ifndef IAREA
134		IAREA=PACA_EXGEN
135	.endif
136	.ifndef IVIRT
137		IVIRT=1
138	.endif
139	.ifndef IISIDE
140		IISIDE=0
141	.endif
142	.ifndef ICFAR
143		ICFAR=1
144	.endif
145	.ifndef ICFAR_IF_HVMODE
146		ICFAR_IF_HVMODE=0
147	.endif
148	.ifndef IDAR
149		IDAR=0
150	.endif
151	.ifndef IDSISR
152		IDSISR=0
153	.endif
154	.ifndef IBRANCH_TO_COMMON
155		IBRANCH_TO_COMMON=1
156	.endif
157	.ifndef IREALMODE_COMMON
158		IREALMODE_COMMON=0
159	.else
160		.if ! IBRANCH_TO_COMMON
161			.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
162		.endif
163	.endif
164	.ifndef IMASK
165		IMASK=0
166	.endif
167	.ifndef IKVM_REAL
168		IKVM_REAL=0
169	.endif
170	.ifndef IKVM_VIRT
171		IKVM_VIRT=0
172	.endif
173	.ifndef ISTACK
174		ISTACK=1
175	.endif
176	.ifndef IKUAP
177		IKUAP=1
178	.endif
179.endm
180
181/*
182 * All interrupts which set HSRR registers, as well as SRESET and MCE and
183 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
184 * so they all generally need to test whether they were taken in guest context.
185 *
186 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
187 * taken with MSR[HV]=0.
188 *
189 * Interrupts which set SRR registers (with the above exceptions) do not
190 * elevate to MSR[HV]=1 mode, though most can be taken when running with
191 * MSR[HV]=1  (e.g., bare metal kernel and userspace). So these interrupts do
192 * not need to test whether a guest is running because they get delivered to
193 * the guest directly, including nested HV KVM guests.
194 *
195 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
196 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
197 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
198 * delivered to the real-mode entry point, therefore such interrupts only test
199 * KVM in their real mode handlers, and only when PR KVM is possible.
200 *
201 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
202 * delivered in real-mode when the MMU is in hash mode because the MMU
203 * registers are not set appropriately to translate host addresses. In nested
204 * radix mode these can be delivered in virt-mode as the host translations are
205 * used implicitly (see: effective LPID, effective PID).
206 */
207
208/*
209 * If an interrupt is taken while a guest is running, it is immediately routed
210 * to KVM to handle.
211 */
212
213.macro KVMTEST name handler
214#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215	lbz	r10,HSTATE_IN_GUEST(r13)
216	cmpwi	r10,0
217	/* HSRR variants have the 0x2 bit added to their trap number */
218	.if IHSRR_IF_HVMODE
219	BEGIN_FTR_SECTION
220	li	r10,(IVEC + 0x2)
221	FTR_SECTION_ELSE
222	li	r10,(IVEC)
223	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
224	.elseif IHSRR
225	li	r10,(IVEC + 0x2)
226	.else
227	li	r10,(IVEC)
228	.endif
229	bne	\handler
230#endif
231.endm
232
233/*
234 * This is the BOOK3S interrupt entry code macro.
235 *
236 * This can result in one of several things happening:
237 * - Branch to the _common handler, relocated, in virtual mode.
238 *   These are normal interrupts (synchronous and asynchronous) handled by
239 *   the kernel.
240 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
241 *   These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
242 *   / intended for host or guest kernel, but KVM must always be involved
243 *   because the machine state is set for guest execution.
244 * - Branch to the masked handler, unrelocated.
245 *   These occur when maskable asynchronous interrupts are taken with the
246 *   irq_soft_mask set.
247 * - Branch to an "early" handler in real mode but relocated.
248 *   This is done if early=1. MCE and HMI use these to handle errors in real
249 *   mode.
250 * - Fall through and continue executing in real, unrelocated mode.
251 *   This is done if early=2.
252 */
253
254.macro GEN_BRANCH_TO_COMMON name, virt
255	.if IREALMODE_COMMON
256	LOAD_HANDLER(r10, \name\()_common)
257	mtctr	r10
258	bctr
259	.else
260	.if \virt
261#ifndef CONFIG_RELOCATABLE
262	b	\name\()_common_virt
263#else
264	LOAD_HANDLER(r10, \name\()_common_virt)
265	mtctr	r10
266	bctr
267#endif
268	.else
269	LOAD_HANDLER(r10, \name\()_common_real)
270	mtctr	r10
271	bctr
272	.endif
273	.endif
274.endm
275
276.macro GEN_INT_ENTRY name, virt, ool=0
277	SET_SCRATCH0(r13)			/* save r13 */
278	GET_PACA(r13)
279	std	r9,IAREA+EX_R9(r13)		/* save r9 */
280BEGIN_FTR_SECTION
281	mfspr	r9,SPRN_PPR
282END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
283	HMT_MEDIUM
284	std	r10,IAREA+EX_R10(r13)		/* save r10 */
285	.if ICFAR
286BEGIN_FTR_SECTION
287	mfspr	r10,SPRN_CFAR
288END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
289	.elseif ICFAR_IF_HVMODE
290BEGIN_FTR_SECTION
291  BEGIN_FTR_SECTION_NESTED(69)
292	mfspr	r10,SPRN_CFAR
293  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
294FTR_SECTION_ELSE
295  BEGIN_FTR_SECTION_NESTED(69)
296	li	r10,0
297  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
298ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
299	.endif
300	.if \ool
301	.if !\virt
302	b	tramp_real_\name
303	.pushsection .text
304	TRAMP_REAL_BEGIN(tramp_real_\name)
305	.else
306	b	tramp_virt_\name
307	.pushsection .text
308	TRAMP_VIRT_BEGIN(tramp_virt_\name)
309	.endif
310	.endif
311
312BEGIN_FTR_SECTION
313	std	r9,IAREA+EX_PPR(r13)
314END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
315	.if ICFAR || ICFAR_IF_HVMODE
316BEGIN_FTR_SECTION
317	std	r10,IAREA+EX_CFAR(r13)
318END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
319	.endif
320	INTERRUPT_TO_KERNEL
321	mfctr	r10
322	std	r10,IAREA+EX_CTR(r13)
323	mfcr	r9
324	std	r11,IAREA+EX_R11(r13)		/* save r11 - r12 */
325	std	r12,IAREA+EX_R12(r13)
326
327	/*
328	 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
329	 * because a d-side MCE will clobber those registers so is
330	 * not recoverable if they are live.
331	 */
332	GET_SCRATCH0(r10)
333	std	r10,IAREA+EX_R13(r13)
334	.if IDAR && !IISIDE
335	.if IHSRR
336	mfspr	r10,SPRN_HDAR
337	.else
338	mfspr	r10,SPRN_DAR
339	.endif
340	std	r10,IAREA+EX_DAR(r13)
341	.endif
342	.if IDSISR && !IISIDE
343	.if IHSRR
344	mfspr	r10,SPRN_HDSISR
345	.else
346	mfspr	r10,SPRN_DSISR
347	.endif
348	stw	r10,IAREA+EX_DSISR(r13)
349	.endif
350
351	.if IHSRR_IF_HVMODE
352	BEGIN_FTR_SECTION
353	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
354	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
355	FTR_SECTION_ELSE
356	mfspr	r11,SPRN_SRR0		/* save SRR0 */
357	mfspr	r12,SPRN_SRR1		/* and SRR1 */
358	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
359	.elseif IHSRR
360	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
361	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
362	.else
363	mfspr	r11,SPRN_SRR0		/* save SRR0 */
364	mfspr	r12,SPRN_SRR1		/* and SRR1 */
365	.endif
366
367	.if IBRANCH_TO_COMMON
368	GEN_BRANCH_TO_COMMON \name \virt
369	.endif
370
371	.if \ool
372	.popsection
373	.endif
374.endm
375
376/*
377 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
378 * entry, except in the case of the real-mode handlers which require
379 * __GEN_REALMODE_COMMON_ENTRY.
380 *
381 * This switches to virtual mode and sets MSR[RI].
382 */
383.macro __GEN_COMMON_ENTRY name
384DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
385\name\()_common_real:
386	.if IKVM_REAL
387		KVMTEST \name kvm_interrupt
388	.endif
389
390	ld	r10,PACAKMSR(r13)	/* get MSR value for kernel */
391	/* MSR[RI] is clear iff using SRR regs */
392	.if IHSRR_IF_HVMODE
393	BEGIN_FTR_SECTION
394	xori	r10,r10,MSR_RI
395	END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
396	.elseif ! IHSRR
397	xori	r10,r10,MSR_RI
398	.endif
399	mtmsrd	r10
400
401	.if IVIRT
402	.if IKVM_VIRT
403	b	1f /* skip the virt test coming from real */
404	.endif
405
406	.balign IFETCH_ALIGN_BYTES
407DEFINE_FIXED_SYMBOL(\name\()_common_virt, text)
408\name\()_common_virt:
409	.if IKVM_VIRT
410		KVMTEST \name kvm_interrupt
4111:
412	.endif
413	.endif /* IVIRT */
414.endm
415
416/*
417 * Don't switch to virt mode. Used for early MCE and HMI handlers that
418 * want to run in real mode.
419 */
420.macro __GEN_REALMODE_COMMON_ENTRY name
421DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
422\name\()_common_real:
423	.if IKVM_REAL
424		KVMTEST \name kvm_interrupt
425	.endif
426.endm
427
428.macro __GEN_COMMON_BODY name
429	.if IMASK
430		.if ! ISTACK
431		.error "No support for masked interrupt to use custom stack"
432		.endif
433
434		/* If coming from user, skip soft-mask tests. */
435		andi.	r10,r12,MSR_PR
436		bne	3f
437
438		/*
439		 * Kernel code running below __end_soft_masked may be
440		 * implicitly soft-masked if it is within the regions
441		 * in the soft mask table.
442		 */
443		LOAD_HANDLER(r10, __end_soft_masked)
444		cmpld	r11,r10
445		bge+	1f
446
447		/* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */
448		mtctr	r12
449		stw	r9,PACA_EXGEN+EX_CCR(r13)
450		SEARCH_SOFT_MASK_TABLE
451		cmpdi	r12,0
452		mfctr	r12		/* Restore r12 to SRR1 */
453		lwz	r9,PACA_EXGEN+EX_CCR(r13)
454		beq	1f		/* Not in soft-mask table */
455		li	r10,IMASK
456		b	2f		/* In soft-mask table, always mask */
457
458		/* Test the soft mask state against our interrupt's bit */
4591:		lbz	r10,PACAIRQSOFTMASK(r13)
4602:		andi.	r10,r10,IMASK
461		/* Associate vector numbers with bits in paca->irq_happened */
462		.if IVEC == 0x500 || IVEC == 0xea0
463		li	r10,PACA_IRQ_EE
464		.elseif IVEC == 0x900
465		li	r10,PACA_IRQ_DEC
466		.elseif IVEC == 0xa00 || IVEC == 0xe80
467		li	r10,PACA_IRQ_DBELL
468		.elseif IVEC == 0xe60
469		li	r10,PACA_IRQ_HMI
470		.elseif IVEC == 0xf00
471		li	r10,PACA_IRQ_PMI
472		.else
473		.abort "Bad maskable vector"
474		.endif
475
476		.if IHSRR_IF_HVMODE
477		BEGIN_FTR_SECTION
478		bne	masked_Hinterrupt
479		FTR_SECTION_ELSE
480		bne	masked_interrupt
481		ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
482		.elseif IHSRR
483		bne	masked_Hinterrupt
484		.else
485		bne	masked_interrupt
486		.endif
487	.endif
488
489	.if ISTACK
490	andi.	r10,r12,MSR_PR		/* See if coming from user	*/
4913:	mr	r10,r1			/* Save r1			*/
492	subi	r1,r1,INT_FRAME_SIZE	/* alloc frame on kernel stack	*/
493	beq-	100f
494	ld	r1,PACAKSAVE(r13)	/* kernel stack to use		*/
495100:	tdgei	r1,-INT_FRAME_SIZE	/* trap if r1 is in userspace	*/
496	EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
497	.endif
498
499	std	r9,_CCR(r1)		/* save CR in stackframe	*/
500	std	r11,_NIP(r1)		/* save SRR0 in stackframe	*/
501	std	r12,_MSR(r1)		/* save SRR1 in stackframe	*/
502	std	r10,0(r1)		/* make stack chain pointer	*/
503	std	r0,GPR0(r1)		/* save r0 in stackframe	*/
504	std	r10,GPR1(r1)		/* save r1 in stackframe	*/
505
506	/* Mark our [H]SRRs valid for return */
507	li	r10,1
508	.if IHSRR_IF_HVMODE
509	BEGIN_FTR_SECTION
510	stb	r10,PACAHSRR_VALID(r13)
511	FTR_SECTION_ELSE
512	stb	r10,PACASRR_VALID(r13)
513	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
514	.elseif IHSRR
515	stb	r10,PACAHSRR_VALID(r13)
516	.else
517	stb	r10,PACASRR_VALID(r13)
518	.endif
519
520	.if ISTACK
521	.if IKUAP
522	kuap_save_amr_and_lock r9, r10, cr1, cr0
523	.endif
524	beq	101f			/* if from kernel mode		*/
525BEGIN_FTR_SECTION
526	ld	r9,IAREA+EX_PPR(r13)	/* Read PPR from paca		*/
527	std	r9,_PPR(r1)
528END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
529101:
530	.else
531	.if IKUAP
532	kuap_save_amr_and_lock r9, r10, cr1
533	.endif
534	.endif
535
536	/* Save original regs values from save area to stack frame. */
537	ld	r9,IAREA+EX_R9(r13)	/* move r9, r10 to stackframe	*/
538	ld	r10,IAREA+EX_R10(r13)
539	std	r9,GPR9(r1)
540	std	r10,GPR10(r1)
541	ld	r9,IAREA+EX_R11(r13)	/* move r11 - r13 to stackframe	*/
542	ld	r10,IAREA+EX_R12(r13)
543	ld	r11,IAREA+EX_R13(r13)
544	std	r9,GPR11(r1)
545	std	r10,GPR12(r1)
546	std	r11,GPR13(r1)
547
548	SAVE_NVGPRS(r1)
549
550	.if IDAR
551	.if IISIDE
552	ld	r10,_NIP(r1)
553	.else
554	ld	r10,IAREA+EX_DAR(r13)
555	.endif
556	std	r10,_DAR(r1)
557	.endif
558
559	.if IDSISR
560	.if IISIDE
561	ld	r10,_MSR(r1)
562	lis	r11,DSISR_SRR1_MATCH_64S@h
563	and	r10,r10,r11
564	.else
565	lwz	r10,IAREA+EX_DSISR(r13)
566	.endif
567	std	r10,_DSISR(r1)
568	.endif
569
570BEGIN_FTR_SECTION
571	.if ICFAR || ICFAR_IF_HVMODE
572	ld	r10,IAREA+EX_CFAR(r13)
573	.else
574	li	r10,0
575	.endif
576	std	r10,ORIG_GPR3(r1)
577END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
578	ld	r10,IAREA+EX_CTR(r13)
579	std	r10,_CTR(r1)
580	std	r2,GPR2(r1)		/* save r2 in stackframe	*/
581	SAVE_GPRS(3, 8, r1)		/* save r3 - r8 in stackframe   */
582	mflr	r9			/* Get LR, later save to stack	*/
583	LOAD_PACA_TOC()			/* get kernel TOC into r2	*/
584	std	r9,_LINK(r1)
585	lbz	r10,PACAIRQSOFTMASK(r13)
586	mfspr	r11,SPRN_XER		/* save XER in stackframe	*/
587	std	r10,SOFTE(r1)
588	std	r11,_XER(r1)
589	li	r9,IVEC
590	std	r9,_TRAP(r1)		/* set trap number		*/
591	li	r10,0
592	LOAD_REG_IMMEDIATE(r11, STACK_FRAME_REGS_MARKER)
593	std	r10,RESULT(r1)		/* clear regs->result		*/
594	std	r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame	*/
595.endm
596
597/*
598 * On entry r13 points to the paca, r9-r13 are saved in the paca,
599 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
600 * SRR1, and relocation is on.
601 *
602 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
603 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
604 */
605.macro GEN_COMMON name
606	__GEN_COMMON_ENTRY \name
607	__GEN_COMMON_BODY \name
608.endm
609
610.macro SEARCH_RESTART_TABLE
611#ifdef CONFIG_RELOCATABLE
612	mr	r12,r2
613	LOAD_PACA_TOC()
614	LOAD_REG_ADDR(r9, __start___restart_table)
615	LOAD_REG_ADDR(r10, __stop___restart_table)
616	mr	r2,r12
617#else
618	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table)
619	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table)
620#endif
621300:
622	cmpd	r9,r10
623	beq	302f
624	ld	r12,0(r9)
625	cmpld	r11,r12
626	blt	301f
627	ld	r12,8(r9)
628	cmpld	r11,r12
629	bge	301f
630	ld	r12,16(r9)
631	b	303f
632301:
633	addi	r9,r9,24
634	b	300b
635302:
636	li	r12,0
637303:
638.endm
639
640.macro SEARCH_SOFT_MASK_TABLE
641#ifdef CONFIG_RELOCATABLE
642	mr	r12,r2
643	LOAD_PACA_TOC()
644	LOAD_REG_ADDR(r9, __start___soft_mask_table)
645	LOAD_REG_ADDR(r10, __stop___soft_mask_table)
646	mr	r2,r12
647#else
648	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table)
649	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table)
650#endif
651300:
652	cmpd	r9,r10
653	beq	302f
654	ld	r12,0(r9)
655	cmpld	r11,r12
656	blt	301f
657	ld	r12,8(r9)
658	cmpld	r11,r12
659	bge	301f
660	li	r12,1
661	b	303f
662301:
663	addi	r9,r9,16
664	b	300b
665302:
666	li	r12,0
667303:
668.endm
669
670/*
671 * Restore all registers including H/SRR0/1 saved in a stack frame of a
672 * standard exception.
673 */
674.macro EXCEPTION_RESTORE_REGS hsrr=0
675	/* Move original SRR0 and SRR1 into the respective regs */
676	ld	r9,_MSR(r1)
677	li	r10,0
678	.if \hsrr
679	mtspr	SPRN_HSRR1,r9
680	stb	r10,PACAHSRR_VALID(r13)
681	.else
682	mtspr	SPRN_SRR1,r9
683	stb	r10,PACASRR_VALID(r13)
684	.endif
685	ld	r9,_NIP(r1)
686	.if \hsrr
687	mtspr	SPRN_HSRR0,r9
688	.else
689	mtspr	SPRN_SRR0,r9
690	.endif
691	ld	r9,_CTR(r1)
692	mtctr	r9
693	ld	r9,_XER(r1)
694	mtxer	r9
695	ld	r9,_LINK(r1)
696	mtlr	r9
697	ld	r9,_CCR(r1)
698	mtcr	r9
699	REST_GPRS(2, 13, r1)
700	REST_GPR(0, r1)
701	/* restore original r1. */
702	ld	r1,GPR1(r1)
703.endm
704
705/*
706 * EARLY_BOOT_FIXUP - Fix real-mode interrupt with wrong endian in early boot.
707 *
708 * There's a short window during boot where although the kernel is running
709 * little endian, any exceptions will cause the CPU to switch back to big
710 * endian. For example a WARN() boils down to a trap instruction, which will
711 * cause a program check, and we end up here but with the CPU in big endian
712 * mode. The first instruction of the program check handler (in GEN_INT_ENTRY
713 * below) is an mtsprg, which when executed in the wrong endian is an lhzu with
714 * a ~3GB displacement from r3. The content of r3 is random, so that is a load
715 * from some random location, and depending on the system can easily lead to a
716 * checkstop, or an infinitely recursive page fault.
717 *
718 * So to handle that case we have a trampoline here that can detect we are in
719 * the wrong endian and flip us back to the correct endian. We can't flip
720 * MSR[LE] using mtmsr, so we have to use rfid. That requires backing up SRR0/1
721 * as well as a GPR. To do that we use SPRG0/2/3, as SPRG1 is already used for
722 * the paca. SPRG3 is user readable, but this trampoline is only active very
723 * early in boot, and SPRG3 will be reinitialised in vdso_getcpu_init() before
724 * userspace starts.
725 */
726.macro EARLY_BOOT_FIXUP
727BEGIN_FTR_SECTION
728#ifdef CONFIG_CPU_LITTLE_ENDIAN
729	tdi   0,0,0x48    // Trap never, or in reverse endian: b . + 8
730	b     2f          // Skip trampoline if endian is correct
731	.long 0xa643707d  // mtsprg  0, r11      Backup r11
732	.long 0xa6027a7d  // mfsrr0  r11
733	.long 0xa643727d  // mtsprg  2, r11      Backup SRR0 in SPRG2
734	.long 0xa6027b7d  // mfsrr1  r11
735	.long 0xa643737d  // mtsprg  3, r11      Backup SRR1 in SPRG3
736	.long 0xa600607d  // mfmsr   r11
737	.long 0x01006b69  // xori    r11, r11, 1 Invert MSR[LE]
738	.long 0xa6037b7d  // mtsrr1  r11
739	/*
740	 * This is 'li  r11,1f' where 1f is the absolute address of that
741	 * label, byteswapped into the SI field of the instruction.
742	 */
743	.long 0x00006039 | \
744		((ABS_ADDR(1f, real_vectors) & 0x00ff) << 24) | \
745		((ABS_ADDR(1f, real_vectors) & 0xff00) << 8)
746	.long 0xa6037a7d  // mtsrr0  r11
747	.long 0x2400004c  // rfid
7481:
749	mfsprg r11, 3
750	mtsrr1 r11        // Restore SRR1
751	mfsprg r11, 2
752	mtsrr0 r11        // Restore SRR0
753	mfsprg r11, 0     // Restore r11
7542:
755#endif
756	/*
757	 * program check could hit at any time, and pseries can not block
758	 * MSR[ME] in early boot. So check if there is anything useful in r13
759	 * yet, and spin forever if not.
760	 */
761	mtsprg	0, r11
762	mfcr	r11
763	cmpdi	r13, 0
764	beq	.
765	mtcr	r11
766	mfsprg	r11, 0
767END_FTR_SECTION(0, 1)     // nop out after boot
768.endm
769
770/*
771 * There are a few constraints to be concerned with.
772 * - Real mode exceptions code/data must be located at their physical location.
773 * - Virtual mode exceptions must be mapped at their 0xc000... location.
774 * - Fixed location code must not call directly beyond the __end_interrupts
775 *   area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
776 *   must be used.
777 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
778 *   virtual 0xc00...
779 * - Conditional branch targets must be within +/-32K of caller.
780 *
781 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
782 * therefore don't have to run in physically located code or rfid to
783 * virtual mode kernel code. However on relocatable kernels they do have
784 * to branch to KERNELBASE offset because the rest of the kernel (outside
785 * the exception vectors) may be located elsewhere.
786 *
787 * Virtual exceptions correspond with physical, except their entry points
788 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
789 * offset applied. Virtual exceptions are enabled with the Alternate
790 * Interrupt Location (AIL) bit set in the LPCR. However this does not
791 * guarantee they will be delivered virtually. Some conditions (see the ISA)
792 * cause exceptions to be delivered in real mode.
793 *
794 * The scv instructions are a special case. They get a 0x3000 offset applied.
795 * scv exceptions have unique reentrancy properties, see below.
796 *
797 * It's impossible to receive interrupts below 0x300 via AIL.
798 *
799 * KVM: None of the virtual exceptions are from the guest. Anything that
800 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
801 *
802 *
803 * We layout physical memory as follows:
804 * 0x0000 - 0x00ff : Secondary processor spin code
805 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
806 * 0x1900 - 0x2fff : Real mode trampolines
807 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
808 * 0x5900 - 0x6fff : Relon mode trampolines
809 * 0x7000 - 0x7fff : FWNMI data area
810 * 0x8000 -   .... : Common interrupt handlers, remaining early
811 *                   setup code, rest of kernel.
812 *
813 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
814 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
815 * vectors there.
816 */
817OPEN_FIXED_SECTION(real_vectors,        0x0100, 0x1900)
818OPEN_FIXED_SECTION(real_trampolines,    0x1900, 0x3000)
819OPEN_FIXED_SECTION(virt_vectors,        0x3000, 0x5900)
820OPEN_FIXED_SECTION(virt_trampolines,    0x5900, 0x7000)
821
822#ifdef CONFIG_PPC_POWERNV
823	.globl start_real_trampolines
824	.globl end_real_trampolines
825	.globl start_virt_trampolines
826	.globl end_virt_trampolines
827#endif
828
829#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
830/*
831 * Data area reserved for FWNMI option.
832 * This address (0x7000) is fixed by the RPA.
833 * pseries and powernv need to keep the whole page from
834 * 0x7000 to 0x8000 free for use by the firmware
835 */
836ZERO_FIXED_SECTION(fwnmi_page,          0x7000, 0x8000)
837OPEN_TEXT_SECTION(0x8000)
838#else
839OPEN_TEXT_SECTION(0x7000)
840#endif
841
842USE_FIXED_SECTION(real_vectors)
843
844/*
845 * This is the start of the interrupt handlers for pSeries
846 * This code runs with relocation off.
847 * Code from here to __end_interrupts gets copied down to real
848 * address 0x100 when we are running a relocatable kernel.
849 * Therefore any relative branches in this section must only
850 * branch to labels in this section.
851 */
852	.globl __start_interrupts
853__start_interrupts:
854
855/**
856 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
857 * This is a synchronous interrupt invoked with the "scv" instruction. The
858 * system call does not alter the HV bit, so it is directed to the OS.
859 *
860 * Handling:
861 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
862 * In particular, this means we can take a maskable interrupt at any point
863 * in the scv handler, which is unlike any other interrupt. This is solved
864 * by treating the instruction addresses in the handler as being soft-masked,
865 * by adding a SOFT_MASK_TABLE entry for them.
866 *
867 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
868 * ensure scv is never executed with relocation off, which means AIL-0
869 * should never happen.
870 *
871 * Before leaving the following inside-__end_soft_masked text, at least of the
872 * following must be true:
873 * - MSR[PR]=1 (i.e., return to userspace)
874 * - MSR_EE|MSR_RI is clear (no reentrant exceptions)
875 * - Standard kernel environment is set up (stack, paca, etc)
876 *
877 * KVM:
878 * These interrupts do not elevate HV 0->1, so HV is not involved. PR KVM
879 * ensures that FSCR[SCV] is disabled whenever it has to force AIL off.
880 *
881 * Call convention:
882 *
883 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
884 */
885EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
886	/* SCV 0 */
887	mr	r9,r13
888	GET_PACA(r13)
889	mflr	r11
890	mfctr	r12
891	li	r10,IRQS_ALL_DISABLED
892	stb	r10,PACAIRQSOFTMASK(r13)
893#ifdef CONFIG_RELOCATABLE
894	b	system_call_vectored_tramp
895#else
896	b	system_call_vectored_common
897#endif
898	nop
899
900	/* SCV 1 - 127 */
901	.rept	127
902	mr	r9,r13
903	GET_PACA(r13)
904	mflr	r11
905	mfctr	r12
906	li	r10,IRQS_ALL_DISABLED
907	stb	r10,PACAIRQSOFTMASK(r13)
908	li	r0,-1 /* cause failure */
909#ifdef CONFIG_RELOCATABLE
910	b	system_call_vectored_sigill_tramp
911#else
912	b	system_call_vectored_sigill
913#endif
914	.endr
915EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
916
917// Treat scv vectors as soft-masked, see comment above.
918// Use absolute values rather than labels here, so they don't get relocated,
919// because this code runs unrelocated.
920SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000)
921
922#ifdef CONFIG_RELOCATABLE
923TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
924	__LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines)
925	mtctr	r10
926	bctr
927
928TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
929	__LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines)
930	mtctr	r10
931	bctr
932#endif
933
934
935/* No virt vectors corresponding with 0x0..0x100 */
936EXC_VIRT_NONE(0x4000, 0x100)
937
938
939/**
940 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
941 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
942 * It is caused by:
943 * - Wake from power-saving state, on powernv.
944 * - An NMI from another CPU, triggered by firmware or hypercall.
945 * - As crash/debug signal injected from BMC, firmware or hypervisor.
946 *
947 * Handling:
948 * Power-save wakeup is the only performance critical path, so this is
949 * determined quickly as possible first. In this case volatile registers
950 * can be discarded and SPRs like CFAR don't need to be read.
951 *
952 * If not a powersave wakeup, then it's run as a regular interrupt, however
953 * it uses its own stack and PACA save area to preserve the regular kernel
954 * environment for debugging.
955 *
956 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
957 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
958 * correct to switch to virtual mode to run the regular interrupt handler
959 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
960 * is clear).
961 *
962 * FWNMI:
963 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
964 * entry point with a different register set up. Some hypervisors will
965 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
966 *
967 * KVM:
968 * Unlike most SRR interrupts, this may be taken by the host while executing
969 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
970 * mode and then raise the sreset.
971 */
972INT_DEFINE_BEGIN(system_reset)
973	IVEC=0x100
974	IAREA=PACA_EXNMI
975	IVIRT=0 /* no virt entry point */
976	ISTACK=0
977	IKVM_REAL=1
978INT_DEFINE_END(system_reset)
979
980EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
981#ifdef CONFIG_PPC_P7_NAP
982	/*
983	 * If running native on arch 2.06 or later, check if we are waking up
984	 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
985	 * bits 46:47. A non-0 value indicates that we are coming from a power
986	 * saving state. The idle wakeup handler initially runs in real mode,
987	 * but we branch to the 0xc000... address so we can turn on relocation
988	 * with mtmsrd later, after SPRs are restored.
989	 *
990	 * Careful to minimise cost for the fast path (idle wakeup) while
991	 * also avoiding clobbering CFAR for the debug path (non-idle).
992	 *
993	 * For the idle wake case volatile registers can be clobbered, which
994	 * is why we use those initially. If it turns out to not be an idle
995	 * wake, carefully put everything back the way it was, so we can use
996	 * common exception macros to handle it.
997	 */
998BEGIN_FTR_SECTION
999	SET_SCRATCH0(r13)
1000	GET_PACA(r13)
1001	std	r3,PACA_EXNMI+0*8(r13)
1002	std	r4,PACA_EXNMI+1*8(r13)
1003	std	r5,PACA_EXNMI+2*8(r13)
1004	mfspr	r3,SPRN_SRR1
1005	mfocrf	r4,0x80
1006	rlwinm.	r5,r3,47-31,30,31
1007	bne+	system_reset_idle_wake
1008	/* Not powersave wakeup. Restore regs for regular interrupt handler. */
1009	mtocrf	0x80,r4
1010	ld	r3,PACA_EXNMI+0*8(r13)
1011	ld	r4,PACA_EXNMI+1*8(r13)
1012	ld	r5,PACA_EXNMI+2*8(r13)
1013	GET_SCRATCH0(r13)
1014END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1015#endif
1016
1017	GEN_INT_ENTRY system_reset, virt=0
1018	/*
1019	 * In theory, we should not enable relocation here if it was disabled
1020	 * in SRR1, because the MMU may not be configured to support it (e.g.,
1021	 * SLB may have been cleared). In practice, there should only be a few
1022	 * small windows where that's the case, and sreset is considered to
1023	 * be dangerous anyway.
1024	 */
1025EXC_REAL_END(system_reset, 0x100, 0x100)
1026EXC_VIRT_NONE(0x4100, 0x100)
1027
1028#ifdef CONFIG_PPC_P7_NAP
1029TRAMP_REAL_BEGIN(system_reset_idle_wake)
1030	/* We are waking up from idle, so may clobber any volatile register */
1031	cmpwi	cr1,r5,2
1032	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
1033	__LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines)
1034	mtctr	r12
1035	bctr
1036#endif
1037
1038#ifdef CONFIG_PPC_PSERIES
1039/*
1040 * Vectors for the FWNMI option.  Share common code.
1041 */
1042TRAMP_REAL_BEGIN(system_reset_fwnmi)
1043	GEN_INT_ENTRY system_reset, virt=0
1044
1045#endif /* CONFIG_PPC_PSERIES */
1046
1047EXC_COMMON_BEGIN(system_reset_common)
1048	__GEN_COMMON_ENTRY system_reset
1049	/*
1050	 * Increment paca->in_nmi. When the interrupt entry wrapper later
1051	 * enable MSR_RI, then SLB or MCE will be able to recover, but a nested
1052	 * NMI will notice in_nmi and not recover because of the use of the NMI
1053	 * stack. in_nmi reentrancy is tested in system_reset_exception.
1054	 */
1055	lhz	r10,PACA_IN_NMI(r13)
1056	addi	r10,r10,1
1057	sth	r10,PACA_IN_NMI(r13)
1058
1059	mr	r10,r1
1060	ld	r1,PACA_NMI_EMERG_SP(r13)
1061	subi	r1,r1,INT_FRAME_SIZE
1062	__GEN_COMMON_BODY system_reset
1063
1064	addi	r3,r1,STACK_FRAME_OVERHEAD
1065	bl	system_reset_exception
1066
1067	/* Clear MSR_RI before setting SRR0 and SRR1. */
1068	li	r9,0
1069	mtmsrd	r9,1
1070
1071	/*
1072	 * MSR_RI is clear, now we can decrement paca->in_nmi.
1073	 */
1074	lhz	r10,PACA_IN_NMI(r13)
1075	subi	r10,r10,1
1076	sth	r10,PACA_IN_NMI(r13)
1077
1078	kuap_kernel_restore r9, r10
1079	EXCEPTION_RESTORE_REGS
1080	RFI_TO_USER_OR_KERNEL
1081
1082
1083/**
1084 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1085 * This is a non-maskable interrupt always taken in real-mode. It can be
1086 * synchronous or asynchronous, caused by hardware or software, and it may be
1087 * taken in a power-saving state.
1088 *
1089 * Handling:
1090 * Similarly to system reset, this uses its own stack and PACA save area,
1091 * the difference is re-entrancy is allowed on the machine check stack.
1092 *
1093 * machine_check_early is run in real mode, and carefully decodes the
1094 * machine check and tries to handle it (e.g., flush the SLB if there was an
1095 * error detected there), determines if it was recoverable and logs the
1096 * event.
1097 *
1098 * This early code does not "reconcile" irq soft-mask state like SRESET or
1099 * regular interrupts do, so irqs_disabled() among other things may not work
1100 * properly (irq disable/enable already doesn't work because irq tracing can
1101 * not work in real mode).
1102 *
1103 * Then, depending on the execution context when the interrupt is taken, there
1104 * are 3 main actions:
1105 * - Executing in kernel mode. The event is queued with irq_work, which means
1106 *   it is handled when it is next safe to do so (i.e., the kernel has enabled
1107 *   interrupts), which could be immediately when the interrupt returns. This
1108 *   avoids nasty issues like switching to virtual mode when the MMU is in a
1109 *   bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1110 *   but it has different priorities). Check to see if the CPU was in power
1111 *   save, and return via the wake up code if it was.
1112 *
1113 * - Executing in user mode. machine_check_exception is run like a normal
1114 *   interrupt handler, which processes the data generated by the early handler.
1115 *
1116 * - Executing in guest mode. The interrupt is run with its KVM test, and
1117 *   branches to KVM to deal with. KVM may queue the event for the host
1118 *   to report later.
1119 *
1120 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1121 * or SCRATCH0 is in use, it may cause a crash.
1122 *
1123 * KVM:
1124 * See SRESET.
1125 */
1126INT_DEFINE_BEGIN(machine_check_early)
1127	IVEC=0x200
1128	IAREA=PACA_EXMC
1129	IVIRT=0 /* no virt entry point */
1130	IREALMODE_COMMON=1
1131	ISTACK=0
1132	IDAR=1
1133	IDSISR=1
1134	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1135INT_DEFINE_END(machine_check_early)
1136
1137INT_DEFINE_BEGIN(machine_check)
1138	IVEC=0x200
1139	IAREA=PACA_EXMC
1140	IVIRT=0 /* no virt entry point */
1141	IDAR=1
1142	IDSISR=1
1143	IKVM_REAL=1
1144INT_DEFINE_END(machine_check)
1145
1146EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1147	EARLY_BOOT_FIXUP
1148	GEN_INT_ENTRY machine_check_early, virt=0
1149EXC_REAL_END(machine_check, 0x200, 0x100)
1150EXC_VIRT_NONE(0x4200, 0x100)
1151
1152#ifdef CONFIG_PPC_PSERIES
1153TRAMP_REAL_BEGIN(machine_check_fwnmi)
1154	/* See comment at machine_check exception, don't turn on RI */
1155	GEN_INT_ENTRY machine_check_early, virt=0
1156#endif
1157
1158#define MACHINE_CHECK_HANDLER_WINDUP			\
1159	/* Clear MSR_RI before setting SRR0 and SRR1. */\
1160	li	r9,0;					\
1161	mtmsrd	r9,1;		/* Clear MSR_RI */	\
1162	/* Decrement paca->in_mce now RI is clear. */	\
1163	lhz	r12,PACA_IN_MCE(r13);			\
1164	subi	r12,r12,1;				\
1165	sth	r12,PACA_IN_MCE(r13);			\
1166	EXCEPTION_RESTORE_REGS
1167
1168EXC_COMMON_BEGIN(machine_check_early_common)
1169	__GEN_REALMODE_COMMON_ENTRY machine_check_early
1170
1171	/*
1172	 * Switch to mc_emergency stack and handle re-entrancy (we limit
1173	 * the nested MCE upto level 4 to avoid stack overflow).
1174	 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1175	 *
1176	 * We use paca->in_mce to check whether this is the first entry or
1177	 * nested machine check. We increment paca->in_mce to track nested
1178	 * machine checks.
1179	 *
1180	 * If this is the first entry then set stack pointer to
1181	 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1182	 * stack frame on mc_emergency stack.
1183	 *
1184	 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1185	 * checkstop if we get another machine check exception before we do
1186	 * rfid with MSR_ME=1.
1187	 *
1188	 * This interrupt can wake directly from idle. If that is the case,
1189	 * the machine check is handled then the idle wakeup code is called
1190	 * to restore state.
1191	 */
1192	lhz	r10,PACA_IN_MCE(r13)
1193	cmpwi	r10,0			/* Are we in nested machine check */
1194	cmpwi	cr1,r10,MAX_MCE_DEPTH	/* Are we at maximum nesting */
1195	addi	r10,r10,1		/* increment paca->in_mce */
1196	sth	r10,PACA_IN_MCE(r13)
1197
1198	mr	r10,r1			/* Save r1 */
1199	bne	1f
1200	/* First machine check entry */
1201	ld	r1,PACAMCEMERGSP(r13)	/* Use MC emergency stack */
12021:	/* Limit nested MCE to level 4 to avoid stack overflow */
1203	bgt	cr1,unrecoverable_mce	/* Check if we hit limit of 4 */
1204	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame */
1205
1206	__GEN_COMMON_BODY machine_check_early
1207
1208BEGIN_FTR_SECTION
1209	bl	enable_machine_check
1210END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1211	addi	r3,r1,STACK_FRAME_OVERHEAD
1212BEGIN_FTR_SECTION
1213	bl	machine_check_early_boot
1214END_FTR_SECTION(0, 1)     // nop out after boot
1215	bl	machine_check_early
1216	std	r3,RESULT(r1)	/* Save result */
1217	ld	r12,_MSR(r1)
1218
1219#ifdef CONFIG_PPC_P7_NAP
1220	/*
1221	 * Check if thread was in power saving mode. We come here when any
1222	 * of the following is true:
1223	 * a. thread wasn't in power saving mode
1224	 * b. thread was in power saving mode with no state loss,
1225	 *    supervisor state loss or hypervisor state loss.
1226	 *
1227	 * Go back to nap/sleep/winkle mode again if (b) is true.
1228	 */
1229BEGIN_FTR_SECTION
1230	rlwinm.	r11,r12,47-31,30,31
1231	bne	machine_check_idle_common
1232END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1233#endif
1234
1235#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1236	/*
1237	 * Check if we are coming from guest. If yes, then run the normal
1238	 * exception handler which will take the
1239	 * machine_check_kvm->kvm_interrupt branch to deliver the MC event
1240	 * to guest.
1241	 */
1242	lbz	r11,HSTATE_IN_GUEST(r13)
1243	cmpwi	r11,0			/* Check if coming from guest */
1244	bne	mce_deliver		/* continue if we are. */
1245#endif
1246
1247	/*
1248	 * Check if we are coming from userspace. If yes, then run the normal
1249	 * exception handler which will deliver the MC event to this kernel.
1250	 */
1251	andi.	r11,r12,MSR_PR		/* See if coming from user. */
1252	bne	mce_deliver		/* continue in V mode if we are. */
1253
1254	/*
1255	 * At this point we are coming from kernel context.
1256	 * Queue up the MCE event and return from the interrupt.
1257	 * But before that, check if this is an un-recoverable exception.
1258	 * If yes, then stay on emergency stack and panic.
1259	 */
1260	andi.	r11,r12,MSR_RI
1261	beq	unrecoverable_mce
1262
1263	/*
1264	 * Check if we have successfully handled/recovered from error, if not
1265	 * then stay on emergency stack and panic.
1266	 */
1267	ld	r3,RESULT(r1)	/* Load result */
1268	cmpdi	r3,0		/* see if we handled MCE successfully */
1269	beq	unrecoverable_mce /* if !handled then panic */
1270
1271	/*
1272	 * Return from MC interrupt.
1273	 * Queue up the MCE event so that we can log it later, while
1274	 * returning from kernel or opal call.
1275	 */
1276	bl	machine_check_queue_event
1277	MACHINE_CHECK_HANDLER_WINDUP
1278	RFI_TO_KERNEL
1279
1280mce_deliver:
1281	/*
1282	 * This is a host user or guest MCE. Restore all registers, then
1283	 * run the "late" handler. For host user, this will run the
1284	 * machine_check_exception handler in virtual mode like a normal
1285	 * interrupt handler. For guest, this will trigger the KVM test
1286	 * and branch to the KVM interrupt similarly to other interrupts.
1287	 */
1288BEGIN_FTR_SECTION
1289	ld	r10,ORIG_GPR3(r1)
1290	mtspr	SPRN_CFAR,r10
1291END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1292	MACHINE_CHECK_HANDLER_WINDUP
1293	GEN_INT_ENTRY machine_check, virt=0
1294
1295EXC_COMMON_BEGIN(machine_check_common)
1296	/*
1297	 * Machine check is different because we use a different
1298	 * save area: PACA_EXMC instead of PACA_EXGEN.
1299	 */
1300	GEN_COMMON machine_check
1301	addi	r3,r1,STACK_FRAME_OVERHEAD
1302	bl	machine_check_exception_async
1303	b	interrupt_return_srr
1304
1305
1306#ifdef CONFIG_PPC_P7_NAP
1307/*
1308 * This is an idle wakeup. Low level machine check has already been
1309 * done. Queue the event then call the idle code to do the wake up.
1310 */
1311EXC_COMMON_BEGIN(machine_check_idle_common)
1312	bl	machine_check_queue_event
1313
1314	/*
1315	 * GPR-loss wakeups are relatively straightforward, because the
1316	 * idle sleep code has saved all non-volatile registers on its
1317	 * own stack, and r1 in PACAR1.
1318	 *
1319	 * For no-loss wakeups the r1 and lr registers used by the
1320	 * early machine check handler have to be restored first. r2 is
1321	 * the kernel TOC, so no need to restore it.
1322	 *
1323	 * Then decrement MCE nesting after finishing with the stack.
1324	 */
1325	ld	r3,_MSR(r1)
1326	ld	r4,_LINK(r1)
1327	ld	r1,GPR1(r1)
1328
1329	lhz	r11,PACA_IN_MCE(r13)
1330	subi	r11,r11,1
1331	sth	r11,PACA_IN_MCE(r13)
1332
1333	mtlr	r4
1334	rlwinm	r10,r3,47-31,30,31
1335	cmpwi	cr1,r10,2
1336	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
1337	b	idle_return_gpr_loss
1338#endif
1339
1340EXC_COMMON_BEGIN(unrecoverable_mce)
1341	/*
1342	 * We are going down. But there are chances that we might get hit by
1343	 * another MCE during panic path and we may run into unstable state
1344	 * with no way out. Hence, turn ME bit off while going down, so that
1345	 * when another MCE is hit during panic path, system will checkstop
1346	 * and hypervisor will get restarted cleanly by SP.
1347	 */
1348BEGIN_FTR_SECTION
1349	li	r10,0 /* clear MSR_RI */
1350	mtmsrd	r10,1
1351	bl	disable_machine_check
1352END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1353	ld	r10,PACAKMSR(r13)
1354	li	r3,MSR_ME
1355	andc	r10,r10,r3
1356	mtmsrd	r10
1357
1358	lhz	r12,PACA_IN_MCE(r13)
1359	subi	r12,r12,1
1360	sth	r12,PACA_IN_MCE(r13)
1361
1362	/*
1363	 * Invoke machine_check_exception to print MCE event and panic.
1364	 * This is the NMI version of the handler because we are called from
1365	 * the early handler which is a true NMI.
1366	 */
1367	addi	r3,r1,STACK_FRAME_OVERHEAD
1368	bl	machine_check_exception
1369
1370	/*
1371	 * We will not reach here. Even if we did, there is no way out.
1372	 * Call unrecoverable_exception and die.
1373	 */
1374	addi	r3,r1,STACK_FRAME_OVERHEAD
1375	bl	unrecoverable_exception
1376	b	.
1377
1378
1379/**
1380 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1381 * This is a synchronous interrupt generated due to a data access exception,
1382 * e.g., a load orstore which does not have a valid page table entry with
1383 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1384 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1385 *
1386 * Handling:
1387 * - Hash MMU
1388 *   Go to do_hash_fault, which attempts to fill the HPT from an entry in the
1389 *   Linux page table. Hash faults can hit in kernel mode in a fairly
1390 *   arbitrary state (e.g., interrupts disabled, locks held) when accessing
1391 *   "non-bolted" regions, e.g., vmalloc space. However these should always be
1392 *   backed by Linux page table entries.
1393 *
1394 *   If no entry is found the Linux page fault handler is invoked (by
1395 *   do_hash_fault). Linux page faults can happen in kernel mode due to user
1396 *   copy operations of course.
1397 *
1398 *   KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
1399 *   MMU context, which may cause a DSI in the host, which must go to the
1400 *   KVM handler. MSR[IR] is not enabled, so the real-mode handler will
1401 *   always be used regardless of AIL setting.
1402 *
1403 * - Radix MMU
1404 *   The hardware loads from the Linux page table directly, so a fault goes
1405 *   immediately to Linux page fault.
1406 *
1407 * Conditions like DAWR match are handled on the way in to Linux page fault.
1408 */
1409INT_DEFINE_BEGIN(data_access)
1410	IVEC=0x300
1411	IDAR=1
1412	IDSISR=1
1413	IKVM_REAL=1
1414INT_DEFINE_END(data_access)
1415
1416EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1417	GEN_INT_ENTRY data_access, virt=0
1418EXC_REAL_END(data_access, 0x300, 0x80)
1419EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1420	GEN_INT_ENTRY data_access, virt=1
1421EXC_VIRT_END(data_access, 0x4300, 0x80)
1422EXC_COMMON_BEGIN(data_access_common)
1423	GEN_COMMON data_access
1424	ld	r4,_DSISR(r1)
1425	addi	r3,r1,STACK_FRAME_OVERHEAD
1426	andis.	r0,r4,DSISR_DABRMATCH@h
1427	bne-	1f
1428#ifdef CONFIG_PPC_64S_HASH_MMU
1429BEGIN_MMU_FTR_SECTION
1430	bl	do_hash_fault
1431MMU_FTR_SECTION_ELSE
1432	bl	do_page_fault
1433ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1434#else
1435	bl	do_page_fault
1436#endif
1437	b	interrupt_return_srr
1438
14391:	bl	do_break
1440	/*
1441	 * do_break() may have changed the NV GPRS while handling a breakpoint.
1442	 * If so, we need to restore them with their updated values.
1443	 */
1444	REST_NVGPRS(r1)
1445	b	interrupt_return_srr
1446
1447
1448/**
1449 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1450 * This is a synchronous interrupt in response to an MMU fault missing SLB
1451 * entry for HPT, or an address outside RPT translation range.
1452 *
1453 * Handling:
1454 * - HPT:
1455 *   This refills the SLB, or reports an access fault similarly to a bad page
1456 *   fault. When coming from user-mode, the SLB handler may access any kernel
1457 *   data, though it may itself take a DSLB. When coming from kernel mode,
1458 *   recursive faults must be avoided so access is restricted to the kernel
1459 *   image text/data, kernel stack, and any data allocated below
1460 *   ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1461 *   on user-handler data structures.
1462 *
1463 *   KVM: Same as 0x300, DSLB must test for KVM guest.
1464 */
1465INT_DEFINE_BEGIN(data_access_slb)
1466	IVEC=0x380
1467	IDAR=1
1468	IKVM_REAL=1
1469INT_DEFINE_END(data_access_slb)
1470
1471EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1472	GEN_INT_ENTRY data_access_slb, virt=0
1473EXC_REAL_END(data_access_slb, 0x380, 0x80)
1474EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1475	GEN_INT_ENTRY data_access_slb, virt=1
1476EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1477EXC_COMMON_BEGIN(data_access_slb_common)
1478	GEN_COMMON data_access_slb
1479#ifdef CONFIG_PPC_64S_HASH_MMU
1480BEGIN_MMU_FTR_SECTION
1481	/* HPT case, do SLB fault */
1482	addi	r3,r1,STACK_FRAME_OVERHEAD
1483	bl	do_slb_fault
1484	cmpdi	r3,0
1485	bne-	1f
1486	b	fast_interrupt_return_srr
14871:	/* Error case */
1488MMU_FTR_SECTION_ELSE
1489	/* Radix case, access is outside page table range */
1490	li	r3,-EFAULT
1491ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1492#else
1493	li	r3,-EFAULT
1494#endif
1495	std	r3,RESULT(r1)
1496	addi	r3,r1,STACK_FRAME_OVERHEAD
1497	bl	do_bad_segment_interrupt
1498	b	interrupt_return_srr
1499
1500
1501/**
1502 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1503 * This is a synchronous interrupt in response to an MMU fault due to an
1504 * instruction fetch.
1505 *
1506 * Handling:
1507 * Similar to DSI, though in response to fetch. The faulting address is found
1508 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1509 */
1510INT_DEFINE_BEGIN(instruction_access)
1511	IVEC=0x400
1512	IISIDE=1
1513	IDAR=1
1514	IDSISR=1
1515#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1516	IKVM_REAL=1
1517#endif
1518INT_DEFINE_END(instruction_access)
1519
1520EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1521	GEN_INT_ENTRY instruction_access, virt=0
1522EXC_REAL_END(instruction_access, 0x400, 0x80)
1523EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1524	GEN_INT_ENTRY instruction_access, virt=1
1525EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1526EXC_COMMON_BEGIN(instruction_access_common)
1527	GEN_COMMON instruction_access
1528	addi	r3,r1,STACK_FRAME_OVERHEAD
1529#ifdef CONFIG_PPC_64S_HASH_MMU
1530BEGIN_MMU_FTR_SECTION
1531	bl	do_hash_fault
1532MMU_FTR_SECTION_ELSE
1533	bl	do_page_fault
1534ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1535#else
1536	bl	do_page_fault
1537#endif
1538	b	interrupt_return_srr
1539
1540
1541/**
1542 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1543 * This is a synchronous interrupt in response to an MMU fault due to an
1544 * instruction fetch.
1545 *
1546 * Handling:
1547 * Similar to DSLB, though in response to fetch. The faulting address is found
1548 * in SRR0 (rather than DAR).
1549 */
1550INT_DEFINE_BEGIN(instruction_access_slb)
1551	IVEC=0x480
1552	IISIDE=1
1553	IDAR=1
1554#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1555	IKVM_REAL=1
1556#endif
1557INT_DEFINE_END(instruction_access_slb)
1558
1559EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1560	GEN_INT_ENTRY instruction_access_slb, virt=0
1561EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1562EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1563	GEN_INT_ENTRY instruction_access_slb, virt=1
1564EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1565EXC_COMMON_BEGIN(instruction_access_slb_common)
1566	GEN_COMMON instruction_access_slb
1567#ifdef CONFIG_PPC_64S_HASH_MMU
1568BEGIN_MMU_FTR_SECTION
1569	/* HPT case, do SLB fault */
1570	addi	r3,r1,STACK_FRAME_OVERHEAD
1571	bl	do_slb_fault
1572	cmpdi	r3,0
1573	bne-	1f
1574	b	fast_interrupt_return_srr
15751:	/* Error case */
1576MMU_FTR_SECTION_ELSE
1577	/* Radix case, access is outside page table range */
1578	li	r3,-EFAULT
1579ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1580#else
1581	li	r3,-EFAULT
1582#endif
1583	std	r3,RESULT(r1)
1584	addi	r3,r1,STACK_FRAME_OVERHEAD
1585	bl	do_bad_segment_interrupt
1586	b	interrupt_return_srr
1587
1588
1589/**
1590 * Interrupt 0x500 - External Interrupt.
1591 * This is an asynchronous maskable interrupt in response to an "external
1592 * exception" from the interrupt controller or hypervisor (e.g., device
1593 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1594 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1595 *
1596 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1597 * interrupts are delivered with HSRR registers, guests use SRRs, which
1598 * reqiures IHSRR_IF_HVMODE.
1599 *
1600 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1601 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1602 * rather than External Interrupts.
1603 *
1604 * Handling:
1605 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1606 * because registers at the time of the interrupt are not so important as it is
1607 * asynchronous.
1608 *
1609 * If soft masked, the masked handler will note the pending interrupt for
1610 * replay, and clear MSR[EE] in the interrupted context.
1611 *
1612 * CFAR is not required because this is an asynchronous interrupt that in
1613 * general won't have much bearing on the state of the CPU, with the possible
1614 * exception of crash/debug IPIs, but those are generally moving to use SRESET
1615 * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case
1616 * it may be exiting the guest and need CFAR to be saved.
1617 */
1618INT_DEFINE_BEGIN(hardware_interrupt)
1619	IVEC=0x500
1620	IHSRR_IF_HVMODE=1
1621	IMASK=IRQS_DISABLED
1622	IKVM_REAL=1
1623	IKVM_VIRT=1
1624	ICFAR=0
1625#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1626	ICFAR_IF_HVMODE=1
1627#endif
1628INT_DEFINE_END(hardware_interrupt)
1629
1630EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1631	GEN_INT_ENTRY hardware_interrupt, virt=0
1632EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1633EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1634	GEN_INT_ENTRY hardware_interrupt, virt=1
1635EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1636EXC_COMMON_BEGIN(hardware_interrupt_common)
1637	GEN_COMMON hardware_interrupt
1638	addi	r3,r1,STACK_FRAME_OVERHEAD
1639	bl	do_IRQ
1640	BEGIN_FTR_SECTION
1641	b	interrupt_return_hsrr
1642	FTR_SECTION_ELSE
1643	b	interrupt_return_srr
1644	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1645
1646
1647/**
1648 * Interrupt 0x600 - Alignment Interrupt
1649 * This is a synchronous interrupt in response to data alignment fault.
1650 */
1651INT_DEFINE_BEGIN(alignment)
1652	IVEC=0x600
1653	IDAR=1
1654	IDSISR=1
1655#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1656	IKVM_REAL=1
1657#endif
1658INT_DEFINE_END(alignment)
1659
1660EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1661	GEN_INT_ENTRY alignment, virt=0
1662EXC_REAL_END(alignment, 0x600, 0x100)
1663EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1664	GEN_INT_ENTRY alignment, virt=1
1665EXC_VIRT_END(alignment, 0x4600, 0x100)
1666EXC_COMMON_BEGIN(alignment_common)
1667	GEN_COMMON alignment
1668	addi	r3,r1,STACK_FRAME_OVERHEAD
1669	bl	alignment_exception
1670	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1671	b	interrupt_return_srr
1672
1673
1674/**
1675 * Interrupt 0x700 - Program Interrupt (program check).
1676 * This is a synchronous interrupt in response to various instruction faults:
1677 * traps, privilege errors, TM errors, floating point exceptions.
1678 *
1679 * Handling:
1680 * This interrupt may use the "emergency stack" in some cases when being taken
1681 * from kernel context, which complicates handling.
1682 */
1683INT_DEFINE_BEGIN(program_check)
1684	IVEC=0x700
1685#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1686	IKVM_REAL=1
1687#endif
1688INT_DEFINE_END(program_check)
1689
1690EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1691	EARLY_BOOT_FIXUP
1692	GEN_INT_ENTRY program_check, virt=0
1693EXC_REAL_END(program_check, 0x700, 0x100)
1694EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1695	GEN_INT_ENTRY program_check, virt=1
1696EXC_VIRT_END(program_check, 0x4700, 0x100)
1697EXC_COMMON_BEGIN(program_check_common)
1698	__GEN_COMMON_ENTRY program_check
1699
1700	/*
1701	 * It's possible to receive a TM Bad Thing type program check with
1702	 * userspace register values (in particular r1), but with SRR1 reporting
1703	 * that we came from the kernel. Normally that would confuse the bad
1704	 * stack logic, and we would report a bad kernel stack pointer. Instead
1705	 * we switch to the emergency stack if we're taking a TM Bad Thing from
1706	 * the kernel.
1707	 */
1708
1709	andi.	r10,r12,MSR_PR
1710	bne	.Lnormal_stack		/* If userspace, go normal path */
1711
1712	andis.	r10,r12,(SRR1_PROGTM)@h
1713	bne	.Lemergency_stack	/* If TM, emergency		*/
1714
1715	cmpdi	r1,-INT_FRAME_SIZE	/* check if r1 is in userspace	*/
1716	blt	.Lnormal_stack		/* normal path if not		*/
1717
1718	/* Use the emergency stack					*/
1719.Lemergency_stack:
1720	andi.	r10,r12,MSR_PR		/* Set CR0 correctly for label	*/
1721					/* 3 in EXCEPTION_PROLOG_COMMON	*/
1722	mr	r10,r1			/* Save r1			*/
1723	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack		*/
1724	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
1725	__ISTACK(program_check)=0
1726	__GEN_COMMON_BODY program_check
1727	b .Ldo_program_check
1728
1729.Lnormal_stack:
1730	__ISTACK(program_check)=1
1731	__GEN_COMMON_BODY program_check
1732
1733.Ldo_program_check:
1734	addi	r3,r1,STACK_FRAME_OVERHEAD
1735	bl	program_check_exception
1736	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1737	b	interrupt_return_srr
1738
1739
1740/*
1741 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1742 * This is a synchronous interrupt in response to executing an fp instruction
1743 * with MSR[FP]=0.
1744 *
1745 * Handling:
1746 * This will load FP registers and enable the FP bit if coming from userspace,
1747 * otherwise report a bad kernel use of FP.
1748 */
1749INT_DEFINE_BEGIN(fp_unavailable)
1750	IVEC=0x800
1751#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1752	IKVM_REAL=1
1753#endif
1754INT_DEFINE_END(fp_unavailable)
1755
1756EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1757	GEN_INT_ENTRY fp_unavailable, virt=0
1758EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1759EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1760	GEN_INT_ENTRY fp_unavailable, virt=1
1761EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1762EXC_COMMON_BEGIN(fp_unavailable_common)
1763	GEN_COMMON fp_unavailable
1764	bne	1f			/* if from user, just load it up */
1765	addi	r3,r1,STACK_FRAME_OVERHEAD
1766	bl	kernel_fp_unavailable_exception
17670:	trap
1768	EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
17691:
1770#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1771BEGIN_FTR_SECTION
1772	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
1773	 * transaction), go do TM stuff
1774	 */
1775	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
1776	bne-	2f
1777END_FTR_SECTION_IFSET(CPU_FTR_TM)
1778#endif
1779	bl	load_up_fpu
1780	b	fast_interrupt_return_srr
1781#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
17822:	/* User process was in a transaction */
1783	addi	r3,r1,STACK_FRAME_OVERHEAD
1784	bl	fp_unavailable_tm
1785	b	interrupt_return_srr
1786#endif
1787
1788
1789/**
1790 * Interrupt 0x900 - Decrementer Interrupt.
1791 * This is an asynchronous interrupt in response to a decrementer exception
1792 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1793 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1794 * local_irq_disable()).
1795 *
1796 * Handling:
1797 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1798 *
1799 * If soft masked, the masked handler will note the pending interrupt for
1800 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1801 * in the interrupted context.
1802 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1803 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1804 * on the emergency stack.
1805 *
1806 * CFAR is not required because this is asynchronous (see hardware_interrupt).
1807 * A watchdog interrupt may like to have CFAR, but usually the interesting
1808 * branch is long gone by that point (e.g., infinite loop).
1809 */
1810INT_DEFINE_BEGIN(decrementer)
1811	IVEC=0x900
1812	IMASK=IRQS_DISABLED
1813#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1814	IKVM_REAL=1
1815#endif
1816	ICFAR=0
1817INT_DEFINE_END(decrementer)
1818
1819EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1820	GEN_INT_ENTRY decrementer, virt=0
1821EXC_REAL_END(decrementer, 0x900, 0x80)
1822EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1823	GEN_INT_ENTRY decrementer, virt=1
1824EXC_VIRT_END(decrementer, 0x4900, 0x80)
1825EXC_COMMON_BEGIN(decrementer_common)
1826	GEN_COMMON decrementer
1827	addi	r3,r1,STACK_FRAME_OVERHEAD
1828	bl	timer_interrupt
1829	b	interrupt_return_srr
1830
1831
1832/**
1833 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1834 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1835 * register.
1836 *
1837 * Handling:
1838 * Linux does not use this outside KVM where it's used to keep a host timer
1839 * while the guest is given control of DEC. It should normally be caught by
1840 * the KVM test and routed there.
1841 */
1842INT_DEFINE_BEGIN(hdecrementer)
1843	IVEC=0x980
1844	IHSRR=1
1845	ISTACK=0
1846	IKVM_REAL=1
1847	IKVM_VIRT=1
1848INT_DEFINE_END(hdecrementer)
1849
1850EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1851	GEN_INT_ENTRY hdecrementer, virt=0
1852EXC_REAL_END(hdecrementer, 0x980, 0x80)
1853EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1854	GEN_INT_ENTRY hdecrementer, virt=1
1855EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1856EXC_COMMON_BEGIN(hdecrementer_common)
1857	__GEN_COMMON_ENTRY hdecrementer
1858	/*
1859	 * Hypervisor decrementer interrupts not caught by the KVM test
1860	 * shouldn't occur but are sometimes left pending on exit from a KVM
1861	 * guest.  We don't need to do anything to clear them, as they are
1862	 * edge-triggered.
1863	 *
1864	 * Be careful to avoid touching the kernel stack.
1865	 */
1866	li	r10,0
1867	stb	r10,PACAHSRR_VALID(r13)
1868	ld	r10,PACA_EXGEN+EX_CTR(r13)
1869	mtctr	r10
1870	mtcrf	0x80,r9
1871	ld	r9,PACA_EXGEN+EX_R9(r13)
1872	ld	r10,PACA_EXGEN+EX_R10(r13)
1873	ld	r11,PACA_EXGEN+EX_R11(r13)
1874	ld	r12,PACA_EXGEN+EX_R12(r13)
1875	ld	r13,PACA_EXGEN+EX_R13(r13)
1876	HRFI_TO_KERNEL
1877
1878
1879/**
1880 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1881 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1882 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1883 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1884 *
1885 * Handling:
1886 * Guests may use this for IPIs between threads in a core if the
1887 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1888 *
1889 * If soft masked, the masked handler will note the pending interrupt for
1890 * replay, leaving MSR[EE] enabled in the interrupted context because the
1891 * doorbells are edge triggered.
1892 *
1893 * CFAR is not required, similarly to hardware_interrupt.
1894 */
1895INT_DEFINE_BEGIN(doorbell_super)
1896	IVEC=0xa00
1897	IMASK=IRQS_DISABLED
1898#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1899	IKVM_REAL=1
1900#endif
1901	ICFAR=0
1902INT_DEFINE_END(doorbell_super)
1903
1904EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1905	GEN_INT_ENTRY doorbell_super, virt=0
1906EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1907EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1908	GEN_INT_ENTRY doorbell_super, virt=1
1909EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1910EXC_COMMON_BEGIN(doorbell_super_common)
1911	GEN_COMMON doorbell_super
1912	addi	r3,r1,STACK_FRAME_OVERHEAD
1913#ifdef CONFIG_PPC_DOORBELL
1914	bl	doorbell_exception
1915#else
1916	bl	unknown_async_exception
1917#endif
1918	b	interrupt_return_srr
1919
1920
1921EXC_REAL_NONE(0xb00, 0x100)
1922EXC_VIRT_NONE(0x4b00, 0x100)
1923
1924/**
1925 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1926 * This is a synchronous interrupt invoked with the "sc" instruction. The
1927 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1928 * is directed to the currently running OS. The hypercall is invoked with
1929 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1930 *
1931 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1932 * 0x4c00 virtual mode.
1933 *
1934 * Handling:
1935 * If the KVM test fires then it was due to a hypercall and is accordingly
1936 * routed to KVM. Otherwise this executes a normal Linux system call.
1937 *
1938 * Call convention:
1939 *
1940 * syscall and hypercalls register conventions are documented in
1941 * Documentation/powerpc/syscall64-abi.rst and
1942 * Documentation/powerpc/papr_hcalls.rst respectively.
1943 *
1944 * The intersection of volatile registers that don't contain possible
1945 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1946 * without saving, though xer is not a good idea to use, as hardware may
1947 * interpret some bits so it may be costly to change them.
1948 */
1949INT_DEFINE_BEGIN(system_call)
1950	IVEC=0xc00
1951	IKVM_REAL=1
1952	IKVM_VIRT=1
1953	ICFAR=0
1954INT_DEFINE_END(system_call)
1955
1956.macro SYSTEM_CALL virt
1957#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1958	/*
1959	 * There is a little bit of juggling to get syscall and hcall
1960	 * working well. Save r13 in ctr to avoid using SPRG scratch
1961	 * register.
1962	 *
1963	 * Userspace syscalls have already saved the PPR, hcalls must save
1964	 * it before setting HMT_MEDIUM.
1965	 */
1966	mtctr	r13
1967	GET_PACA(r13)
1968	std	r10,PACA_EXGEN+EX_R10(r13)
1969	INTERRUPT_TO_KERNEL
1970	KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */
1971	mfctr	r9
1972#else
1973	mr	r9,r13
1974	GET_PACA(r13)
1975	INTERRUPT_TO_KERNEL
1976#endif
1977
1978#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1979BEGIN_FTR_SECTION
1980	cmpdi	r0,0x1ebe
1981	beq-	1f
1982END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1983#endif
1984
1985	/* We reach here with PACA in r13, r13 in r9. */
1986	mfspr	r11,SPRN_SRR0
1987	mfspr	r12,SPRN_SRR1
1988
1989	HMT_MEDIUM
1990
1991	.if ! \virt
1992	__LOAD_HANDLER(r10, system_call_common_real, real_vectors)
1993	mtctr	r10
1994	bctr
1995	.else
1996#ifdef CONFIG_RELOCATABLE
1997	__LOAD_HANDLER(r10, system_call_common, virt_vectors)
1998	mtctr	r10
1999	bctr
2000#else
2001	b	system_call_common
2002#endif
2003	.endif
2004
2005#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
2006	/* Fast LE/BE switch system call */
20071:	mfspr	r12,SPRN_SRR1
2008	xori	r12,r12,MSR_LE
2009	mtspr	SPRN_SRR1,r12
2010	mr	r13,r9
2011	RFI_TO_USER	/* return to userspace */
2012	b	.	/* prevent speculative execution */
2013#endif
2014.endm
2015
2016EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
2017	SYSTEM_CALL 0
2018EXC_REAL_END(system_call, 0xc00, 0x100)
2019EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
2020	SYSTEM_CALL 1
2021EXC_VIRT_END(system_call, 0x4c00, 0x100)
2022
2023#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2024TRAMP_REAL_BEGIN(kvm_hcall)
2025	std	r9,PACA_EXGEN+EX_R9(r13)
2026	std	r11,PACA_EXGEN+EX_R11(r13)
2027	std	r12,PACA_EXGEN+EX_R12(r13)
2028	mfcr	r9
2029	mfctr	r10
2030	std	r10,PACA_EXGEN+EX_R13(r13)
2031	li	r10,0
2032	std	r10,PACA_EXGEN+EX_CFAR(r13)
2033	std	r10,PACA_EXGEN+EX_CTR(r13)
2034	 /*
2035	  * Save the PPR (on systems that support it) before changing to
2036	  * HMT_MEDIUM. That allows the KVM code to save that value into the
2037	  * guest state (it is the guest's PPR value).
2038	  */
2039BEGIN_FTR_SECTION
2040	mfspr	r10,SPRN_PPR
2041	std	r10,PACA_EXGEN+EX_PPR(r13)
2042END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2043
2044	HMT_MEDIUM
2045
2046#ifdef CONFIG_RELOCATABLE
2047	/*
2048	 * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives
2049	 * outside the head section.
2050	 */
2051	__LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines)
2052	mtctr   r10
2053	bctr
2054#else
2055	b       kvmppc_hcall
2056#endif
2057#endif
2058
2059/**
2060 * Interrupt 0xd00 - Trace Interrupt.
2061 * This is a synchronous interrupt in response to instruction step or
2062 * breakpoint faults.
2063 */
2064INT_DEFINE_BEGIN(single_step)
2065	IVEC=0xd00
2066#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2067	IKVM_REAL=1
2068#endif
2069INT_DEFINE_END(single_step)
2070
2071EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2072	GEN_INT_ENTRY single_step, virt=0
2073EXC_REAL_END(single_step, 0xd00, 0x100)
2074EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2075	GEN_INT_ENTRY single_step, virt=1
2076EXC_VIRT_END(single_step, 0x4d00, 0x100)
2077EXC_COMMON_BEGIN(single_step_common)
2078	GEN_COMMON single_step
2079	addi	r3,r1,STACK_FRAME_OVERHEAD
2080	bl	single_step_exception
2081	b	interrupt_return_srr
2082
2083
2084/**
2085 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2086 * This is a synchronous interrupt in response to an MMU fault caused by a
2087 * guest data access.
2088 *
2089 * Handling:
2090 * This should always get routed to KVM. In radix MMU mode, this is caused
2091 * by a guest nested radix access that can't be performed due to the
2092 * partition scope page table. In hash mode, this can be caused by guests
2093 * running with translation disabled (virtual real mode) or with VPM enabled.
2094 * KVM will update the page table structures or disallow the access.
2095 */
2096INT_DEFINE_BEGIN(h_data_storage)
2097	IVEC=0xe00
2098	IHSRR=1
2099	IDAR=1
2100	IDSISR=1
2101	IKVM_REAL=1
2102	IKVM_VIRT=1
2103INT_DEFINE_END(h_data_storage)
2104
2105EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2106	GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2107EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2108EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2109	GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2110EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2111EXC_COMMON_BEGIN(h_data_storage_common)
2112	GEN_COMMON h_data_storage
2113	addi    r3,r1,STACK_FRAME_OVERHEAD
2114BEGIN_MMU_FTR_SECTION
2115	bl      do_bad_page_fault_segv
2116MMU_FTR_SECTION_ELSE
2117	bl      unknown_exception
2118ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2119	b       interrupt_return_hsrr
2120
2121
2122/**
2123 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2124 * This is a synchronous interrupt in response to an MMU fault caused by a
2125 * guest instruction fetch, similar to HDSI.
2126 */
2127INT_DEFINE_BEGIN(h_instr_storage)
2128	IVEC=0xe20
2129	IHSRR=1
2130	IKVM_REAL=1
2131	IKVM_VIRT=1
2132INT_DEFINE_END(h_instr_storage)
2133
2134EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2135	GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2136EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2137EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2138	GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2139EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2140EXC_COMMON_BEGIN(h_instr_storage_common)
2141	GEN_COMMON h_instr_storage
2142	addi	r3,r1,STACK_FRAME_OVERHEAD
2143	bl	unknown_exception
2144	b	interrupt_return_hsrr
2145
2146
2147/**
2148 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2149 */
2150INT_DEFINE_BEGIN(emulation_assist)
2151	IVEC=0xe40
2152	IHSRR=1
2153	IKVM_REAL=1
2154	IKVM_VIRT=1
2155INT_DEFINE_END(emulation_assist)
2156
2157EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2158	GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2159EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2160EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2161	GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2162EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2163EXC_COMMON_BEGIN(emulation_assist_common)
2164	GEN_COMMON emulation_assist
2165	addi	r3,r1,STACK_FRAME_OVERHEAD
2166	bl	emulation_assist_interrupt
2167	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2168	b	interrupt_return_hsrr
2169
2170
2171/**
2172 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2173 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2174 * Exception. It is always taken in real mode but uses HSRR registers
2175 * unlike SRESET and MCE.
2176 *
2177 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2178 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2179 *
2180 * Handling:
2181 * This is a special case, this is handled similarly to machine checks, with an
2182 * initial real mode handler that is not soft-masked, which attempts to fix the
2183 * problem. Then a regular handler which is soft-maskable and reports the
2184 * problem.
2185 *
2186 * The emergency stack is used for the early real mode handler.
2187 *
2188 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2189 * either use soft-masking for the MCE, or use irq_work for the HMI.
2190 *
2191 * KVM:
2192 * Unlike MCE, this calls into KVM without calling the real mode handler
2193 * first.
2194 */
2195INT_DEFINE_BEGIN(hmi_exception_early)
2196	IVEC=0xe60
2197	IHSRR=1
2198	IREALMODE_COMMON=1
2199	ISTACK=0
2200	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2201	IKVM_REAL=1
2202INT_DEFINE_END(hmi_exception_early)
2203
2204INT_DEFINE_BEGIN(hmi_exception)
2205	IVEC=0xe60
2206	IHSRR=1
2207	IMASK=IRQS_DISABLED
2208	IKVM_REAL=1
2209INT_DEFINE_END(hmi_exception)
2210
2211EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2212	GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2213EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2214EXC_VIRT_NONE(0x4e60, 0x20)
2215
2216EXC_COMMON_BEGIN(hmi_exception_early_common)
2217	__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2218
2219	mr	r10,r1			/* Save r1 */
2220	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack for realmode */
2221	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
2222
2223	__GEN_COMMON_BODY hmi_exception_early
2224
2225	addi	r3,r1,STACK_FRAME_OVERHEAD
2226	bl	hmi_exception_realmode
2227	cmpdi	cr0,r3,0
2228	bne	1f
2229
2230	EXCEPTION_RESTORE_REGS hsrr=1
2231	HRFI_TO_USER_OR_KERNEL
2232
22331:
2234	/*
2235	 * Go to virtual mode and pull the HMI event information from
2236	 * firmware.
2237	 */
2238	EXCEPTION_RESTORE_REGS hsrr=1
2239	GEN_INT_ENTRY hmi_exception, virt=0
2240
2241EXC_COMMON_BEGIN(hmi_exception_common)
2242	GEN_COMMON hmi_exception
2243	addi	r3,r1,STACK_FRAME_OVERHEAD
2244	bl	handle_hmi_exception
2245	b	interrupt_return_hsrr
2246
2247
2248/**
2249 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2250 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2251 * Similar to the 0xa00 doorbell but for host rather than guest.
2252 *
2253 * CFAR is not required (similar to doorbell_interrupt), unless KVM HV
2254 * is enabled, in which case it may be a guest exit. Most PowerNV kernels
2255 * include KVM support so it would be nice if this could be dynamically
2256 * patched out if KVM was not currently running any guests.
2257 */
2258INT_DEFINE_BEGIN(h_doorbell)
2259	IVEC=0xe80
2260	IHSRR=1
2261	IMASK=IRQS_DISABLED
2262	IKVM_REAL=1
2263	IKVM_VIRT=1
2264#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2265	ICFAR=0
2266#endif
2267INT_DEFINE_END(h_doorbell)
2268
2269EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2270	GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2271EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2272EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2273	GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2274EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2275EXC_COMMON_BEGIN(h_doorbell_common)
2276	GEN_COMMON h_doorbell
2277	addi	r3,r1,STACK_FRAME_OVERHEAD
2278#ifdef CONFIG_PPC_DOORBELL
2279	bl	doorbell_exception
2280#else
2281	bl	unknown_async_exception
2282#endif
2283	b	interrupt_return_hsrr
2284
2285
2286/**
2287 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2288 * This is an asynchronous interrupt in response to an "external exception".
2289 * Similar to 0x500 but for host only.
2290 *
2291 * Like h_doorbell, CFAR is only required for KVM HV because this can be
2292 * a guest exit.
2293 */
2294INT_DEFINE_BEGIN(h_virt_irq)
2295	IVEC=0xea0
2296	IHSRR=1
2297	IMASK=IRQS_DISABLED
2298	IKVM_REAL=1
2299	IKVM_VIRT=1
2300#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2301	ICFAR=0
2302#endif
2303INT_DEFINE_END(h_virt_irq)
2304
2305EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2306	GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2307EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2308EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2309	GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2310EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2311EXC_COMMON_BEGIN(h_virt_irq_common)
2312	GEN_COMMON h_virt_irq
2313	addi	r3,r1,STACK_FRAME_OVERHEAD
2314	bl	do_IRQ
2315	b	interrupt_return_hsrr
2316
2317
2318EXC_REAL_NONE(0xec0, 0x20)
2319EXC_VIRT_NONE(0x4ec0, 0x20)
2320EXC_REAL_NONE(0xee0, 0x20)
2321EXC_VIRT_NONE(0x4ee0, 0x20)
2322
2323
2324/*
2325 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2326 * This is an asynchronous interrupt in response to a PMU exception.
2327 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2328 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2329 *
2330 * Handling:
2331 * This calls into the perf subsystem.
2332 *
2333 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2334 * runs under local_irq_disable. However it may be soft-masked in
2335 * powerpc-specific code.
2336 *
2337 * If soft masked, the masked handler will note the pending interrupt for
2338 * replay, and clear MSR[EE] in the interrupted context.
2339 *
2340 * CFAR is not used by perf interrupts so not required.
2341 */
2342INT_DEFINE_BEGIN(performance_monitor)
2343	IVEC=0xf00
2344	IMASK=IRQS_PMI_DISABLED
2345#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2346	IKVM_REAL=1
2347#endif
2348	ICFAR=0
2349INT_DEFINE_END(performance_monitor)
2350
2351EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2352	GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2353EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2354EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2355	GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2356EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2357EXC_COMMON_BEGIN(performance_monitor_common)
2358	GEN_COMMON performance_monitor
2359	addi	r3,r1,STACK_FRAME_OVERHEAD
2360	lbz	r4,PACAIRQSOFTMASK(r13)
2361	cmpdi	r4,IRQS_ENABLED
2362	bne	1f
2363	bl	performance_monitor_exception_async
2364	b	interrupt_return_srr
23651:
2366	bl	performance_monitor_exception_nmi
2367	/* Clear MSR_RI before setting SRR0 and SRR1. */
2368	li	r9,0
2369	mtmsrd	r9,1
2370
2371	kuap_kernel_restore r9, r10
2372
2373	EXCEPTION_RESTORE_REGS hsrr=0
2374	RFI_TO_KERNEL
2375
2376/**
2377 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2378 * This is a synchronous interrupt in response to
2379 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2380 * Similar to FP unavailable.
2381 */
2382INT_DEFINE_BEGIN(altivec_unavailable)
2383	IVEC=0xf20
2384#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2385	IKVM_REAL=1
2386#endif
2387INT_DEFINE_END(altivec_unavailable)
2388
2389EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2390	GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2391EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2392EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2393	GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2394EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2395EXC_COMMON_BEGIN(altivec_unavailable_common)
2396	GEN_COMMON altivec_unavailable
2397#ifdef CONFIG_ALTIVEC
2398BEGIN_FTR_SECTION
2399	beq	1f
2400#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2401  BEGIN_FTR_SECTION_NESTED(69)
2402	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2403	 * transaction), go do TM stuff
2404	 */
2405	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2406	bne-	2f
2407  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2408#endif
2409	bl	load_up_altivec
2410	b	fast_interrupt_return_srr
2411#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24122:	/* User process was in a transaction */
2413	addi	r3,r1,STACK_FRAME_OVERHEAD
2414	bl	altivec_unavailable_tm
2415	b	interrupt_return_srr
2416#endif
24171:
2418END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2419#endif
2420	addi	r3,r1,STACK_FRAME_OVERHEAD
2421	bl	altivec_unavailable_exception
2422	b	interrupt_return_srr
2423
2424
2425/**
2426 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2427 * This is a synchronous interrupt in response to
2428 * executing a VSX instruction with MSR[VSX]=0.
2429 * Similar to FP unavailable.
2430 */
2431INT_DEFINE_BEGIN(vsx_unavailable)
2432	IVEC=0xf40
2433#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2434	IKVM_REAL=1
2435#endif
2436INT_DEFINE_END(vsx_unavailable)
2437
2438EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2439	GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2440EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2441EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2442	GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2443EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2444EXC_COMMON_BEGIN(vsx_unavailable_common)
2445	GEN_COMMON vsx_unavailable
2446#ifdef CONFIG_VSX
2447BEGIN_FTR_SECTION
2448	beq	1f
2449#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2450  BEGIN_FTR_SECTION_NESTED(69)
2451	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2452	 * transaction), go do TM stuff
2453	 */
2454	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2455	bne-	2f
2456  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2457#endif
2458	b	load_up_vsx
2459#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24602:	/* User process was in a transaction */
2461	addi	r3,r1,STACK_FRAME_OVERHEAD
2462	bl	vsx_unavailable_tm
2463	b	interrupt_return_srr
2464#endif
24651:
2466END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2467#endif
2468	addi	r3,r1,STACK_FRAME_OVERHEAD
2469	bl	vsx_unavailable_exception
2470	b	interrupt_return_srr
2471
2472
2473/**
2474 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2475 * This is a synchronous interrupt in response to
2476 * executing an instruction without access to the facility that can be
2477 * resolved by the OS (e.g., FSCR, MSR).
2478 * Similar to FP unavailable.
2479 */
2480INT_DEFINE_BEGIN(facility_unavailable)
2481	IVEC=0xf60
2482#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2483	IKVM_REAL=1
2484#endif
2485INT_DEFINE_END(facility_unavailable)
2486
2487EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2488	GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2489EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2490EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2491	GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2492EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2493EXC_COMMON_BEGIN(facility_unavailable_common)
2494	GEN_COMMON facility_unavailable
2495	addi	r3,r1,STACK_FRAME_OVERHEAD
2496	bl	facility_unavailable_exception
2497	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2498	b	interrupt_return_srr
2499
2500
2501/**
2502 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2503 * This is a synchronous interrupt in response to
2504 * executing an instruction without access to the facility that can only
2505 * be resolved in HV mode (e.g., HFSCR).
2506 * Similar to FP unavailable.
2507 */
2508INT_DEFINE_BEGIN(h_facility_unavailable)
2509	IVEC=0xf80
2510	IHSRR=1
2511	IKVM_REAL=1
2512	IKVM_VIRT=1
2513INT_DEFINE_END(h_facility_unavailable)
2514
2515EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2516	GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2517EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2518EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2519	GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2520EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2521EXC_COMMON_BEGIN(h_facility_unavailable_common)
2522	GEN_COMMON h_facility_unavailable
2523	addi	r3,r1,STACK_FRAME_OVERHEAD
2524	bl	facility_unavailable_exception
2525	REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2526	b	interrupt_return_hsrr
2527
2528
2529EXC_REAL_NONE(0xfa0, 0x20)
2530EXC_VIRT_NONE(0x4fa0, 0x20)
2531EXC_REAL_NONE(0xfc0, 0x20)
2532EXC_VIRT_NONE(0x4fc0, 0x20)
2533EXC_REAL_NONE(0xfe0, 0x20)
2534EXC_VIRT_NONE(0x4fe0, 0x20)
2535
2536EXC_REAL_NONE(0x1000, 0x100)
2537EXC_VIRT_NONE(0x5000, 0x100)
2538EXC_REAL_NONE(0x1100, 0x100)
2539EXC_VIRT_NONE(0x5100, 0x100)
2540
2541#ifdef CONFIG_CBE_RAS
2542INT_DEFINE_BEGIN(cbe_system_error)
2543	IVEC=0x1200
2544	IHSRR=1
2545INT_DEFINE_END(cbe_system_error)
2546
2547EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2548	GEN_INT_ENTRY cbe_system_error, virt=0
2549EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2550EXC_VIRT_NONE(0x5200, 0x100)
2551EXC_COMMON_BEGIN(cbe_system_error_common)
2552	GEN_COMMON cbe_system_error
2553	addi	r3,r1,STACK_FRAME_OVERHEAD
2554	bl	cbe_system_error_exception
2555	b	interrupt_return_hsrr
2556
2557#else /* CONFIG_CBE_RAS */
2558EXC_REAL_NONE(0x1200, 0x100)
2559EXC_VIRT_NONE(0x5200, 0x100)
2560#endif
2561
2562/**
2563 * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt.
2564 * This has been removed from the ISA before 2.01, which is the earliest
2565 * 64-bit BookS ISA supported, however the G5 / 970 implements this
2566 * interrupt with a non-architected feature available through the support
2567 * processor interface.
2568 */
2569INT_DEFINE_BEGIN(instruction_breakpoint)
2570	IVEC=0x1300
2571#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2572	IKVM_REAL=1
2573#endif
2574INT_DEFINE_END(instruction_breakpoint)
2575
2576EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2577	GEN_INT_ENTRY instruction_breakpoint, virt=0
2578EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2579EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2580	GEN_INT_ENTRY instruction_breakpoint, virt=1
2581EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2582EXC_COMMON_BEGIN(instruction_breakpoint_common)
2583	GEN_COMMON instruction_breakpoint
2584	addi	r3,r1,STACK_FRAME_OVERHEAD
2585	bl	instruction_breakpoint_exception
2586	b	interrupt_return_srr
2587
2588
2589EXC_REAL_NONE(0x1400, 0x100)
2590EXC_VIRT_NONE(0x5400, 0x100)
2591
2592/**
2593 * Interrupt 0x1500 - Soft Patch Interrupt
2594 *
2595 * Handling:
2596 * This is an implementation specific interrupt which can be used for a
2597 * range of exceptions.
2598 *
2599 * This interrupt handler is unique in that it runs the denormal assist
2600 * code even for guests (and even in guest context) without going to KVM,
2601 * for speed. POWER9 does not raise denorm exceptions, so this special case
2602 * could be phased out in future to reduce special cases.
2603 */
2604INT_DEFINE_BEGIN(denorm_exception)
2605	IVEC=0x1500
2606	IHSRR=1
2607	IBRANCH_TO_COMMON=0
2608	IKVM_REAL=1
2609INT_DEFINE_END(denorm_exception)
2610
2611EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2612	GEN_INT_ENTRY denorm_exception, virt=0
2613#ifdef CONFIG_PPC_DENORMALISATION
2614	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2615	bne+	denorm_assist
2616#endif
2617	GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2618EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2619#ifdef CONFIG_PPC_DENORMALISATION
2620EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2621	GEN_INT_ENTRY denorm_exception, virt=1
2622	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2623	bne+	denorm_assist
2624	GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2625EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2626#else
2627EXC_VIRT_NONE(0x5500, 0x100)
2628#endif
2629
2630#ifdef CONFIG_PPC_DENORMALISATION
2631TRAMP_REAL_BEGIN(denorm_assist)
2632BEGIN_FTR_SECTION
2633/*
2634 * To denormalise we need to move a copy of the register to itself.
2635 * For POWER6 do that here for all FP regs.
2636 */
2637	mfmsr	r10
2638	ori	r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2639	xori	r10,r10,(MSR_FE0|MSR_FE1)
2640	mtmsrd	r10
2641	sync
2642
2643	.Lreg=0
2644	.rept 32
2645	fmr	.Lreg,.Lreg
2646	.Lreg=.Lreg+1
2647	.endr
2648
2649FTR_SECTION_ELSE
2650/*
2651 * To denormalise we need to move a copy of the register to itself.
2652 * For POWER7 do that here for the first 32 VSX registers only.
2653 */
2654	mfmsr	r10
2655	oris	r10,r10,MSR_VSX@h
2656	mtmsrd	r10
2657	sync
2658
2659	.Lreg=0
2660	.rept 32
2661	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2662	.Lreg=.Lreg+1
2663	.endr
2664
2665ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2666
2667BEGIN_FTR_SECTION
2668	b	denorm_done
2669END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2670/*
2671 * To denormalise we need to move a copy of the register to itself.
2672 * For POWER8 we need to do that for all 64 VSX registers
2673 */
2674	.Lreg=32
2675	.rept 32
2676	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2677	.Lreg=.Lreg+1
2678	.endr
2679
2680denorm_done:
2681	mfspr	r11,SPRN_HSRR0
2682	subi	r11,r11,4
2683	mtspr	SPRN_HSRR0,r11
2684	mtcrf	0x80,r9
2685	ld	r9,PACA_EXGEN+EX_R9(r13)
2686BEGIN_FTR_SECTION
2687	ld	r10,PACA_EXGEN+EX_PPR(r13)
2688	mtspr	SPRN_PPR,r10
2689END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2690BEGIN_FTR_SECTION
2691	ld	r10,PACA_EXGEN+EX_CFAR(r13)
2692	mtspr	SPRN_CFAR,r10
2693END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2694	li	r10,0
2695	stb	r10,PACAHSRR_VALID(r13)
2696	ld	r10,PACA_EXGEN+EX_R10(r13)
2697	ld	r11,PACA_EXGEN+EX_R11(r13)
2698	ld	r12,PACA_EXGEN+EX_R12(r13)
2699	ld	r13,PACA_EXGEN+EX_R13(r13)
2700	HRFI_TO_UNKNOWN
2701	b	.
2702#endif
2703
2704EXC_COMMON_BEGIN(denorm_exception_common)
2705	GEN_COMMON denorm_exception
2706	addi	r3,r1,STACK_FRAME_OVERHEAD
2707	bl	unknown_exception
2708	b	interrupt_return_hsrr
2709
2710
2711#ifdef CONFIG_CBE_RAS
2712INT_DEFINE_BEGIN(cbe_maintenance)
2713	IVEC=0x1600
2714	IHSRR=1
2715INT_DEFINE_END(cbe_maintenance)
2716
2717EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2718	GEN_INT_ENTRY cbe_maintenance, virt=0
2719EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2720EXC_VIRT_NONE(0x5600, 0x100)
2721EXC_COMMON_BEGIN(cbe_maintenance_common)
2722	GEN_COMMON cbe_maintenance
2723	addi	r3,r1,STACK_FRAME_OVERHEAD
2724	bl	cbe_maintenance_exception
2725	b	interrupt_return_hsrr
2726
2727#else /* CONFIG_CBE_RAS */
2728EXC_REAL_NONE(0x1600, 0x100)
2729EXC_VIRT_NONE(0x5600, 0x100)
2730#endif
2731
2732
2733INT_DEFINE_BEGIN(altivec_assist)
2734	IVEC=0x1700
2735#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2736	IKVM_REAL=1
2737#endif
2738INT_DEFINE_END(altivec_assist)
2739
2740EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2741	GEN_INT_ENTRY altivec_assist, virt=0
2742EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2743EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2744	GEN_INT_ENTRY altivec_assist, virt=1
2745EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2746EXC_COMMON_BEGIN(altivec_assist_common)
2747	GEN_COMMON altivec_assist
2748	addi	r3,r1,STACK_FRAME_OVERHEAD
2749#ifdef CONFIG_ALTIVEC
2750	bl	altivec_assist_exception
2751	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2752#else
2753	bl	unknown_exception
2754#endif
2755	b	interrupt_return_srr
2756
2757
2758#ifdef CONFIG_CBE_RAS
2759INT_DEFINE_BEGIN(cbe_thermal)
2760	IVEC=0x1800
2761	IHSRR=1
2762INT_DEFINE_END(cbe_thermal)
2763
2764EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2765	GEN_INT_ENTRY cbe_thermal, virt=0
2766EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2767EXC_VIRT_NONE(0x5800, 0x100)
2768EXC_COMMON_BEGIN(cbe_thermal_common)
2769	GEN_COMMON cbe_thermal
2770	addi	r3,r1,STACK_FRAME_OVERHEAD
2771	bl	cbe_thermal_exception
2772	b	interrupt_return_hsrr
2773
2774#else /* CONFIG_CBE_RAS */
2775EXC_REAL_NONE(0x1800, 0x100)
2776EXC_VIRT_NONE(0x5800, 0x100)
2777#endif
2778
2779
2780#ifdef CONFIG_PPC_WATCHDOG
2781
2782INT_DEFINE_BEGIN(soft_nmi)
2783	IVEC=0x900
2784	ISTACK=0
2785	ICFAR=0
2786INT_DEFINE_END(soft_nmi)
2787
2788/*
2789 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2790 * stack is one that is usable by maskable interrupts so long as MSR_EE
2791 * remains off. It is used for recovery when something has corrupted the
2792 * normal kernel stack, for example. The "soft NMI" must not use the process
2793 * stack because we want irq disabled sections to avoid touching the stack
2794 * at all (other than PMU interrupts), so use the emergency stack for this,
2795 * and run it entirely with interrupts hard disabled.
2796 */
2797EXC_COMMON_BEGIN(soft_nmi_common)
2798	mr	r10,r1
2799	ld	r1,PACAEMERGSP(r13)
2800	subi	r1,r1,INT_FRAME_SIZE
2801	__GEN_COMMON_BODY soft_nmi
2802
2803	addi	r3,r1,STACK_FRAME_OVERHEAD
2804	bl	soft_nmi_interrupt
2805
2806	/* Clear MSR_RI before setting SRR0 and SRR1. */
2807	li	r9,0
2808	mtmsrd	r9,1
2809
2810	kuap_kernel_restore r9, r10
2811
2812	EXCEPTION_RESTORE_REGS hsrr=0
2813	RFI_TO_KERNEL
2814
2815#endif /* CONFIG_PPC_WATCHDOG */
2816
2817/*
2818 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2819 * - If it was a decrementer interrupt, we bump the dec to max and return.
2820 * - If it was a doorbell we return immediately since doorbells are edge
2821 *   triggered and won't automatically refire.
2822 * - If it was a HMI we return immediately since we handled it in realmode
2823 *   and it won't refire.
2824 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2825 * This is called with r10 containing the value to OR to the paca field.
2826 */
2827.macro MASKED_INTERRUPT hsrr=0
2828	.if \hsrr
2829masked_Hinterrupt:
2830	.else
2831masked_interrupt:
2832	.endif
2833	stw	r9,PACA_EXGEN+EX_CCR(r13)
2834#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
2835	/*
2836	 * Ensure there was no previous MUST_HARD_MASK interrupt or
2837	 * HARD_DIS setting. If this does fire, the interrupt is still
2838	 * masked and MSR[EE] will be cleared on return, so no need to
2839	 * panic, but somebody probably enabled MSR[EE] under
2840	 * PACA_IRQ_HARD_DIS, mtmsr(mfmsr() | MSR_x) being a common
2841	 * cause.
2842	 */
2843	lbz	r9,PACAIRQHAPPENED(r13)
2844	andi.	r9,r9,(PACA_IRQ_MUST_HARD_MASK|PACA_IRQ_HARD_DIS)
28450:	tdnei	r9,0
2846	EMIT_WARN_ENTRY 0b,__FILE__,__LINE__,(BUGFLAG_WARNING | BUGFLAG_ONCE)
2847#endif
2848	lbz	r9,PACAIRQHAPPENED(r13)
2849	or	r9,r9,r10
2850	stb	r9,PACAIRQHAPPENED(r13)
2851
2852	.if ! \hsrr
2853	cmpwi	r10,PACA_IRQ_DEC
2854	bne	1f
2855	LOAD_REG_IMMEDIATE(r9, 0x7fffffff)
2856	mtspr	SPRN_DEC,r9
2857#ifdef CONFIG_PPC_WATCHDOG
2858	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2859	b	soft_nmi_common
2860#else
2861	b	2f
2862#endif
2863	.endif
2864
28651:	andi.	r10,r10,PACA_IRQ_MUST_HARD_MASK
2866	beq	2f
2867	xori	r12,r12,MSR_EE	/* clear MSR_EE */
2868	.if \hsrr
2869	mtspr	SPRN_HSRR1,r12
2870	.else
2871	mtspr	SPRN_SRR1,r12
2872	.endif
2873	ori	r9,r9,PACA_IRQ_HARD_DIS
2874	stb	r9,PACAIRQHAPPENED(r13)
28752:	/* done */
2876	li	r9,0
2877	.if \hsrr
2878	stb	r9,PACAHSRR_VALID(r13)
2879	.else
2880	stb	r9,PACASRR_VALID(r13)
2881	.endif
2882
2883	SEARCH_RESTART_TABLE
2884	cmpdi	r12,0
2885	beq	3f
2886	.if \hsrr
2887	mtspr	SPRN_HSRR0,r12
2888	.else
2889	mtspr	SPRN_SRR0,r12
2890	.endif
28913:
2892
2893	ld	r9,PACA_EXGEN+EX_CTR(r13)
2894	mtctr	r9
2895	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2896	mtcrf	0x80,r9
2897	std	r1,PACAR1(r13)
2898	ld	r9,PACA_EXGEN+EX_R9(r13)
2899	ld	r10,PACA_EXGEN+EX_R10(r13)
2900	ld	r11,PACA_EXGEN+EX_R11(r13)
2901	ld	r12,PACA_EXGEN+EX_R12(r13)
2902	ld	r13,PACA_EXGEN+EX_R13(r13)
2903	/* May return to masked low address where r13 is not set up */
2904	.if \hsrr
2905	HRFI_TO_KERNEL
2906	.else
2907	RFI_TO_KERNEL
2908	.endif
2909	b	.
2910.endm
2911
2912TRAMP_REAL_BEGIN(stf_barrier_fallback)
2913	std	r9,PACA_EXRFI+EX_R9(r13)
2914	std	r10,PACA_EXRFI+EX_R10(r13)
2915	sync
2916	ld	r9,PACA_EXRFI+EX_R9(r13)
2917	ld	r10,PACA_EXRFI+EX_R10(r13)
2918	ori	31,31,0
2919	.rept 14
2920	b	1f
29211:
2922	.endr
2923	blr
2924
2925/* Clobbers r10, r11, ctr */
2926.macro L1D_DISPLACEMENT_FLUSH
2927	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2928	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
2929	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2930	mtctr	r11
2931	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2932
2933	/* order ld/st prior to dcbt stop all streams with flushing */
2934	sync
2935
2936	/*
2937	 * The load addresses are at staggered offsets within cachelines,
2938	 * which suits some pipelines better (on others it should not
2939	 * hurt).
2940	 */
29411:
2942	ld	r11,(0x80 + 8)*0(r10)
2943	ld	r11,(0x80 + 8)*1(r10)
2944	ld	r11,(0x80 + 8)*2(r10)
2945	ld	r11,(0x80 + 8)*3(r10)
2946	ld	r11,(0x80 + 8)*4(r10)
2947	ld	r11,(0x80 + 8)*5(r10)
2948	ld	r11,(0x80 + 8)*6(r10)
2949	ld	r11,(0x80 + 8)*7(r10)
2950	addi	r10,r10,0x80*8
2951	bdnz	1b
2952.endm
2953
2954TRAMP_REAL_BEGIN(entry_flush_fallback)
2955	std	r9,PACA_EXRFI+EX_R9(r13)
2956	std	r10,PACA_EXRFI+EX_R10(r13)
2957	std	r11,PACA_EXRFI+EX_R11(r13)
2958	mfctr	r9
2959	L1D_DISPLACEMENT_FLUSH
2960	mtctr	r9
2961	ld	r9,PACA_EXRFI+EX_R9(r13)
2962	ld	r10,PACA_EXRFI+EX_R10(r13)
2963	ld	r11,PACA_EXRFI+EX_R11(r13)
2964	blr
2965
2966/*
2967 * The SCV entry flush happens with interrupts enabled, so it must disable
2968 * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10
2969 * (containing LR) does not need to be preserved here because scv entry
2970 * puts 0 in the pt_regs, CTR can be clobbered for the same reason.
2971 */
2972TRAMP_REAL_BEGIN(scv_entry_flush_fallback)
2973	li	r10,0
2974	mtmsrd	r10,1
2975	lbz	r10,PACAIRQHAPPENED(r13)
2976	ori	r10,r10,PACA_IRQ_HARD_DIS
2977	stb	r10,PACAIRQHAPPENED(r13)
2978	std	r11,PACA_EXRFI+EX_R11(r13)
2979	L1D_DISPLACEMENT_FLUSH
2980	ld	r11,PACA_EXRFI+EX_R11(r13)
2981	li	r10,MSR_RI
2982	mtmsrd	r10,1
2983	blr
2984
2985TRAMP_REAL_BEGIN(rfi_flush_fallback)
2986	SET_SCRATCH0(r13);
2987	GET_PACA(r13);
2988	std	r1,PACA_EXRFI+EX_R12(r13)
2989	ld	r1,PACAKSAVE(r13)
2990	std	r9,PACA_EXRFI+EX_R9(r13)
2991	std	r10,PACA_EXRFI+EX_R10(r13)
2992	std	r11,PACA_EXRFI+EX_R11(r13)
2993	mfctr	r9
2994	L1D_DISPLACEMENT_FLUSH
2995	mtctr	r9
2996	ld	r9,PACA_EXRFI+EX_R9(r13)
2997	ld	r10,PACA_EXRFI+EX_R10(r13)
2998	ld	r11,PACA_EXRFI+EX_R11(r13)
2999	ld	r1,PACA_EXRFI+EX_R12(r13)
3000	GET_SCRATCH0(r13);
3001	rfid
3002
3003TRAMP_REAL_BEGIN(hrfi_flush_fallback)
3004	SET_SCRATCH0(r13);
3005	GET_PACA(r13);
3006	std	r1,PACA_EXRFI+EX_R12(r13)
3007	ld	r1,PACAKSAVE(r13)
3008	std	r9,PACA_EXRFI+EX_R9(r13)
3009	std	r10,PACA_EXRFI+EX_R10(r13)
3010	std	r11,PACA_EXRFI+EX_R11(r13)
3011	mfctr	r9
3012	L1D_DISPLACEMENT_FLUSH
3013	mtctr	r9
3014	ld	r9,PACA_EXRFI+EX_R9(r13)
3015	ld	r10,PACA_EXRFI+EX_R10(r13)
3016	ld	r11,PACA_EXRFI+EX_R11(r13)
3017	ld	r1,PACA_EXRFI+EX_R12(r13)
3018	GET_SCRATCH0(r13);
3019	hrfid
3020
3021TRAMP_REAL_BEGIN(rfscv_flush_fallback)
3022	/* system call volatile */
3023	mr	r7,r13
3024	GET_PACA(r13);
3025	mr	r8,r1
3026	ld	r1,PACAKSAVE(r13)
3027	mfctr	r9
3028	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3029	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
3030	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3031	mtctr	r11
3032	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3033
3034	/* order ld/st prior to dcbt stop all streams with flushing */
3035	sync
3036
3037	/*
3038	 * The load adresses are at staggered offsets within cachelines,
3039	 * which suits some pipelines better (on others it should not
3040	 * hurt).
3041	 */
30421:
3043	ld	r11,(0x80 + 8)*0(r10)
3044	ld	r11,(0x80 + 8)*1(r10)
3045	ld	r11,(0x80 + 8)*2(r10)
3046	ld	r11,(0x80 + 8)*3(r10)
3047	ld	r11,(0x80 + 8)*4(r10)
3048	ld	r11,(0x80 + 8)*5(r10)
3049	ld	r11,(0x80 + 8)*6(r10)
3050	ld	r11,(0x80 + 8)*7(r10)
3051	addi	r10,r10,0x80*8
3052	bdnz	1b
3053
3054	mtctr	r9
3055	li	r9,0
3056	li	r10,0
3057	li	r11,0
3058	mr	r1,r8
3059	mr	r13,r7
3060	RFSCV
3061
3062USE_TEXT_SECTION()
3063
3064#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3065kvm_interrupt:
3066	/*
3067	 * The conditional branch in KVMTEST can't reach all the way,
3068	 * make a stub.
3069	 */
3070	b	kvmppc_interrupt
3071#endif
3072
3073_GLOBAL(do_uaccess_flush)
3074	UACCESS_FLUSH_FIXUP_SECTION
3075	nop
3076	nop
3077	nop
3078	blr
3079	L1D_DISPLACEMENT_FLUSH
3080	blr
3081_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
3082EXPORT_SYMBOL(do_uaccess_flush)
3083
3084
3085MASKED_INTERRUPT
3086MASKED_INTERRUPT hsrr=1
3087
3088USE_FIXED_SECTION(virt_trampolines)
3089	/*
3090	 * All code below __end_soft_masked is treated as soft-masked. If
3091	 * any code runs here with MSR[EE]=1, it must then cope with pending
3092	 * soft interrupt being raised (i.e., by ensuring it is replayed).
3093	 *
3094	 * The __end_interrupts marker must be past the out-of-line (OOL)
3095	 * handlers, so that they are copied to real address 0x100 when running
3096	 * a relocatable kernel. This ensures they can be reached from the short
3097	 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3098	 * directly, without using LOAD_HANDLER().
3099	 */
3100	.align	7
3101	.globl	__end_interrupts
3102__end_interrupts:
3103DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines)
3104
3105CLOSE_FIXED_SECTION(real_vectors);
3106CLOSE_FIXED_SECTION(real_trampolines);
3107CLOSE_FIXED_SECTION(virt_vectors);
3108CLOSE_FIXED_SECTION(virt_trampolines);
3109
3110USE_TEXT_SECTION()
3111
3112/* MSR[RI] should be clear because this uses SRR[01] */
3113_GLOBAL(enable_machine_check)
3114	mflr	r0
3115	bcl	20,31,$+4
31160:	mflr	r3
3117	addi	r3,r3,(1f - 0b)
3118	mtspr	SPRN_SRR0,r3
3119	mfmsr	r3
3120	ori	r3,r3,MSR_ME
3121	mtspr	SPRN_SRR1,r3
3122	RFI_TO_KERNEL
31231:	mtlr	r0
3124	blr
3125
3126/* MSR[RI] should be clear because this uses SRR[01] */
3127disable_machine_check:
3128	mflr	r0
3129	bcl	20,31,$+4
31300:	mflr	r3
3131	addi	r3,r3,(1f - 0b)
3132	mtspr	SPRN_SRR0,r3
3133	mfmsr	r3
3134	li	r4,MSR_ME
3135	andc	r3,r3,r4
3136	mtspr	SPRN_SRR1,r3
3137	RFI_TO_KERNEL
31381:	mtlr	r0
3139	blr
3140