xref: /openbmc/linux/arch/powerpc/kernel/exceptions-64s.S (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16#include <asm/hw_irq.h>
17#include <asm/exception-64s.h>
18#include <asm/ptrace.h>
19#include <asm/cpuidle.h>
20#include <asm/head-64.h>
21#include <asm/feature-fixups.h>
22#include <asm/kup.h>
23
24/*
25 * Following are fixed section helper macros.
26 *
27 * EXC_REAL_BEGIN/END  - real, unrelocated exception vectors
28 * EXC_VIRT_BEGIN/END  - virt (AIL), unrelocated exception vectors
29 * TRAMP_REAL_BEGIN    - real, unrelocated helpers (virt may call these)
30 * TRAMP_VIRT_BEGIN    - virt, unreloc helpers (in practice, real can use)
31 * EXC_COMMON          - After switching to virtual, relocated mode.
32 */
33
34#define EXC_REAL_BEGIN(name, start, size)			\
35	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
36
37#define EXC_REAL_END(name, start, size)				\
38	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
39
40#define EXC_VIRT_BEGIN(name, start, size)			\
41	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
42
43#define EXC_VIRT_END(name, start, size)				\
44	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
45
46#define EXC_COMMON_BEGIN(name)					\
47	USE_TEXT_SECTION();					\
48	.balign IFETCH_ALIGN_BYTES;				\
49	.global name;						\
50	_ASM_NOKPROBE_SYMBOL(name);				\
51	DEFINE_FIXED_SYMBOL(name, text);			\
52name:
53
54#define TRAMP_REAL_BEGIN(name)					\
55	FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
56
57#define TRAMP_VIRT_BEGIN(name)					\
58	FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
59
60#define EXC_REAL_NONE(start, size)				\
61	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
62	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
63
64#define EXC_VIRT_NONE(start, size)				\
65	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
66	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
67
68/*
69 * We're short on space and time in the exception prolog, so we can't
70 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
71 * Instead we get the base of the kernel from paca->kernelbase and or in the low
72 * part of label. This requires that the label be within 64KB of kernelbase, and
73 * that kernelbase be 64K aligned.
74 */
75#define LOAD_HANDLER(reg, label)					\
76	ld	reg,PACAKBASE(r13);	/* get high part of &label */	\
77	ori	reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
78
79#define __LOAD_HANDLER(reg, label, section)					\
80	ld	reg,PACAKBASE(r13);					\
81	ori	reg,reg,(ABS_ADDR(label, section))@l
82
83/*
84 * Branches from unrelocated code (e.g., interrupts) to labels outside
85 * head-y require >64K offsets.
86 */
87#define __LOAD_FAR_HANDLER(reg, label, section)					\
88	ld	reg,PACAKBASE(r13);					\
89	ori	reg,reg,(ABS_ADDR(label, section))@l;				\
90	addis	reg,reg,(ABS_ADDR(label, section))@h
91
92/*
93 * Interrupt code generation macros
94 */
95#define IVEC		.L_IVEC_\name\()	/* Interrupt vector address */
96#define IHSRR		.L_IHSRR_\name\()	/* Sets SRR or HSRR registers */
97#define IHSRR_IF_HVMODE	.L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
98#define IAREA		.L_IAREA_\name\()	/* PACA save area */
99#define IVIRT		.L_IVIRT_\name\()	/* Has virt mode entry point */
100#define IISIDE		.L_IISIDE_\name\()	/* Uses SRR0/1 not DAR/DSISR */
101#define ICFAR		.L_ICFAR_\name\()	/* Uses CFAR */
102#define ICFAR_IF_HVMODE	.L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */
103#define IDAR		.L_IDAR_\name\()	/* Uses DAR (or SRR0) */
104#define IDSISR		.L_IDSISR_\name\()	/* Uses DSISR (or SRR1) */
105#define IBRANCH_TO_COMMON	.L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
106#define IREALMODE_COMMON	.L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
107#define IMASK		.L_IMASK_\name\()	/* IRQ soft-mask bit */
108#define IKVM_REAL	.L_IKVM_REAL_\name\()	/* Real entry tests KVM */
109#define __IKVM_REAL(name)	.L_IKVM_REAL_ ## name
110#define IKVM_VIRT	.L_IKVM_VIRT_\name\()	/* Virt entry tests KVM */
111#define ISTACK		.L_ISTACK_\name\()	/* Set regular kernel stack */
112#define __ISTACK(name)	.L_ISTACK_ ## name
113#define IKUAP		.L_IKUAP_\name\()	/* Do KUAP lock */
114
115#define INT_DEFINE_BEGIN(n)						\
116.macro int_define_ ## n name
117
118#define INT_DEFINE_END(n)						\
119.endm ;									\
120int_define_ ## n n ;							\
121do_define_int n
122
123.macro do_define_int name
124	.ifndef IVEC
125		.error "IVEC not defined"
126	.endif
127	.ifndef IHSRR
128		IHSRR=0
129	.endif
130	.ifndef IHSRR_IF_HVMODE
131		IHSRR_IF_HVMODE=0
132	.endif
133	.ifndef IAREA
134		IAREA=PACA_EXGEN
135	.endif
136	.ifndef IVIRT
137		IVIRT=1
138	.endif
139	.ifndef IISIDE
140		IISIDE=0
141	.endif
142	.ifndef ICFAR
143		ICFAR=1
144	.endif
145	.ifndef ICFAR_IF_HVMODE
146		ICFAR_IF_HVMODE=0
147	.endif
148	.ifndef IDAR
149		IDAR=0
150	.endif
151	.ifndef IDSISR
152		IDSISR=0
153	.endif
154	.ifndef IBRANCH_TO_COMMON
155		IBRANCH_TO_COMMON=1
156	.endif
157	.ifndef IREALMODE_COMMON
158		IREALMODE_COMMON=0
159	.else
160		.if ! IBRANCH_TO_COMMON
161			.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
162		.endif
163	.endif
164	.ifndef IMASK
165		IMASK=0
166	.endif
167	.ifndef IKVM_REAL
168		IKVM_REAL=0
169	.endif
170	.ifndef IKVM_VIRT
171		IKVM_VIRT=0
172	.endif
173	.ifndef ISTACK
174		ISTACK=1
175	.endif
176	.ifndef IKUAP
177		IKUAP=1
178	.endif
179.endm
180
181/*
182 * All interrupts which set HSRR registers, as well as SRESET and MCE and
183 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
184 * so they all generally need to test whether they were taken in guest context.
185 *
186 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
187 * taken with MSR[HV]=0.
188 *
189 * Interrupts which set SRR registers (with the above exceptions) do not
190 * elevate to MSR[HV]=1 mode, though most can be taken when running with
191 * MSR[HV]=1  (e.g., bare metal kernel and userspace). So these interrupts do
192 * not need to test whether a guest is running because they get delivered to
193 * the guest directly, including nested HV KVM guests.
194 *
195 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
196 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
197 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
198 * delivered to the real-mode entry point, therefore such interrupts only test
199 * KVM in their real mode handlers, and only when PR KVM is possible.
200 *
201 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
202 * delivered in real-mode when the MMU is in hash mode because the MMU
203 * registers are not set appropriately to translate host addresses. In nested
204 * radix mode these can be delivered in virt-mode as the host translations are
205 * used implicitly (see: effective LPID, effective PID).
206 */
207
208/*
209 * If an interrupt is taken while a guest is running, it is immediately routed
210 * to KVM to handle.
211 */
212
213.macro KVMTEST name handler
214#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215	lbz	r10,HSTATE_IN_GUEST(r13)
216	cmpwi	r10,0
217	/* HSRR variants have the 0x2 bit added to their trap number */
218	.if IHSRR_IF_HVMODE
219	BEGIN_FTR_SECTION
220	li	r10,(IVEC + 0x2)
221	FTR_SECTION_ELSE
222	li	r10,(IVEC)
223	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
224	.elseif IHSRR
225	li	r10,(IVEC + 0x2)
226	.else
227	li	r10,(IVEC)
228	.endif
229	bne	\handler
230#endif
231.endm
232
233/*
234 * This is the BOOK3S interrupt entry code macro.
235 *
236 * This can result in one of several things happening:
237 * - Branch to the _common handler, relocated, in virtual mode.
238 *   These are normal interrupts (synchronous and asynchronous) handled by
239 *   the kernel.
240 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
241 *   These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
242 *   / intended for host or guest kernel, but KVM must always be involved
243 *   because the machine state is set for guest execution.
244 * - Branch to the masked handler, unrelocated.
245 *   These occur when maskable asynchronous interrupts are taken with the
246 *   irq_soft_mask set.
247 * - Branch to an "early" handler in real mode but relocated.
248 *   This is done if early=1. MCE and HMI use these to handle errors in real
249 *   mode.
250 * - Fall through and continue executing in real, unrelocated mode.
251 *   This is done if early=2.
252 */
253
254.macro GEN_BRANCH_TO_COMMON name, virt
255	.if IREALMODE_COMMON
256	LOAD_HANDLER(r10, \name\()_common)
257	mtctr	r10
258	bctr
259	.else
260	.if \virt
261#ifndef CONFIG_RELOCATABLE
262	b	\name\()_common_virt
263#else
264	LOAD_HANDLER(r10, \name\()_common_virt)
265	mtctr	r10
266	bctr
267#endif
268	.else
269	LOAD_HANDLER(r10, \name\()_common_real)
270	mtctr	r10
271	bctr
272	.endif
273	.endif
274.endm
275
276.macro GEN_INT_ENTRY name, virt, ool=0
277	SET_SCRATCH0(r13)			/* save r13 */
278	GET_PACA(r13)
279	std	r9,IAREA+EX_R9(r13)		/* save r9 */
280BEGIN_FTR_SECTION
281	mfspr	r9,SPRN_PPR
282END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
283	HMT_MEDIUM
284	std	r10,IAREA+EX_R10(r13)		/* save r10 - r12 */
285	.if ICFAR
286BEGIN_FTR_SECTION
287	mfspr	r10,SPRN_CFAR
288END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
289	.elseif ICFAR_IF_HVMODE
290BEGIN_FTR_SECTION
291  BEGIN_FTR_SECTION_NESTED(69)
292	mfspr	r10,SPRN_CFAR
293  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
294FTR_SECTION_ELSE
295  BEGIN_FTR_SECTION_NESTED(69)
296	li	r10,0
297  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
298ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
299	.endif
300	.if \ool
301	.if !\virt
302	b	tramp_real_\name
303	.pushsection .text
304	TRAMP_REAL_BEGIN(tramp_real_\name)
305	.else
306	b	tramp_virt_\name
307	.pushsection .text
308	TRAMP_VIRT_BEGIN(tramp_virt_\name)
309	.endif
310	.endif
311
312BEGIN_FTR_SECTION
313	std	r9,IAREA+EX_PPR(r13)
314END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
315	.if ICFAR || ICFAR_IF_HVMODE
316BEGIN_FTR_SECTION
317	std	r10,IAREA+EX_CFAR(r13)
318END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
319	.endif
320	INTERRUPT_TO_KERNEL
321	mfctr	r10
322	std	r10,IAREA+EX_CTR(r13)
323	mfcr	r9
324	std	r11,IAREA+EX_R11(r13)
325	std	r12,IAREA+EX_R12(r13)
326
327	/*
328	 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
329	 * because a d-side MCE will clobber those registers so is
330	 * not recoverable if they are live.
331	 */
332	GET_SCRATCH0(r10)
333	std	r10,IAREA+EX_R13(r13)
334	.if IDAR && !IISIDE
335	.if IHSRR
336	mfspr	r10,SPRN_HDAR
337	.else
338	mfspr	r10,SPRN_DAR
339	.endif
340	std	r10,IAREA+EX_DAR(r13)
341	.endif
342	.if IDSISR && !IISIDE
343	.if IHSRR
344	mfspr	r10,SPRN_HDSISR
345	.else
346	mfspr	r10,SPRN_DSISR
347	.endif
348	stw	r10,IAREA+EX_DSISR(r13)
349	.endif
350
351	.if IHSRR_IF_HVMODE
352	BEGIN_FTR_SECTION
353	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
354	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
355	FTR_SECTION_ELSE
356	mfspr	r11,SPRN_SRR0		/* save SRR0 */
357	mfspr	r12,SPRN_SRR1		/* and SRR1 */
358	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
359	.elseif IHSRR
360	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
361	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
362	.else
363	mfspr	r11,SPRN_SRR0		/* save SRR0 */
364	mfspr	r12,SPRN_SRR1		/* and SRR1 */
365	.endif
366
367	.if IBRANCH_TO_COMMON
368	GEN_BRANCH_TO_COMMON \name \virt
369	.endif
370
371	.if \ool
372	.popsection
373	.endif
374.endm
375
376/*
377 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
378 * entry, except in the case of the real-mode handlers which require
379 * __GEN_REALMODE_COMMON_ENTRY.
380 *
381 * This switches to virtual mode and sets MSR[RI].
382 */
383.macro __GEN_COMMON_ENTRY name
384DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
385\name\()_common_real:
386	.if IKVM_REAL
387		KVMTEST \name kvm_interrupt
388	.endif
389
390	ld	r10,PACAKMSR(r13)	/* get MSR value for kernel */
391	/* MSR[RI] is clear iff using SRR regs */
392	.if IHSRR_IF_HVMODE
393	BEGIN_FTR_SECTION
394	xori	r10,r10,MSR_RI
395	END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
396	.elseif ! IHSRR
397	xori	r10,r10,MSR_RI
398	.endif
399	mtmsrd	r10
400
401	.if IVIRT
402	.if IKVM_VIRT
403	b	1f /* skip the virt test coming from real */
404	.endif
405
406	.balign IFETCH_ALIGN_BYTES
407DEFINE_FIXED_SYMBOL(\name\()_common_virt, text)
408\name\()_common_virt:
409	.if IKVM_VIRT
410		KVMTEST \name kvm_interrupt
4111:
412	.endif
413	.endif /* IVIRT */
414.endm
415
416/*
417 * Don't switch to virt mode. Used for early MCE and HMI handlers that
418 * want to run in real mode.
419 */
420.macro __GEN_REALMODE_COMMON_ENTRY name
421DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
422\name\()_common_real:
423	.if IKVM_REAL
424		KVMTEST \name kvm_interrupt
425	.endif
426.endm
427
428.macro __GEN_COMMON_BODY name
429	.if IMASK
430		.if ! ISTACK
431		.error "No support for masked interrupt to use custom stack"
432		.endif
433
434		/* If coming from user, skip soft-mask tests. */
435		andi.	r10,r12,MSR_PR
436		bne	3f
437
438		/*
439		 * Kernel code running below __end_soft_masked may be
440		 * implicitly soft-masked if it is within the regions
441		 * in the soft mask table.
442		 */
443		LOAD_HANDLER(r10, __end_soft_masked)
444		cmpld	r11,r10
445		bge+	1f
446
447		/* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */
448		mtctr	r12
449		stw	r9,PACA_EXGEN+EX_CCR(r13)
450		SEARCH_SOFT_MASK_TABLE
451		cmpdi	r12,0
452		mfctr	r12		/* Restore r12 to SRR1 */
453		lwz	r9,PACA_EXGEN+EX_CCR(r13)
454		beq	1f		/* Not in soft-mask table */
455		li	r10,IMASK
456		b	2f		/* In soft-mask table, always mask */
457
458		/* Test the soft mask state against our interrupt's bit */
4591:		lbz	r10,PACAIRQSOFTMASK(r13)
4602:		andi.	r10,r10,IMASK
461		/* Associate vector numbers with bits in paca->irq_happened */
462		.if IVEC == 0x500 || IVEC == 0xea0
463		li	r10,PACA_IRQ_EE
464		.elseif IVEC == 0x900
465		li	r10,PACA_IRQ_DEC
466		.elseif IVEC == 0xa00 || IVEC == 0xe80
467		li	r10,PACA_IRQ_DBELL
468		.elseif IVEC == 0xe60
469		li	r10,PACA_IRQ_HMI
470		.elseif IVEC == 0xf00
471		li	r10,PACA_IRQ_PMI
472		.else
473		.abort "Bad maskable vector"
474		.endif
475
476		.if IHSRR_IF_HVMODE
477		BEGIN_FTR_SECTION
478		bne	masked_Hinterrupt
479		FTR_SECTION_ELSE
480		bne	masked_interrupt
481		ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
482		.elseif IHSRR
483		bne	masked_Hinterrupt
484		.else
485		bne	masked_interrupt
486		.endif
487	.endif
488
489	.if ISTACK
490	andi.	r10,r12,MSR_PR		/* See if coming from user	*/
4913:	mr	r10,r1			/* Save r1			*/
492	subi	r1,r1,INT_FRAME_SIZE	/* alloc frame on kernel stack	*/
493	beq-	100f
494	ld	r1,PACAKSAVE(r13)	/* kernel stack to use		*/
495100:	tdgei	r1,-INT_FRAME_SIZE	/* trap if r1 is in userspace	*/
496	EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
497	.endif
498
499	std	r9,_CCR(r1)		/* save CR in stackframe	*/
500	std	r11,_NIP(r1)		/* save SRR0 in stackframe	*/
501	std	r12,_MSR(r1)		/* save SRR1 in stackframe	*/
502	std	r10,0(r1)		/* make stack chain pointer	*/
503	std	r0,GPR0(r1)		/* save r0 in stackframe	*/
504	std	r10,GPR1(r1)		/* save r1 in stackframe	*/
505
506	/* Mark our [H]SRRs valid for return */
507	li	r10,1
508	.if IHSRR_IF_HVMODE
509	BEGIN_FTR_SECTION
510	stb	r10,PACAHSRR_VALID(r13)
511	FTR_SECTION_ELSE
512	stb	r10,PACASRR_VALID(r13)
513	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
514	.elseif IHSRR
515	stb	r10,PACAHSRR_VALID(r13)
516	.else
517	stb	r10,PACASRR_VALID(r13)
518	.endif
519
520	.if ISTACK
521	.if IKUAP
522	kuap_save_amr_and_lock r9, r10, cr1, cr0
523	.endif
524	beq	101f			/* if from kernel mode		*/
525BEGIN_FTR_SECTION
526	ld	r9,IAREA+EX_PPR(r13)	/* Read PPR from paca		*/
527	std	r9,_PPR(r1)
528END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
529101:
530	.else
531	.if IKUAP
532	kuap_save_amr_and_lock r9, r10, cr1
533	.endif
534	.endif
535
536	/* Save original regs values from save area to stack frame. */
537	ld	r9,IAREA+EX_R9(r13)	/* move r9, r10 to stackframe	*/
538	ld	r10,IAREA+EX_R10(r13)
539	std	r9,GPR9(r1)
540	std	r10,GPR10(r1)
541	ld	r9,IAREA+EX_R11(r13)	/* move r11 - r13 to stackframe	*/
542	ld	r10,IAREA+EX_R12(r13)
543	ld	r11,IAREA+EX_R13(r13)
544	std	r9,GPR11(r1)
545	std	r10,GPR12(r1)
546	std	r11,GPR13(r1)
547
548	SAVE_NVGPRS(r1)
549
550	.if IDAR
551	.if IISIDE
552	ld	r10,_NIP(r1)
553	.else
554	ld	r10,IAREA+EX_DAR(r13)
555	.endif
556	std	r10,_DAR(r1)
557	.endif
558
559	.if IDSISR
560	.if IISIDE
561	ld	r10,_MSR(r1)
562	lis	r11,DSISR_SRR1_MATCH_64S@h
563	and	r10,r10,r11
564	.else
565	lwz	r10,IAREA+EX_DSISR(r13)
566	.endif
567	std	r10,_DSISR(r1)
568	.endif
569
570BEGIN_FTR_SECTION
571	.if ICFAR || ICFAR_IF_HVMODE
572	ld	r10,IAREA+EX_CFAR(r13)
573	.else
574	li	r10,0
575	.endif
576	std	r10,ORIG_GPR3(r1)
577END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
578	ld	r10,IAREA+EX_CTR(r13)
579	std	r10,_CTR(r1)
580	std	r2,GPR2(r1)		/* save r2 in stackframe	*/
581	SAVE_GPRS(3, 8, r1)		/* save r3 - r8 in stackframe   */
582	mflr	r9			/* Get LR, later save to stack	*/
583	ld	r2,PACATOC(r13)		/* get kernel TOC into r2	*/
584	std	r9,_LINK(r1)
585	lbz	r10,PACAIRQSOFTMASK(r13)
586	mfspr	r11,SPRN_XER		/* save XER in stackframe	*/
587	std	r10,SOFTE(r1)
588	std	r11,_XER(r1)
589	li	r9,IVEC
590	std	r9,_TRAP(r1)		/* set trap number		*/
591	li	r10,0
592	ld	r11,exception_marker@toc(r2)
593	std	r10,RESULT(r1)		/* clear regs->result		*/
594	std	r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame	*/
595.endm
596
597/*
598 * On entry r13 points to the paca, r9-r13 are saved in the paca,
599 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
600 * SRR1, and relocation is on.
601 *
602 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
603 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
604 */
605.macro GEN_COMMON name
606	__GEN_COMMON_ENTRY \name
607	__GEN_COMMON_BODY \name
608.endm
609
610.macro SEARCH_RESTART_TABLE
611#ifdef CONFIG_RELOCATABLE
612	mr	r12,r2
613	ld	r2,PACATOC(r13)
614	LOAD_REG_ADDR(r9, __start___restart_table)
615	LOAD_REG_ADDR(r10, __stop___restart_table)
616	mr	r2,r12
617#else
618	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table)
619	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table)
620#endif
621300:
622	cmpd	r9,r10
623	beq	302f
624	ld	r12,0(r9)
625	cmpld	r11,r12
626	blt	301f
627	ld	r12,8(r9)
628	cmpld	r11,r12
629	bge	301f
630	ld	r12,16(r9)
631	b	303f
632301:
633	addi	r9,r9,24
634	b	300b
635302:
636	li	r12,0
637303:
638.endm
639
640.macro SEARCH_SOFT_MASK_TABLE
641#ifdef CONFIG_RELOCATABLE
642	mr	r12,r2
643	ld	r2,PACATOC(r13)
644	LOAD_REG_ADDR(r9, __start___soft_mask_table)
645	LOAD_REG_ADDR(r10, __stop___soft_mask_table)
646	mr	r2,r12
647#else
648	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table)
649	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table)
650#endif
651300:
652	cmpd	r9,r10
653	beq	302f
654	ld	r12,0(r9)
655	cmpld	r11,r12
656	blt	301f
657	ld	r12,8(r9)
658	cmpld	r11,r12
659	bge	301f
660	li	r12,1
661	b	303f
662301:
663	addi	r9,r9,16
664	b	300b
665302:
666	li	r12,0
667303:
668.endm
669
670/*
671 * Restore all registers including H/SRR0/1 saved in a stack frame of a
672 * standard exception.
673 */
674.macro EXCEPTION_RESTORE_REGS hsrr=0
675	/* Move original SRR0 and SRR1 into the respective regs */
676	ld	r9,_MSR(r1)
677	li	r10,0
678	.if \hsrr
679	mtspr	SPRN_HSRR1,r9
680	stb	r10,PACAHSRR_VALID(r13)
681	.else
682	mtspr	SPRN_SRR1,r9
683	stb	r10,PACASRR_VALID(r13)
684	.endif
685	ld	r9,_NIP(r1)
686	.if \hsrr
687	mtspr	SPRN_HSRR0,r9
688	.else
689	mtspr	SPRN_SRR0,r9
690	.endif
691	ld	r9,_CTR(r1)
692	mtctr	r9
693	ld	r9,_XER(r1)
694	mtxer	r9
695	ld	r9,_LINK(r1)
696	mtlr	r9
697	ld	r9,_CCR(r1)
698	mtcr	r9
699	REST_GPRS(2, 13, r1)
700	REST_GPR(0, r1)
701	/* restore original r1. */
702	ld	r1,GPR1(r1)
703.endm
704
705/*
706 * There are a few constraints to be concerned with.
707 * - Real mode exceptions code/data must be located at their physical location.
708 * - Virtual mode exceptions must be mapped at their 0xc000... location.
709 * - Fixed location code must not call directly beyond the __end_interrupts
710 *   area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
711 *   must be used.
712 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
713 *   virtual 0xc00...
714 * - Conditional branch targets must be within +/-32K of caller.
715 *
716 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
717 * therefore don't have to run in physically located code or rfid to
718 * virtual mode kernel code. However on relocatable kernels they do have
719 * to branch to KERNELBASE offset because the rest of the kernel (outside
720 * the exception vectors) may be located elsewhere.
721 *
722 * Virtual exceptions correspond with physical, except their entry points
723 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
724 * offset applied. Virtual exceptions are enabled with the Alternate
725 * Interrupt Location (AIL) bit set in the LPCR. However this does not
726 * guarantee they will be delivered virtually. Some conditions (see the ISA)
727 * cause exceptions to be delivered in real mode.
728 *
729 * The scv instructions are a special case. They get a 0x3000 offset applied.
730 * scv exceptions have unique reentrancy properties, see below.
731 *
732 * It's impossible to receive interrupts below 0x300 via AIL.
733 *
734 * KVM: None of the virtual exceptions are from the guest. Anything that
735 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
736 *
737 *
738 * We layout physical memory as follows:
739 * 0x0000 - 0x00ff : Secondary processor spin code
740 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
741 * 0x1900 - 0x2fff : Real mode trampolines
742 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
743 * 0x5900 - 0x6fff : Relon mode trampolines
744 * 0x7000 - 0x7fff : FWNMI data area
745 * 0x8000 -   .... : Common interrupt handlers, remaining early
746 *                   setup code, rest of kernel.
747 *
748 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
749 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
750 * vectors there.
751 */
752OPEN_FIXED_SECTION(real_vectors,        0x0100, 0x1900)
753OPEN_FIXED_SECTION(real_trampolines,    0x1900, 0x3000)
754OPEN_FIXED_SECTION(virt_vectors,        0x3000, 0x5900)
755OPEN_FIXED_SECTION(virt_trampolines,    0x5900, 0x7000)
756
757#ifdef CONFIG_PPC_POWERNV
758	.globl start_real_trampolines
759	.globl end_real_trampolines
760	.globl start_virt_trampolines
761	.globl end_virt_trampolines
762#endif
763
764#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
765/*
766 * Data area reserved for FWNMI option.
767 * This address (0x7000) is fixed by the RPA.
768 * pseries and powernv need to keep the whole page from
769 * 0x7000 to 0x8000 free for use by the firmware
770 */
771ZERO_FIXED_SECTION(fwnmi_page,          0x7000, 0x8000)
772OPEN_TEXT_SECTION(0x8000)
773#else
774OPEN_TEXT_SECTION(0x7000)
775#endif
776
777USE_FIXED_SECTION(real_vectors)
778
779/*
780 * This is the start of the interrupt handlers for pSeries
781 * This code runs with relocation off.
782 * Code from here to __end_interrupts gets copied down to real
783 * address 0x100 when we are running a relocatable kernel.
784 * Therefore any relative branches in this section must only
785 * branch to labels in this section.
786 */
787	.globl __start_interrupts
788__start_interrupts:
789
790/**
791 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
792 * This is a synchronous interrupt invoked with the "scv" instruction. The
793 * system call does not alter the HV bit, so it is directed to the OS.
794 *
795 * Handling:
796 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
797 * In particular, this means we can take a maskable interrupt at any point
798 * in the scv handler, which is unlike any other interrupt. This is solved
799 * by treating the instruction addresses in the handler as being soft-masked,
800 * by adding a SOFT_MASK_TABLE entry for them.
801 *
802 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
803 * ensure scv is never executed with relocation off, which means AIL-0
804 * should never happen.
805 *
806 * Before leaving the following inside-__end_soft_masked text, at least of the
807 * following must be true:
808 * - MSR[PR]=1 (i.e., return to userspace)
809 * - MSR_EE|MSR_RI is clear (no reentrant exceptions)
810 * - Standard kernel environment is set up (stack, paca, etc)
811 *
812 * Call convention:
813 *
814 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
815 */
816EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
817	/* SCV 0 */
818	mr	r9,r13
819	GET_PACA(r13)
820	mflr	r11
821	mfctr	r12
822	li	r10,IRQS_ALL_DISABLED
823	stb	r10,PACAIRQSOFTMASK(r13)
824#ifdef CONFIG_RELOCATABLE
825	b	system_call_vectored_tramp
826#else
827	b	system_call_vectored_common
828#endif
829	nop
830
831	/* SCV 1 - 127 */
832	.rept	127
833	mr	r9,r13
834	GET_PACA(r13)
835	mflr	r11
836	mfctr	r12
837	li	r10,IRQS_ALL_DISABLED
838	stb	r10,PACAIRQSOFTMASK(r13)
839	li	r0,-1 /* cause failure */
840#ifdef CONFIG_RELOCATABLE
841	b	system_call_vectored_sigill_tramp
842#else
843	b	system_call_vectored_sigill
844#endif
845	.endr
846EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
847
848// Treat scv vectors as soft-masked, see comment above.
849// Use absolute values rather than labels here, so they don't get relocated,
850// because this code runs unrelocated.
851SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000)
852
853#ifdef CONFIG_RELOCATABLE
854TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
855	__LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines)
856	mtctr	r10
857	bctr
858
859TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
860	__LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines)
861	mtctr	r10
862	bctr
863#endif
864
865
866/* No virt vectors corresponding with 0x0..0x100 */
867EXC_VIRT_NONE(0x4000, 0x100)
868
869
870/**
871 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
872 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
873 * It is caused by:
874 * - Wake from power-saving state, on powernv.
875 * - An NMI from another CPU, triggered by firmware or hypercall.
876 * - As crash/debug signal injected from BMC, firmware or hypervisor.
877 *
878 * Handling:
879 * Power-save wakeup is the only performance critical path, so this is
880 * determined quickly as possible first. In this case volatile registers
881 * can be discarded and SPRs like CFAR don't need to be read.
882 *
883 * If not a powersave wakeup, then it's run as a regular interrupt, however
884 * it uses its own stack and PACA save area to preserve the regular kernel
885 * environment for debugging.
886 *
887 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
888 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
889 * correct to switch to virtual mode to run the regular interrupt handler
890 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
891 * is clear).
892 *
893 * FWNMI:
894 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
895 * entry point with a different register set up. Some hypervisors will
896 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
897 *
898 * KVM:
899 * Unlike most SRR interrupts, this may be taken by the host while executing
900 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
901 * mode and then raise the sreset.
902 */
903INT_DEFINE_BEGIN(system_reset)
904	IVEC=0x100
905	IAREA=PACA_EXNMI
906	IVIRT=0 /* no virt entry point */
907	ISTACK=0
908	IKVM_REAL=1
909INT_DEFINE_END(system_reset)
910
911EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
912#ifdef CONFIG_PPC_P7_NAP
913	/*
914	 * If running native on arch 2.06 or later, check if we are waking up
915	 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
916	 * bits 46:47. A non-0 value indicates that we are coming from a power
917	 * saving state. The idle wakeup handler initially runs in real mode,
918	 * but we branch to the 0xc000... address so we can turn on relocation
919	 * with mtmsrd later, after SPRs are restored.
920	 *
921	 * Careful to minimise cost for the fast path (idle wakeup) while
922	 * also avoiding clobbering CFAR for the debug path (non-idle).
923	 *
924	 * For the idle wake case volatile registers can be clobbered, which
925	 * is why we use those initially. If it turns out to not be an idle
926	 * wake, carefully put everything back the way it was, so we can use
927	 * common exception macros to handle it.
928	 */
929BEGIN_FTR_SECTION
930	SET_SCRATCH0(r13)
931	GET_PACA(r13)
932	std	r3,PACA_EXNMI+0*8(r13)
933	std	r4,PACA_EXNMI+1*8(r13)
934	std	r5,PACA_EXNMI+2*8(r13)
935	mfspr	r3,SPRN_SRR1
936	mfocrf	r4,0x80
937	rlwinm.	r5,r3,47-31,30,31
938	bne+	system_reset_idle_wake
939	/* Not powersave wakeup. Restore regs for regular interrupt handler. */
940	mtocrf	0x80,r4
941	ld	r3,PACA_EXNMI+0*8(r13)
942	ld	r4,PACA_EXNMI+1*8(r13)
943	ld	r5,PACA_EXNMI+2*8(r13)
944	GET_SCRATCH0(r13)
945END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
946#endif
947
948	GEN_INT_ENTRY system_reset, virt=0
949	/*
950	 * In theory, we should not enable relocation here if it was disabled
951	 * in SRR1, because the MMU may not be configured to support it (e.g.,
952	 * SLB may have been cleared). In practice, there should only be a few
953	 * small windows where that's the case, and sreset is considered to
954	 * be dangerous anyway.
955	 */
956EXC_REAL_END(system_reset, 0x100, 0x100)
957EXC_VIRT_NONE(0x4100, 0x100)
958
959#ifdef CONFIG_PPC_P7_NAP
960TRAMP_REAL_BEGIN(system_reset_idle_wake)
961	/* We are waking up from idle, so may clobber any volatile register */
962	cmpwi	cr1,r5,2
963	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
964	__LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines)
965	mtctr	r12
966	bctr
967#endif
968
969#ifdef CONFIG_PPC_PSERIES
970/*
971 * Vectors for the FWNMI option.  Share common code.
972 */
973TRAMP_REAL_BEGIN(system_reset_fwnmi)
974	GEN_INT_ENTRY system_reset, virt=0
975
976#endif /* CONFIG_PPC_PSERIES */
977
978EXC_COMMON_BEGIN(system_reset_common)
979	__GEN_COMMON_ENTRY system_reset
980	/*
981	 * Increment paca->in_nmi. When the interrupt entry wrapper later
982	 * enable MSR_RI, then SLB or MCE will be able to recover, but a nested
983	 * NMI will notice in_nmi and not recover because of the use of the NMI
984	 * stack. in_nmi reentrancy is tested in system_reset_exception.
985	 */
986	lhz	r10,PACA_IN_NMI(r13)
987	addi	r10,r10,1
988	sth	r10,PACA_IN_NMI(r13)
989
990	mr	r10,r1
991	ld	r1,PACA_NMI_EMERG_SP(r13)
992	subi	r1,r1,INT_FRAME_SIZE
993	__GEN_COMMON_BODY system_reset
994
995	addi	r3,r1,STACK_FRAME_OVERHEAD
996	bl	system_reset_exception
997
998	/* Clear MSR_RI before setting SRR0 and SRR1. */
999	li	r9,0
1000	mtmsrd	r9,1
1001
1002	/*
1003	 * MSR_RI is clear, now we can decrement paca->in_nmi.
1004	 */
1005	lhz	r10,PACA_IN_NMI(r13)
1006	subi	r10,r10,1
1007	sth	r10,PACA_IN_NMI(r13)
1008
1009	kuap_kernel_restore r9, r10
1010	EXCEPTION_RESTORE_REGS
1011	RFI_TO_USER_OR_KERNEL
1012
1013
1014/**
1015 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1016 * This is a non-maskable interrupt always taken in real-mode. It can be
1017 * synchronous or asynchronous, caused by hardware or software, and it may be
1018 * taken in a power-saving state.
1019 *
1020 * Handling:
1021 * Similarly to system reset, this uses its own stack and PACA save area,
1022 * the difference is re-entrancy is allowed on the machine check stack.
1023 *
1024 * machine_check_early is run in real mode, and carefully decodes the
1025 * machine check and tries to handle it (e.g., flush the SLB if there was an
1026 * error detected there), determines if it was recoverable and logs the
1027 * event.
1028 *
1029 * This early code does not "reconcile" irq soft-mask state like SRESET or
1030 * regular interrupts do, so irqs_disabled() among other things may not work
1031 * properly (irq disable/enable already doesn't work because irq tracing can
1032 * not work in real mode).
1033 *
1034 * Then, depending on the execution context when the interrupt is taken, there
1035 * are 3 main actions:
1036 * - Executing in kernel mode. The event is queued with irq_work, which means
1037 *   it is handled when it is next safe to do so (i.e., the kernel has enabled
1038 *   interrupts), which could be immediately when the interrupt returns. This
1039 *   avoids nasty issues like switching to virtual mode when the MMU is in a
1040 *   bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1041 *   but it has different priorities). Check to see if the CPU was in power
1042 *   save, and return via the wake up code if it was.
1043 *
1044 * - Executing in user mode. machine_check_exception is run like a normal
1045 *   interrupt handler, which processes the data generated by the early handler.
1046 *
1047 * - Executing in guest mode. The interrupt is run with its KVM test, and
1048 *   branches to KVM to deal with. KVM may queue the event for the host
1049 *   to report later.
1050 *
1051 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1052 * or SCRATCH0 is in use, it may cause a crash.
1053 *
1054 * KVM:
1055 * See SRESET.
1056 */
1057INT_DEFINE_BEGIN(machine_check_early)
1058	IVEC=0x200
1059	IAREA=PACA_EXMC
1060	IVIRT=0 /* no virt entry point */
1061	IREALMODE_COMMON=1
1062	ISTACK=0
1063	IDAR=1
1064	IDSISR=1
1065	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1066INT_DEFINE_END(machine_check_early)
1067
1068INT_DEFINE_BEGIN(machine_check)
1069	IVEC=0x200
1070	IAREA=PACA_EXMC
1071	IVIRT=0 /* no virt entry point */
1072	IDAR=1
1073	IDSISR=1
1074	IKVM_REAL=1
1075INT_DEFINE_END(machine_check)
1076
1077EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1078	GEN_INT_ENTRY machine_check_early, virt=0
1079EXC_REAL_END(machine_check, 0x200, 0x100)
1080EXC_VIRT_NONE(0x4200, 0x100)
1081
1082#ifdef CONFIG_PPC_PSERIES
1083TRAMP_REAL_BEGIN(machine_check_fwnmi)
1084	/* See comment at machine_check exception, don't turn on RI */
1085	GEN_INT_ENTRY machine_check_early, virt=0
1086#endif
1087
1088#define MACHINE_CHECK_HANDLER_WINDUP			\
1089	/* Clear MSR_RI before setting SRR0 and SRR1. */\
1090	li	r9,0;					\
1091	mtmsrd	r9,1;		/* Clear MSR_RI */	\
1092	/* Decrement paca->in_mce now RI is clear. */	\
1093	lhz	r12,PACA_IN_MCE(r13);			\
1094	subi	r12,r12,1;				\
1095	sth	r12,PACA_IN_MCE(r13);			\
1096	EXCEPTION_RESTORE_REGS
1097
1098EXC_COMMON_BEGIN(machine_check_early_common)
1099	__GEN_REALMODE_COMMON_ENTRY machine_check_early
1100
1101	/*
1102	 * Switch to mc_emergency stack and handle re-entrancy (we limit
1103	 * the nested MCE upto level 4 to avoid stack overflow).
1104	 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1105	 *
1106	 * We use paca->in_mce to check whether this is the first entry or
1107	 * nested machine check. We increment paca->in_mce to track nested
1108	 * machine checks.
1109	 *
1110	 * If this is the first entry then set stack pointer to
1111	 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1112	 * stack frame on mc_emergency stack.
1113	 *
1114	 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1115	 * checkstop if we get another machine check exception before we do
1116	 * rfid with MSR_ME=1.
1117	 *
1118	 * This interrupt can wake directly from idle. If that is the case,
1119	 * the machine check is handled then the idle wakeup code is called
1120	 * to restore state.
1121	 */
1122	lhz	r10,PACA_IN_MCE(r13)
1123	cmpwi	r10,0			/* Are we in nested machine check */
1124	cmpwi	cr1,r10,MAX_MCE_DEPTH	/* Are we at maximum nesting */
1125	addi	r10,r10,1		/* increment paca->in_mce */
1126	sth	r10,PACA_IN_MCE(r13)
1127
1128	mr	r10,r1			/* Save r1 */
1129	bne	1f
1130	/* First machine check entry */
1131	ld	r1,PACAMCEMERGSP(r13)	/* Use MC emergency stack */
11321:	/* Limit nested MCE to level 4 to avoid stack overflow */
1133	bgt	cr1,unrecoverable_mce	/* Check if we hit limit of 4 */
1134	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame */
1135
1136	__GEN_COMMON_BODY machine_check_early
1137
1138BEGIN_FTR_SECTION
1139	bl	enable_machine_check
1140END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1141	addi	r3,r1,STACK_FRAME_OVERHEAD
1142	bl	machine_check_early
1143	std	r3,RESULT(r1)	/* Save result */
1144	ld	r12,_MSR(r1)
1145
1146#ifdef CONFIG_PPC_P7_NAP
1147	/*
1148	 * Check if thread was in power saving mode. We come here when any
1149	 * of the following is true:
1150	 * a. thread wasn't in power saving mode
1151	 * b. thread was in power saving mode with no state loss,
1152	 *    supervisor state loss or hypervisor state loss.
1153	 *
1154	 * Go back to nap/sleep/winkle mode again if (b) is true.
1155	 */
1156BEGIN_FTR_SECTION
1157	rlwinm.	r11,r12,47-31,30,31
1158	bne	machine_check_idle_common
1159END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1160#endif
1161
1162#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1163	/*
1164	 * Check if we are coming from guest. If yes, then run the normal
1165	 * exception handler which will take the
1166	 * machine_check_kvm->kvm_interrupt branch to deliver the MC event
1167	 * to guest.
1168	 */
1169	lbz	r11,HSTATE_IN_GUEST(r13)
1170	cmpwi	r11,0			/* Check if coming from guest */
1171	bne	mce_deliver		/* continue if we are. */
1172#endif
1173
1174	/*
1175	 * Check if we are coming from userspace. If yes, then run the normal
1176	 * exception handler which will deliver the MC event to this kernel.
1177	 */
1178	andi.	r11,r12,MSR_PR		/* See if coming from user. */
1179	bne	mce_deliver		/* continue in V mode if we are. */
1180
1181	/*
1182	 * At this point we are coming from kernel context.
1183	 * Queue up the MCE event and return from the interrupt.
1184	 * But before that, check if this is an un-recoverable exception.
1185	 * If yes, then stay on emergency stack and panic.
1186	 */
1187	andi.	r11,r12,MSR_RI
1188	beq	unrecoverable_mce
1189
1190	/*
1191	 * Check if we have successfully handled/recovered from error, if not
1192	 * then stay on emergency stack and panic.
1193	 */
1194	ld	r3,RESULT(r1)	/* Load result */
1195	cmpdi	r3,0		/* see if we handled MCE successfully */
1196	beq	unrecoverable_mce /* if !handled then panic */
1197
1198	/*
1199	 * Return from MC interrupt.
1200	 * Queue up the MCE event so that we can log it later, while
1201	 * returning from kernel or opal call.
1202	 */
1203	bl	machine_check_queue_event
1204	MACHINE_CHECK_HANDLER_WINDUP
1205	RFI_TO_KERNEL
1206
1207mce_deliver:
1208	/*
1209	 * This is a host user or guest MCE. Restore all registers, then
1210	 * run the "late" handler. For host user, this will run the
1211	 * machine_check_exception handler in virtual mode like a normal
1212	 * interrupt handler. For guest, this will trigger the KVM test
1213	 * and branch to the KVM interrupt similarly to other interrupts.
1214	 */
1215BEGIN_FTR_SECTION
1216	ld	r10,ORIG_GPR3(r1)
1217	mtspr	SPRN_CFAR,r10
1218END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1219	MACHINE_CHECK_HANDLER_WINDUP
1220	GEN_INT_ENTRY machine_check, virt=0
1221
1222EXC_COMMON_BEGIN(machine_check_common)
1223	/*
1224	 * Machine check is different because we use a different
1225	 * save area: PACA_EXMC instead of PACA_EXGEN.
1226	 */
1227	GEN_COMMON machine_check
1228	addi	r3,r1,STACK_FRAME_OVERHEAD
1229	bl	machine_check_exception_async
1230	b	interrupt_return_srr
1231
1232
1233#ifdef CONFIG_PPC_P7_NAP
1234/*
1235 * This is an idle wakeup. Low level machine check has already been
1236 * done. Queue the event then call the idle code to do the wake up.
1237 */
1238EXC_COMMON_BEGIN(machine_check_idle_common)
1239	bl	machine_check_queue_event
1240
1241	/*
1242	 * GPR-loss wakeups are relatively straightforward, because the
1243	 * idle sleep code has saved all non-volatile registers on its
1244	 * own stack, and r1 in PACAR1.
1245	 *
1246	 * For no-loss wakeups the r1 and lr registers used by the
1247	 * early machine check handler have to be restored first. r2 is
1248	 * the kernel TOC, so no need to restore it.
1249	 *
1250	 * Then decrement MCE nesting after finishing with the stack.
1251	 */
1252	ld	r3,_MSR(r1)
1253	ld	r4,_LINK(r1)
1254	ld	r1,GPR1(r1)
1255
1256	lhz	r11,PACA_IN_MCE(r13)
1257	subi	r11,r11,1
1258	sth	r11,PACA_IN_MCE(r13)
1259
1260	mtlr	r4
1261	rlwinm	r10,r3,47-31,30,31
1262	cmpwi	cr1,r10,2
1263	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
1264	b	idle_return_gpr_loss
1265#endif
1266
1267EXC_COMMON_BEGIN(unrecoverable_mce)
1268	/*
1269	 * We are going down. But there are chances that we might get hit by
1270	 * another MCE during panic path and we may run into unstable state
1271	 * with no way out. Hence, turn ME bit off while going down, so that
1272	 * when another MCE is hit during panic path, system will checkstop
1273	 * and hypervisor will get restarted cleanly by SP.
1274	 */
1275BEGIN_FTR_SECTION
1276	li	r10,0 /* clear MSR_RI */
1277	mtmsrd	r10,1
1278	bl	disable_machine_check
1279END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1280	ld	r10,PACAKMSR(r13)
1281	li	r3,MSR_ME
1282	andc	r10,r10,r3
1283	mtmsrd	r10
1284
1285	lhz	r12,PACA_IN_MCE(r13)
1286	subi	r12,r12,1
1287	sth	r12,PACA_IN_MCE(r13)
1288
1289	/*
1290	 * Invoke machine_check_exception to print MCE event and panic.
1291	 * This is the NMI version of the handler because we are called from
1292	 * the early handler which is a true NMI.
1293	 */
1294	addi	r3,r1,STACK_FRAME_OVERHEAD
1295	bl	machine_check_exception
1296
1297	/*
1298	 * We will not reach here. Even if we did, there is no way out.
1299	 * Call unrecoverable_exception and die.
1300	 */
1301	addi	r3,r1,STACK_FRAME_OVERHEAD
1302	bl	unrecoverable_exception
1303	b	.
1304
1305
1306/**
1307 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1308 * This is a synchronous interrupt generated due to a data access exception,
1309 * e.g., a load orstore which does not have a valid page table entry with
1310 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1311 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1312 *
1313 * Handling:
1314 * - Hash MMU
1315 *   Go to do_hash_fault, which attempts to fill the HPT from an entry in the
1316 *   Linux page table. Hash faults can hit in kernel mode in a fairly
1317 *   arbitrary state (e.g., interrupts disabled, locks held) when accessing
1318 *   "non-bolted" regions, e.g., vmalloc space. However these should always be
1319 *   backed by Linux page table entries.
1320 *
1321 *   If no entry is found the Linux page fault handler is invoked (by
1322 *   do_hash_fault). Linux page faults can happen in kernel mode due to user
1323 *   copy operations of course.
1324 *
1325 *   KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
1326 *   MMU context, which may cause a DSI in the host, which must go to the
1327 *   KVM handler. MSR[IR] is not enabled, so the real-mode handler will
1328 *   always be used regardless of AIL setting.
1329 *
1330 * - Radix MMU
1331 *   The hardware loads from the Linux page table directly, so a fault goes
1332 *   immediately to Linux page fault.
1333 *
1334 * Conditions like DAWR match are handled on the way in to Linux page fault.
1335 */
1336INT_DEFINE_BEGIN(data_access)
1337	IVEC=0x300
1338	IDAR=1
1339	IDSISR=1
1340	IKVM_REAL=1
1341INT_DEFINE_END(data_access)
1342
1343EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1344	GEN_INT_ENTRY data_access, virt=0
1345EXC_REAL_END(data_access, 0x300, 0x80)
1346EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1347	GEN_INT_ENTRY data_access, virt=1
1348EXC_VIRT_END(data_access, 0x4300, 0x80)
1349EXC_COMMON_BEGIN(data_access_common)
1350	GEN_COMMON data_access
1351	ld	r4,_DSISR(r1)
1352	addi	r3,r1,STACK_FRAME_OVERHEAD
1353	andis.	r0,r4,DSISR_DABRMATCH@h
1354	bne-	1f
1355#ifdef CONFIG_PPC_64S_HASH_MMU
1356BEGIN_MMU_FTR_SECTION
1357	bl	do_hash_fault
1358MMU_FTR_SECTION_ELSE
1359	bl	do_page_fault
1360ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1361#else
1362	bl	do_page_fault
1363#endif
1364	b	interrupt_return_srr
1365
13661:	bl	do_break
1367	/*
1368	 * do_break() may have changed the NV GPRS while handling a breakpoint.
1369	 * If so, we need to restore them with their updated values.
1370	 */
1371	REST_NVGPRS(r1)
1372	b	interrupt_return_srr
1373
1374
1375/**
1376 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1377 * This is a synchronous interrupt in response to an MMU fault missing SLB
1378 * entry for HPT, or an address outside RPT translation range.
1379 *
1380 * Handling:
1381 * - HPT:
1382 *   This refills the SLB, or reports an access fault similarly to a bad page
1383 *   fault. When coming from user-mode, the SLB handler may access any kernel
1384 *   data, though it may itself take a DSLB. When coming from kernel mode,
1385 *   recursive faults must be avoided so access is restricted to the kernel
1386 *   image text/data, kernel stack, and any data allocated below
1387 *   ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1388 *   on user-handler data structures.
1389 *
1390 *   KVM: Same as 0x300, DSLB must test for KVM guest.
1391 */
1392INT_DEFINE_BEGIN(data_access_slb)
1393	IVEC=0x380
1394	IDAR=1
1395	IKVM_REAL=1
1396INT_DEFINE_END(data_access_slb)
1397
1398EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1399	GEN_INT_ENTRY data_access_slb, virt=0
1400EXC_REAL_END(data_access_slb, 0x380, 0x80)
1401EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1402	GEN_INT_ENTRY data_access_slb, virt=1
1403EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1404EXC_COMMON_BEGIN(data_access_slb_common)
1405	GEN_COMMON data_access_slb
1406#ifdef CONFIG_PPC_64S_HASH_MMU
1407BEGIN_MMU_FTR_SECTION
1408	/* HPT case, do SLB fault */
1409	addi	r3,r1,STACK_FRAME_OVERHEAD
1410	bl	do_slb_fault
1411	cmpdi	r3,0
1412	bne-	1f
1413	b	fast_interrupt_return_srr
14141:	/* Error case */
1415MMU_FTR_SECTION_ELSE
1416	/* Radix case, access is outside page table range */
1417	li	r3,-EFAULT
1418ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1419#else
1420	li	r3,-EFAULT
1421#endif
1422	std	r3,RESULT(r1)
1423	addi	r3,r1,STACK_FRAME_OVERHEAD
1424	bl	do_bad_segment_interrupt
1425	b	interrupt_return_srr
1426
1427
1428/**
1429 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1430 * This is a synchronous interrupt in response to an MMU fault due to an
1431 * instruction fetch.
1432 *
1433 * Handling:
1434 * Similar to DSI, though in response to fetch. The faulting address is found
1435 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1436 */
1437INT_DEFINE_BEGIN(instruction_access)
1438	IVEC=0x400
1439	IISIDE=1
1440	IDAR=1
1441	IDSISR=1
1442#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1443	IKVM_REAL=1
1444#endif
1445INT_DEFINE_END(instruction_access)
1446
1447EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1448	GEN_INT_ENTRY instruction_access, virt=0
1449EXC_REAL_END(instruction_access, 0x400, 0x80)
1450EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1451	GEN_INT_ENTRY instruction_access, virt=1
1452EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1453EXC_COMMON_BEGIN(instruction_access_common)
1454	GEN_COMMON instruction_access
1455	addi	r3,r1,STACK_FRAME_OVERHEAD
1456#ifdef CONFIG_PPC_64S_HASH_MMU
1457BEGIN_MMU_FTR_SECTION
1458	bl	do_hash_fault
1459MMU_FTR_SECTION_ELSE
1460	bl	do_page_fault
1461ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1462#else
1463	bl	do_page_fault
1464#endif
1465	b	interrupt_return_srr
1466
1467
1468/**
1469 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1470 * This is a synchronous interrupt in response to an MMU fault due to an
1471 * instruction fetch.
1472 *
1473 * Handling:
1474 * Similar to DSLB, though in response to fetch. The faulting address is found
1475 * in SRR0 (rather than DAR).
1476 */
1477INT_DEFINE_BEGIN(instruction_access_slb)
1478	IVEC=0x480
1479	IISIDE=1
1480	IDAR=1
1481#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1482	IKVM_REAL=1
1483#endif
1484INT_DEFINE_END(instruction_access_slb)
1485
1486EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1487	GEN_INT_ENTRY instruction_access_slb, virt=0
1488EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1489EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1490	GEN_INT_ENTRY instruction_access_slb, virt=1
1491EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1492EXC_COMMON_BEGIN(instruction_access_slb_common)
1493	GEN_COMMON instruction_access_slb
1494#ifdef CONFIG_PPC_64S_HASH_MMU
1495BEGIN_MMU_FTR_SECTION
1496	/* HPT case, do SLB fault */
1497	addi	r3,r1,STACK_FRAME_OVERHEAD
1498	bl	do_slb_fault
1499	cmpdi	r3,0
1500	bne-	1f
1501	b	fast_interrupt_return_srr
15021:	/* Error case */
1503MMU_FTR_SECTION_ELSE
1504	/* Radix case, access is outside page table range */
1505	li	r3,-EFAULT
1506ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1507#else
1508	li	r3,-EFAULT
1509#endif
1510	std	r3,RESULT(r1)
1511	addi	r3,r1,STACK_FRAME_OVERHEAD
1512	bl	do_bad_segment_interrupt
1513	b	interrupt_return_srr
1514
1515
1516/**
1517 * Interrupt 0x500 - External Interrupt.
1518 * This is an asynchronous maskable interrupt in response to an "external
1519 * exception" from the interrupt controller or hypervisor (e.g., device
1520 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1521 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1522 *
1523 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1524 * interrupts are delivered with HSRR registers, guests use SRRs, which
1525 * reqiures IHSRR_IF_HVMODE.
1526 *
1527 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1528 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1529 * rather than External Interrupts.
1530 *
1531 * Handling:
1532 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1533 * because registers at the time of the interrupt are not so important as it is
1534 * asynchronous.
1535 *
1536 * If soft masked, the masked handler will note the pending interrupt for
1537 * replay, and clear MSR[EE] in the interrupted context.
1538 *
1539 * CFAR is not required because this is an asynchronous interrupt that in
1540 * general won't have much bearing on the state of the CPU, with the possible
1541 * exception of crash/debug IPIs, but those are generally moving to use SRESET
1542 * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case
1543 * it may be exiting the guest and need CFAR to be saved.
1544 */
1545INT_DEFINE_BEGIN(hardware_interrupt)
1546	IVEC=0x500
1547	IHSRR_IF_HVMODE=1
1548	IMASK=IRQS_DISABLED
1549	IKVM_REAL=1
1550	IKVM_VIRT=1
1551	ICFAR=0
1552#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1553	ICFAR_IF_HVMODE=1
1554#endif
1555INT_DEFINE_END(hardware_interrupt)
1556
1557EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1558	GEN_INT_ENTRY hardware_interrupt, virt=0
1559EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1560EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1561	GEN_INT_ENTRY hardware_interrupt, virt=1
1562EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1563EXC_COMMON_BEGIN(hardware_interrupt_common)
1564	GEN_COMMON hardware_interrupt
1565	addi	r3,r1,STACK_FRAME_OVERHEAD
1566	bl	do_IRQ
1567	BEGIN_FTR_SECTION
1568	b	interrupt_return_hsrr
1569	FTR_SECTION_ELSE
1570	b	interrupt_return_srr
1571	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1572
1573
1574/**
1575 * Interrupt 0x600 - Alignment Interrupt
1576 * This is a synchronous interrupt in response to data alignment fault.
1577 */
1578INT_DEFINE_BEGIN(alignment)
1579	IVEC=0x600
1580	IDAR=1
1581	IDSISR=1
1582#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1583	IKVM_REAL=1
1584#endif
1585INT_DEFINE_END(alignment)
1586
1587EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1588	GEN_INT_ENTRY alignment, virt=0
1589EXC_REAL_END(alignment, 0x600, 0x100)
1590EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1591	GEN_INT_ENTRY alignment, virt=1
1592EXC_VIRT_END(alignment, 0x4600, 0x100)
1593EXC_COMMON_BEGIN(alignment_common)
1594	GEN_COMMON alignment
1595	addi	r3,r1,STACK_FRAME_OVERHEAD
1596	bl	alignment_exception
1597	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1598	b	interrupt_return_srr
1599
1600
1601/**
1602 * Interrupt 0x700 - Program Interrupt (program check).
1603 * This is a synchronous interrupt in response to various instruction faults:
1604 * traps, privilege errors, TM errors, floating point exceptions.
1605 *
1606 * Handling:
1607 * This interrupt may use the "emergency stack" in some cases when being taken
1608 * from kernel context, which complicates handling.
1609 */
1610INT_DEFINE_BEGIN(program_check)
1611	IVEC=0x700
1612#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1613	IKVM_REAL=1
1614#endif
1615INT_DEFINE_END(program_check)
1616
1617EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1618
1619#ifdef CONFIG_CPU_LITTLE_ENDIAN
1620	/*
1621	 * There's a short window during boot where although the kernel is
1622	 * running little endian, any exceptions will cause the CPU to switch
1623	 * back to big endian. For example a WARN() boils down to a trap
1624	 * instruction, which will cause a program check, and we end up here but
1625	 * with the CPU in big endian mode. The first instruction of the program
1626	 * check handler (in GEN_INT_ENTRY below) is an mtsprg, which when
1627	 * executed in the wrong endian is an lhzu with a ~3GB displacement from
1628	 * r3. The content of r3 is random, so that is a load from some random
1629	 * location, and depending on the system can easily lead to a checkstop,
1630	 * or an infinitely recursive page fault.
1631	 *
1632	 * So to handle that case we have a trampoline here that can detect we
1633	 * are in the wrong endian and flip us back to the correct endian. We
1634	 * can't flip MSR[LE] using mtmsr, so we have to use rfid. That requires
1635	 * backing up SRR0/1 as well as a GPR. To do that we use SPRG0/2/3, as
1636	 * SPRG1 is already used for the paca. SPRG3 is user readable, but this
1637	 * trampoline is only active very early in boot, and SPRG3 will be
1638	 * reinitialised in vdso_getcpu_init() before userspace starts.
1639	 */
1640BEGIN_FTR_SECTION
1641	tdi   0,0,0x48    // Trap never, or in reverse endian: b . + 8
1642	b     1f          // Skip trampoline if endian is correct
1643	.long 0xa643707d  // mtsprg  0, r11      Backup r11
1644	.long 0xa6027a7d  // mfsrr0  r11
1645	.long 0xa643727d  // mtsprg  2, r11      Backup SRR0 in SPRG2
1646	.long 0xa6027b7d  // mfsrr1  r11
1647	.long 0xa643737d  // mtsprg  3, r11      Backup SRR1 in SPRG3
1648	.long 0xa600607d  // mfmsr   r11
1649	.long 0x01006b69  // xori    r11, r11, 1 Invert MSR[LE]
1650	.long 0xa6037b7d  // mtsrr1  r11
1651	.long 0x34076039  // li      r11, 0x734
1652	.long 0xa6037a7d  // mtsrr0  r11
1653	.long 0x2400004c  // rfid
1654	mfsprg r11, 3
1655	mtsrr1 r11        // Restore SRR1
1656	mfsprg r11, 2
1657	mtsrr0 r11        // Restore SRR0
1658	mfsprg r11, 0     // Restore r11
16591:
1660END_FTR_SECTION(0, 1)     // nop out after boot
1661#endif /* CONFIG_CPU_LITTLE_ENDIAN */
1662
1663	GEN_INT_ENTRY program_check, virt=0
1664EXC_REAL_END(program_check, 0x700, 0x100)
1665EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1666	GEN_INT_ENTRY program_check, virt=1
1667EXC_VIRT_END(program_check, 0x4700, 0x100)
1668EXC_COMMON_BEGIN(program_check_common)
1669	__GEN_COMMON_ENTRY program_check
1670
1671	/*
1672	 * It's possible to receive a TM Bad Thing type program check with
1673	 * userspace register values (in particular r1), but with SRR1 reporting
1674	 * that we came from the kernel. Normally that would confuse the bad
1675	 * stack logic, and we would report a bad kernel stack pointer. Instead
1676	 * we switch to the emergency stack if we're taking a TM Bad Thing from
1677	 * the kernel.
1678	 */
1679
1680	andi.	r10,r12,MSR_PR
1681	bne	.Lnormal_stack		/* If userspace, go normal path */
1682
1683	andis.	r10,r12,(SRR1_PROGTM)@h
1684	bne	.Lemergency_stack	/* If TM, emergency		*/
1685
1686	cmpdi	r1,-INT_FRAME_SIZE	/* check if r1 is in userspace	*/
1687	blt	.Lnormal_stack		/* normal path if not		*/
1688
1689	/* Use the emergency stack					*/
1690.Lemergency_stack:
1691	andi.	r10,r12,MSR_PR		/* Set CR0 correctly for label	*/
1692					/* 3 in EXCEPTION_PROLOG_COMMON	*/
1693	mr	r10,r1			/* Save r1			*/
1694	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack		*/
1695	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
1696	__ISTACK(program_check)=0
1697	__GEN_COMMON_BODY program_check
1698	b .Ldo_program_check
1699
1700.Lnormal_stack:
1701	__ISTACK(program_check)=1
1702	__GEN_COMMON_BODY program_check
1703
1704.Ldo_program_check:
1705	addi	r3,r1,STACK_FRAME_OVERHEAD
1706	bl	program_check_exception
1707	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1708	b	interrupt_return_srr
1709
1710
1711/*
1712 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1713 * This is a synchronous interrupt in response to executing an fp instruction
1714 * with MSR[FP]=0.
1715 *
1716 * Handling:
1717 * This will load FP registers and enable the FP bit if coming from userspace,
1718 * otherwise report a bad kernel use of FP.
1719 */
1720INT_DEFINE_BEGIN(fp_unavailable)
1721	IVEC=0x800
1722#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1723	IKVM_REAL=1
1724#endif
1725INT_DEFINE_END(fp_unavailable)
1726
1727EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1728	GEN_INT_ENTRY fp_unavailable, virt=0
1729EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1730EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1731	GEN_INT_ENTRY fp_unavailable, virt=1
1732EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1733EXC_COMMON_BEGIN(fp_unavailable_common)
1734	GEN_COMMON fp_unavailable
1735	bne	1f			/* if from user, just load it up */
1736	addi	r3,r1,STACK_FRAME_OVERHEAD
1737	bl	kernel_fp_unavailable_exception
17380:	trap
1739	EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
17401:
1741#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1742BEGIN_FTR_SECTION
1743	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
1744	 * transaction), go do TM stuff
1745	 */
1746	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
1747	bne-	2f
1748END_FTR_SECTION_IFSET(CPU_FTR_TM)
1749#endif
1750	bl	load_up_fpu
1751	b	fast_interrupt_return_srr
1752#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
17532:	/* User process was in a transaction */
1754	addi	r3,r1,STACK_FRAME_OVERHEAD
1755	bl	fp_unavailable_tm
1756	b	interrupt_return_srr
1757#endif
1758
1759
1760/**
1761 * Interrupt 0x900 - Decrementer Interrupt.
1762 * This is an asynchronous interrupt in response to a decrementer exception
1763 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1764 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1765 * local_irq_disable()).
1766 *
1767 * Handling:
1768 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1769 *
1770 * If soft masked, the masked handler will note the pending interrupt for
1771 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1772 * in the interrupted context.
1773 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1774 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1775 * on the emergency stack.
1776 *
1777 * CFAR is not required because this is asynchronous (see hardware_interrupt).
1778 * A watchdog interrupt may like to have CFAR, but usually the interesting
1779 * branch is long gone by that point (e.g., infinite loop).
1780 */
1781INT_DEFINE_BEGIN(decrementer)
1782	IVEC=0x900
1783	IMASK=IRQS_DISABLED
1784#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1785	IKVM_REAL=1
1786#endif
1787	ICFAR=0
1788INT_DEFINE_END(decrementer)
1789
1790EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1791	GEN_INT_ENTRY decrementer, virt=0
1792EXC_REAL_END(decrementer, 0x900, 0x80)
1793EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1794	GEN_INT_ENTRY decrementer, virt=1
1795EXC_VIRT_END(decrementer, 0x4900, 0x80)
1796EXC_COMMON_BEGIN(decrementer_common)
1797	GEN_COMMON decrementer
1798	addi	r3,r1,STACK_FRAME_OVERHEAD
1799	bl	timer_interrupt
1800	b	interrupt_return_srr
1801
1802
1803/**
1804 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1805 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1806 * register.
1807 *
1808 * Handling:
1809 * Linux does not use this outside KVM where it's used to keep a host timer
1810 * while the guest is given control of DEC. It should normally be caught by
1811 * the KVM test and routed there.
1812 */
1813INT_DEFINE_BEGIN(hdecrementer)
1814	IVEC=0x980
1815	IHSRR=1
1816	ISTACK=0
1817	IKVM_REAL=1
1818	IKVM_VIRT=1
1819INT_DEFINE_END(hdecrementer)
1820
1821EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1822	GEN_INT_ENTRY hdecrementer, virt=0
1823EXC_REAL_END(hdecrementer, 0x980, 0x80)
1824EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1825	GEN_INT_ENTRY hdecrementer, virt=1
1826EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1827EXC_COMMON_BEGIN(hdecrementer_common)
1828	__GEN_COMMON_ENTRY hdecrementer
1829	/*
1830	 * Hypervisor decrementer interrupts not caught by the KVM test
1831	 * shouldn't occur but are sometimes left pending on exit from a KVM
1832	 * guest.  We don't need to do anything to clear them, as they are
1833	 * edge-triggered.
1834	 *
1835	 * Be careful to avoid touching the kernel stack.
1836	 */
1837	li	r10,0
1838	stb	r10,PACAHSRR_VALID(r13)
1839	ld	r10,PACA_EXGEN+EX_CTR(r13)
1840	mtctr	r10
1841	mtcrf	0x80,r9
1842	ld	r9,PACA_EXGEN+EX_R9(r13)
1843	ld	r10,PACA_EXGEN+EX_R10(r13)
1844	ld	r11,PACA_EXGEN+EX_R11(r13)
1845	ld	r12,PACA_EXGEN+EX_R12(r13)
1846	ld	r13,PACA_EXGEN+EX_R13(r13)
1847	HRFI_TO_KERNEL
1848
1849
1850/**
1851 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1852 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1853 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1854 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1855 *
1856 * Handling:
1857 * Guests may use this for IPIs between threads in a core if the
1858 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1859 *
1860 * If soft masked, the masked handler will note the pending interrupt for
1861 * replay, leaving MSR[EE] enabled in the interrupted context because the
1862 * doorbells are edge triggered.
1863 *
1864 * CFAR is not required, similarly to hardware_interrupt.
1865 */
1866INT_DEFINE_BEGIN(doorbell_super)
1867	IVEC=0xa00
1868	IMASK=IRQS_DISABLED
1869#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1870	IKVM_REAL=1
1871#endif
1872	ICFAR=0
1873INT_DEFINE_END(doorbell_super)
1874
1875EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1876	GEN_INT_ENTRY doorbell_super, virt=0
1877EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1878EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1879	GEN_INT_ENTRY doorbell_super, virt=1
1880EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1881EXC_COMMON_BEGIN(doorbell_super_common)
1882	GEN_COMMON doorbell_super
1883	addi	r3,r1,STACK_FRAME_OVERHEAD
1884#ifdef CONFIG_PPC_DOORBELL
1885	bl	doorbell_exception
1886#else
1887	bl	unknown_async_exception
1888#endif
1889	b	interrupt_return_srr
1890
1891
1892EXC_REAL_NONE(0xb00, 0x100)
1893EXC_VIRT_NONE(0x4b00, 0x100)
1894
1895/**
1896 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1897 * This is a synchronous interrupt invoked with the "sc" instruction. The
1898 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1899 * is directed to the currently running OS. The hypercall is invoked with
1900 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1901 *
1902 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1903 * 0x4c00 virtual mode.
1904 *
1905 * Handling:
1906 * If the KVM test fires then it was due to a hypercall and is accordingly
1907 * routed to KVM. Otherwise this executes a normal Linux system call.
1908 *
1909 * Call convention:
1910 *
1911 * syscall and hypercalls register conventions are documented in
1912 * Documentation/powerpc/syscall64-abi.rst and
1913 * Documentation/powerpc/papr_hcalls.rst respectively.
1914 *
1915 * The intersection of volatile registers that don't contain possible
1916 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1917 * without saving, though xer is not a good idea to use, as hardware may
1918 * interpret some bits so it may be costly to change them.
1919 */
1920INT_DEFINE_BEGIN(system_call)
1921	IVEC=0xc00
1922	IKVM_REAL=1
1923	IKVM_VIRT=1
1924	ICFAR=0
1925INT_DEFINE_END(system_call)
1926
1927.macro SYSTEM_CALL virt
1928#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1929	/*
1930	 * There is a little bit of juggling to get syscall and hcall
1931	 * working well. Save r13 in ctr to avoid using SPRG scratch
1932	 * register.
1933	 *
1934	 * Userspace syscalls have already saved the PPR, hcalls must save
1935	 * it before setting HMT_MEDIUM.
1936	 */
1937	mtctr	r13
1938	GET_PACA(r13)
1939	std	r10,PACA_EXGEN+EX_R10(r13)
1940	INTERRUPT_TO_KERNEL
1941	KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */
1942	mfctr	r9
1943#else
1944	mr	r9,r13
1945	GET_PACA(r13)
1946	INTERRUPT_TO_KERNEL
1947#endif
1948
1949#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1950BEGIN_FTR_SECTION
1951	cmpdi	r0,0x1ebe
1952	beq-	1f
1953END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1954#endif
1955
1956	/* We reach here with PACA in r13, r13 in r9. */
1957	mfspr	r11,SPRN_SRR0
1958	mfspr	r12,SPRN_SRR1
1959
1960	HMT_MEDIUM
1961
1962	.if ! \virt
1963	__LOAD_HANDLER(r10, system_call_common_real, real_vectors)
1964	mtctr	r10
1965	bctr
1966	.else
1967#ifdef CONFIG_RELOCATABLE
1968	__LOAD_HANDLER(r10, system_call_common, virt_vectors)
1969	mtctr	r10
1970	bctr
1971#else
1972	b	system_call_common
1973#endif
1974	.endif
1975
1976#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1977	/* Fast LE/BE switch system call */
19781:	mfspr	r12,SPRN_SRR1
1979	xori	r12,r12,MSR_LE
1980	mtspr	SPRN_SRR1,r12
1981	mr	r13,r9
1982	RFI_TO_USER	/* return to userspace */
1983	b	.	/* prevent speculative execution */
1984#endif
1985.endm
1986
1987EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
1988	SYSTEM_CALL 0
1989EXC_REAL_END(system_call, 0xc00, 0x100)
1990EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
1991	SYSTEM_CALL 1
1992EXC_VIRT_END(system_call, 0x4c00, 0x100)
1993
1994#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1995TRAMP_REAL_BEGIN(kvm_hcall)
1996	std	r9,PACA_EXGEN+EX_R9(r13)
1997	std	r11,PACA_EXGEN+EX_R11(r13)
1998	std	r12,PACA_EXGEN+EX_R12(r13)
1999	mfcr	r9
2000	mfctr	r10
2001	std	r10,PACA_EXGEN+EX_R13(r13)
2002	li	r10,0
2003	std	r10,PACA_EXGEN+EX_CFAR(r13)
2004	std	r10,PACA_EXGEN+EX_CTR(r13)
2005	 /*
2006	  * Save the PPR (on systems that support it) before changing to
2007	  * HMT_MEDIUM. That allows the KVM code to save that value into the
2008	  * guest state (it is the guest's PPR value).
2009	  */
2010BEGIN_FTR_SECTION
2011	mfspr	r10,SPRN_PPR
2012	std	r10,PACA_EXGEN+EX_PPR(r13)
2013END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2014
2015	HMT_MEDIUM
2016
2017#ifdef CONFIG_RELOCATABLE
2018	/*
2019	 * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives
2020	 * outside the head section.
2021	 */
2022	__LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines)
2023	mtctr   r10
2024	bctr
2025#else
2026	b       kvmppc_hcall
2027#endif
2028#endif
2029
2030/**
2031 * Interrupt 0xd00 - Trace Interrupt.
2032 * This is a synchronous interrupt in response to instruction step or
2033 * breakpoint faults.
2034 */
2035INT_DEFINE_BEGIN(single_step)
2036	IVEC=0xd00
2037#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2038	IKVM_REAL=1
2039#endif
2040INT_DEFINE_END(single_step)
2041
2042EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2043	GEN_INT_ENTRY single_step, virt=0
2044EXC_REAL_END(single_step, 0xd00, 0x100)
2045EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2046	GEN_INT_ENTRY single_step, virt=1
2047EXC_VIRT_END(single_step, 0x4d00, 0x100)
2048EXC_COMMON_BEGIN(single_step_common)
2049	GEN_COMMON single_step
2050	addi	r3,r1,STACK_FRAME_OVERHEAD
2051	bl	single_step_exception
2052	b	interrupt_return_srr
2053
2054
2055/**
2056 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2057 * This is a synchronous interrupt in response to an MMU fault caused by a
2058 * guest data access.
2059 *
2060 * Handling:
2061 * This should always get routed to KVM. In radix MMU mode, this is caused
2062 * by a guest nested radix access that can't be performed due to the
2063 * partition scope page table. In hash mode, this can be caused by guests
2064 * running with translation disabled (virtual real mode) or with VPM enabled.
2065 * KVM will update the page table structures or disallow the access.
2066 */
2067INT_DEFINE_BEGIN(h_data_storage)
2068	IVEC=0xe00
2069	IHSRR=1
2070	IDAR=1
2071	IDSISR=1
2072	IKVM_REAL=1
2073	IKVM_VIRT=1
2074INT_DEFINE_END(h_data_storage)
2075
2076EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2077	GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2078EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2079EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2080	GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2081EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2082EXC_COMMON_BEGIN(h_data_storage_common)
2083	GEN_COMMON h_data_storage
2084	addi    r3,r1,STACK_FRAME_OVERHEAD
2085BEGIN_MMU_FTR_SECTION
2086	bl      do_bad_page_fault_segv
2087MMU_FTR_SECTION_ELSE
2088	bl      unknown_exception
2089ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2090	b       interrupt_return_hsrr
2091
2092
2093/**
2094 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2095 * This is a synchronous interrupt in response to an MMU fault caused by a
2096 * guest instruction fetch, similar to HDSI.
2097 */
2098INT_DEFINE_BEGIN(h_instr_storage)
2099	IVEC=0xe20
2100	IHSRR=1
2101	IKVM_REAL=1
2102	IKVM_VIRT=1
2103INT_DEFINE_END(h_instr_storage)
2104
2105EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2106	GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2107EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2108EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2109	GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2110EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2111EXC_COMMON_BEGIN(h_instr_storage_common)
2112	GEN_COMMON h_instr_storage
2113	addi	r3,r1,STACK_FRAME_OVERHEAD
2114	bl	unknown_exception
2115	b	interrupt_return_hsrr
2116
2117
2118/**
2119 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2120 */
2121INT_DEFINE_BEGIN(emulation_assist)
2122	IVEC=0xe40
2123	IHSRR=1
2124	IKVM_REAL=1
2125	IKVM_VIRT=1
2126INT_DEFINE_END(emulation_assist)
2127
2128EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2129	GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2130EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2131EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2132	GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2133EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2134EXC_COMMON_BEGIN(emulation_assist_common)
2135	GEN_COMMON emulation_assist
2136	addi	r3,r1,STACK_FRAME_OVERHEAD
2137	bl	emulation_assist_interrupt
2138	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2139	b	interrupt_return_hsrr
2140
2141
2142/**
2143 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2144 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2145 * Exception. It is always taken in real mode but uses HSRR registers
2146 * unlike SRESET and MCE.
2147 *
2148 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2149 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2150 *
2151 * Handling:
2152 * This is a special case, this is handled similarly to machine checks, with an
2153 * initial real mode handler that is not soft-masked, which attempts to fix the
2154 * problem. Then a regular handler which is soft-maskable and reports the
2155 * problem.
2156 *
2157 * The emergency stack is used for the early real mode handler.
2158 *
2159 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2160 * either use soft-masking for the MCE, or use irq_work for the HMI.
2161 *
2162 * KVM:
2163 * Unlike MCE, this calls into KVM without calling the real mode handler
2164 * first.
2165 */
2166INT_DEFINE_BEGIN(hmi_exception_early)
2167	IVEC=0xe60
2168	IHSRR=1
2169	IREALMODE_COMMON=1
2170	ISTACK=0
2171	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2172	IKVM_REAL=1
2173INT_DEFINE_END(hmi_exception_early)
2174
2175INT_DEFINE_BEGIN(hmi_exception)
2176	IVEC=0xe60
2177	IHSRR=1
2178	IMASK=IRQS_DISABLED
2179	IKVM_REAL=1
2180INT_DEFINE_END(hmi_exception)
2181
2182EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2183	GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2184EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2185EXC_VIRT_NONE(0x4e60, 0x20)
2186
2187EXC_COMMON_BEGIN(hmi_exception_early_common)
2188	__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2189
2190	mr	r10,r1			/* Save r1 */
2191	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack for realmode */
2192	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
2193
2194	__GEN_COMMON_BODY hmi_exception_early
2195
2196	addi	r3,r1,STACK_FRAME_OVERHEAD
2197	bl	hmi_exception_realmode
2198	cmpdi	cr0,r3,0
2199	bne	1f
2200
2201	EXCEPTION_RESTORE_REGS hsrr=1
2202	HRFI_TO_USER_OR_KERNEL
2203
22041:
2205	/*
2206	 * Go to virtual mode and pull the HMI event information from
2207	 * firmware.
2208	 */
2209	EXCEPTION_RESTORE_REGS hsrr=1
2210	GEN_INT_ENTRY hmi_exception, virt=0
2211
2212EXC_COMMON_BEGIN(hmi_exception_common)
2213	GEN_COMMON hmi_exception
2214	addi	r3,r1,STACK_FRAME_OVERHEAD
2215	bl	handle_hmi_exception
2216	b	interrupt_return_hsrr
2217
2218
2219/**
2220 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2221 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2222 * Similar to the 0xa00 doorbell but for host rather than guest.
2223 *
2224 * CFAR is not required (similar to doorbell_interrupt), unless KVM HV
2225 * is enabled, in which case it may be a guest exit. Most PowerNV kernels
2226 * include KVM support so it would be nice if this could be dynamically
2227 * patched out if KVM was not currently running any guests.
2228 */
2229INT_DEFINE_BEGIN(h_doorbell)
2230	IVEC=0xe80
2231	IHSRR=1
2232	IMASK=IRQS_DISABLED
2233	IKVM_REAL=1
2234	IKVM_VIRT=1
2235#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2236	ICFAR=0
2237#endif
2238INT_DEFINE_END(h_doorbell)
2239
2240EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2241	GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2242EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2243EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2244	GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2245EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2246EXC_COMMON_BEGIN(h_doorbell_common)
2247	GEN_COMMON h_doorbell
2248	addi	r3,r1,STACK_FRAME_OVERHEAD
2249#ifdef CONFIG_PPC_DOORBELL
2250	bl	doorbell_exception
2251#else
2252	bl	unknown_async_exception
2253#endif
2254	b	interrupt_return_hsrr
2255
2256
2257/**
2258 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2259 * This is an asynchronous interrupt in response to an "external exception".
2260 * Similar to 0x500 but for host only.
2261 *
2262 * Like h_doorbell, CFAR is only required for KVM HV because this can be
2263 * a guest exit.
2264 */
2265INT_DEFINE_BEGIN(h_virt_irq)
2266	IVEC=0xea0
2267	IHSRR=1
2268	IMASK=IRQS_DISABLED
2269	IKVM_REAL=1
2270	IKVM_VIRT=1
2271#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2272	ICFAR=0
2273#endif
2274INT_DEFINE_END(h_virt_irq)
2275
2276EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2277	GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2278EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2279EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2280	GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2281EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2282EXC_COMMON_BEGIN(h_virt_irq_common)
2283	GEN_COMMON h_virt_irq
2284	addi	r3,r1,STACK_FRAME_OVERHEAD
2285	bl	do_IRQ
2286	b	interrupt_return_hsrr
2287
2288
2289EXC_REAL_NONE(0xec0, 0x20)
2290EXC_VIRT_NONE(0x4ec0, 0x20)
2291EXC_REAL_NONE(0xee0, 0x20)
2292EXC_VIRT_NONE(0x4ee0, 0x20)
2293
2294
2295/*
2296 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2297 * This is an asynchronous interrupt in response to a PMU exception.
2298 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2299 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2300 *
2301 * Handling:
2302 * This calls into the perf subsystem.
2303 *
2304 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2305 * runs under local_irq_disable. However it may be soft-masked in
2306 * powerpc-specific code.
2307 *
2308 * If soft masked, the masked handler will note the pending interrupt for
2309 * replay, and clear MSR[EE] in the interrupted context.
2310 *
2311 * CFAR is not used by perf interrupts so not required.
2312 */
2313INT_DEFINE_BEGIN(performance_monitor)
2314	IVEC=0xf00
2315	IMASK=IRQS_PMI_DISABLED
2316#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2317	IKVM_REAL=1
2318#endif
2319	ICFAR=0
2320INT_DEFINE_END(performance_monitor)
2321
2322EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2323	GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2324EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2325EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2326	GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2327EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2328EXC_COMMON_BEGIN(performance_monitor_common)
2329	GEN_COMMON performance_monitor
2330	addi	r3,r1,STACK_FRAME_OVERHEAD
2331	bl	performance_monitor_exception
2332	b	interrupt_return_srr
2333
2334
2335/**
2336 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2337 * This is a synchronous interrupt in response to
2338 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2339 * Similar to FP unavailable.
2340 */
2341INT_DEFINE_BEGIN(altivec_unavailable)
2342	IVEC=0xf20
2343#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2344	IKVM_REAL=1
2345#endif
2346INT_DEFINE_END(altivec_unavailable)
2347
2348EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2349	GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2350EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2351EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2352	GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2353EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2354EXC_COMMON_BEGIN(altivec_unavailable_common)
2355	GEN_COMMON altivec_unavailable
2356#ifdef CONFIG_ALTIVEC
2357BEGIN_FTR_SECTION
2358	beq	1f
2359#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2360  BEGIN_FTR_SECTION_NESTED(69)
2361	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2362	 * transaction), go do TM stuff
2363	 */
2364	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2365	bne-	2f
2366  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2367#endif
2368	bl	load_up_altivec
2369	b	fast_interrupt_return_srr
2370#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
23712:	/* User process was in a transaction */
2372	addi	r3,r1,STACK_FRAME_OVERHEAD
2373	bl	altivec_unavailable_tm
2374	b	interrupt_return_srr
2375#endif
23761:
2377END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2378#endif
2379	addi	r3,r1,STACK_FRAME_OVERHEAD
2380	bl	altivec_unavailable_exception
2381	b	interrupt_return_srr
2382
2383
2384/**
2385 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2386 * This is a synchronous interrupt in response to
2387 * executing a VSX instruction with MSR[VSX]=0.
2388 * Similar to FP unavailable.
2389 */
2390INT_DEFINE_BEGIN(vsx_unavailable)
2391	IVEC=0xf40
2392#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2393	IKVM_REAL=1
2394#endif
2395INT_DEFINE_END(vsx_unavailable)
2396
2397EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2398	GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2399EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2400EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2401	GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2402EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2403EXC_COMMON_BEGIN(vsx_unavailable_common)
2404	GEN_COMMON vsx_unavailable
2405#ifdef CONFIG_VSX
2406BEGIN_FTR_SECTION
2407	beq	1f
2408#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2409  BEGIN_FTR_SECTION_NESTED(69)
2410	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2411	 * transaction), go do TM stuff
2412	 */
2413	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2414	bne-	2f
2415  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2416#endif
2417	b	load_up_vsx
2418#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24192:	/* User process was in a transaction */
2420	addi	r3,r1,STACK_FRAME_OVERHEAD
2421	bl	vsx_unavailable_tm
2422	b	interrupt_return_srr
2423#endif
24241:
2425END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2426#endif
2427	addi	r3,r1,STACK_FRAME_OVERHEAD
2428	bl	vsx_unavailable_exception
2429	b	interrupt_return_srr
2430
2431
2432/**
2433 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2434 * This is a synchronous interrupt in response to
2435 * executing an instruction without access to the facility that can be
2436 * resolved by the OS (e.g., FSCR, MSR).
2437 * Similar to FP unavailable.
2438 */
2439INT_DEFINE_BEGIN(facility_unavailable)
2440	IVEC=0xf60
2441#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2442	IKVM_REAL=1
2443#endif
2444INT_DEFINE_END(facility_unavailable)
2445
2446EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2447	GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2448EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2449EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2450	GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2451EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2452EXC_COMMON_BEGIN(facility_unavailable_common)
2453	GEN_COMMON facility_unavailable
2454	addi	r3,r1,STACK_FRAME_OVERHEAD
2455	bl	facility_unavailable_exception
2456	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2457	b	interrupt_return_srr
2458
2459
2460/**
2461 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2462 * This is a synchronous interrupt in response to
2463 * executing an instruction without access to the facility that can only
2464 * be resolved in HV mode (e.g., HFSCR).
2465 * Similar to FP unavailable.
2466 */
2467INT_DEFINE_BEGIN(h_facility_unavailable)
2468	IVEC=0xf80
2469	IHSRR=1
2470	IKVM_REAL=1
2471	IKVM_VIRT=1
2472INT_DEFINE_END(h_facility_unavailable)
2473
2474EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2475	GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2476EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2477EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2478	GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2479EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2480EXC_COMMON_BEGIN(h_facility_unavailable_common)
2481	GEN_COMMON h_facility_unavailable
2482	addi	r3,r1,STACK_FRAME_OVERHEAD
2483	bl	facility_unavailable_exception
2484	REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2485	b	interrupt_return_hsrr
2486
2487
2488EXC_REAL_NONE(0xfa0, 0x20)
2489EXC_VIRT_NONE(0x4fa0, 0x20)
2490EXC_REAL_NONE(0xfc0, 0x20)
2491EXC_VIRT_NONE(0x4fc0, 0x20)
2492EXC_REAL_NONE(0xfe0, 0x20)
2493EXC_VIRT_NONE(0x4fe0, 0x20)
2494
2495EXC_REAL_NONE(0x1000, 0x100)
2496EXC_VIRT_NONE(0x5000, 0x100)
2497EXC_REAL_NONE(0x1100, 0x100)
2498EXC_VIRT_NONE(0x5100, 0x100)
2499
2500#ifdef CONFIG_CBE_RAS
2501INT_DEFINE_BEGIN(cbe_system_error)
2502	IVEC=0x1200
2503	IHSRR=1
2504INT_DEFINE_END(cbe_system_error)
2505
2506EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2507	GEN_INT_ENTRY cbe_system_error, virt=0
2508EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2509EXC_VIRT_NONE(0x5200, 0x100)
2510EXC_COMMON_BEGIN(cbe_system_error_common)
2511	GEN_COMMON cbe_system_error
2512	addi	r3,r1,STACK_FRAME_OVERHEAD
2513	bl	cbe_system_error_exception
2514	b	interrupt_return_hsrr
2515
2516#else /* CONFIG_CBE_RAS */
2517EXC_REAL_NONE(0x1200, 0x100)
2518EXC_VIRT_NONE(0x5200, 0x100)
2519#endif
2520
2521/**
2522 * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt.
2523 * This has been removed from the ISA before 2.01, which is the earliest
2524 * 64-bit BookS ISA supported, however the G5 / 970 implements this
2525 * interrupt with a non-architected feature available through the support
2526 * processor interface.
2527 */
2528INT_DEFINE_BEGIN(instruction_breakpoint)
2529	IVEC=0x1300
2530#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2531	IKVM_REAL=1
2532#endif
2533INT_DEFINE_END(instruction_breakpoint)
2534
2535EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2536	GEN_INT_ENTRY instruction_breakpoint, virt=0
2537EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2538EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2539	GEN_INT_ENTRY instruction_breakpoint, virt=1
2540EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2541EXC_COMMON_BEGIN(instruction_breakpoint_common)
2542	GEN_COMMON instruction_breakpoint
2543	addi	r3,r1,STACK_FRAME_OVERHEAD
2544	bl	instruction_breakpoint_exception
2545	b	interrupt_return_srr
2546
2547
2548EXC_REAL_NONE(0x1400, 0x100)
2549EXC_VIRT_NONE(0x5400, 0x100)
2550
2551/**
2552 * Interrupt 0x1500 - Soft Patch Interrupt
2553 *
2554 * Handling:
2555 * This is an implementation specific interrupt which can be used for a
2556 * range of exceptions.
2557 *
2558 * This interrupt handler is unique in that it runs the denormal assist
2559 * code even for guests (and even in guest context) without going to KVM,
2560 * for speed. POWER9 does not raise denorm exceptions, so this special case
2561 * could be phased out in future to reduce special cases.
2562 */
2563INT_DEFINE_BEGIN(denorm_exception)
2564	IVEC=0x1500
2565	IHSRR=1
2566	IBRANCH_TO_COMMON=0
2567	IKVM_REAL=1
2568INT_DEFINE_END(denorm_exception)
2569
2570EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2571	GEN_INT_ENTRY denorm_exception, virt=0
2572#ifdef CONFIG_PPC_DENORMALISATION
2573	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2574	bne+	denorm_assist
2575#endif
2576	GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2577EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2578#ifdef CONFIG_PPC_DENORMALISATION
2579EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2580	GEN_INT_ENTRY denorm_exception, virt=1
2581	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2582	bne+	denorm_assist
2583	GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2584EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2585#else
2586EXC_VIRT_NONE(0x5500, 0x100)
2587#endif
2588
2589#ifdef CONFIG_PPC_DENORMALISATION
2590TRAMP_REAL_BEGIN(denorm_assist)
2591BEGIN_FTR_SECTION
2592/*
2593 * To denormalise we need to move a copy of the register to itself.
2594 * For POWER6 do that here for all FP regs.
2595 */
2596	mfmsr	r10
2597	ori	r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2598	xori	r10,r10,(MSR_FE0|MSR_FE1)
2599	mtmsrd	r10
2600	sync
2601
2602	.Lreg=0
2603	.rept 32
2604	fmr	.Lreg,.Lreg
2605	.Lreg=.Lreg+1
2606	.endr
2607
2608FTR_SECTION_ELSE
2609/*
2610 * To denormalise we need to move a copy of the register to itself.
2611 * For POWER7 do that here for the first 32 VSX registers only.
2612 */
2613	mfmsr	r10
2614	oris	r10,r10,MSR_VSX@h
2615	mtmsrd	r10
2616	sync
2617
2618	.Lreg=0
2619	.rept 32
2620	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2621	.Lreg=.Lreg+1
2622	.endr
2623
2624ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2625
2626BEGIN_FTR_SECTION
2627	b	denorm_done
2628END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2629/*
2630 * To denormalise we need to move a copy of the register to itself.
2631 * For POWER8 we need to do that for all 64 VSX registers
2632 */
2633	.Lreg=32
2634	.rept 32
2635	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2636	.Lreg=.Lreg+1
2637	.endr
2638
2639denorm_done:
2640	mfspr	r11,SPRN_HSRR0
2641	subi	r11,r11,4
2642	mtspr	SPRN_HSRR0,r11
2643	mtcrf	0x80,r9
2644	ld	r9,PACA_EXGEN+EX_R9(r13)
2645BEGIN_FTR_SECTION
2646	ld	r10,PACA_EXGEN+EX_PPR(r13)
2647	mtspr	SPRN_PPR,r10
2648END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2649BEGIN_FTR_SECTION
2650	ld	r10,PACA_EXGEN+EX_CFAR(r13)
2651	mtspr	SPRN_CFAR,r10
2652END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2653	li	r10,0
2654	stb	r10,PACAHSRR_VALID(r13)
2655	ld	r10,PACA_EXGEN+EX_R10(r13)
2656	ld	r11,PACA_EXGEN+EX_R11(r13)
2657	ld	r12,PACA_EXGEN+EX_R12(r13)
2658	ld	r13,PACA_EXGEN+EX_R13(r13)
2659	HRFI_TO_UNKNOWN
2660	b	.
2661#endif
2662
2663EXC_COMMON_BEGIN(denorm_exception_common)
2664	GEN_COMMON denorm_exception
2665	addi	r3,r1,STACK_FRAME_OVERHEAD
2666	bl	unknown_exception
2667	b	interrupt_return_hsrr
2668
2669
2670#ifdef CONFIG_CBE_RAS
2671INT_DEFINE_BEGIN(cbe_maintenance)
2672	IVEC=0x1600
2673	IHSRR=1
2674INT_DEFINE_END(cbe_maintenance)
2675
2676EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2677	GEN_INT_ENTRY cbe_maintenance, virt=0
2678EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2679EXC_VIRT_NONE(0x5600, 0x100)
2680EXC_COMMON_BEGIN(cbe_maintenance_common)
2681	GEN_COMMON cbe_maintenance
2682	addi	r3,r1,STACK_FRAME_OVERHEAD
2683	bl	cbe_maintenance_exception
2684	b	interrupt_return_hsrr
2685
2686#else /* CONFIG_CBE_RAS */
2687EXC_REAL_NONE(0x1600, 0x100)
2688EXC_VIRT_NONE(0x5600, 0x100)
2689#endif
2690
2691
2692INT_DEFINE_BEGIN(altivec_assist)
2693	IVEC=0x1700
2694#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2695	IKVM_REAL=1
2696#endif
2697INT_DEFINE_END(altivec_assist)
2698
2699EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2700	GEN_INT_ENTRY altivec_assist, virt=0
2701EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2702EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2703	GEN_INT_ENTRY altivec_assist, virt=1
2704EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2705EXC_COMMON_BEGIN(altivec_assist_common)
2706	GEN_COMMON altivec_assist
2707	addi	r3,r1,STACK_FRAME_OVERHEAD
2708#ifdef CONFIG_ALTIVEC
2709	bl	altivec_assist_exception
2710	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2711#else
2712	bl	unknown_exception
2713#endif
2714	b	interrupt_return_srr
2715
2716
2717#ifdef CONFIG_CBE_RAS
2718INT_DEFINE_BEGIN(cbe_thermal)
2719	IVEC=0x1800
2720	IHSRR=1
2721INT_DEFINE_END(cbe_thermal)
2722
2723EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2724	GEN_INT_ENTRY cbe_thermal, virt=0
2725EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2726EXC_VIRT_NONE(0x5800, 0x100)
2727EXC_COMMON_BEGIN(cbe_thermal_common)
2728	GEN_COMMON cbe_thermal
2729	addi	r3,r1,STACK_FRAME_OVERHEAD
2730	bl	cbe_thermal_exception
2731	b	interrupt_return_hsrr
2732
2733#else /* CONFIG_CBE_RAS */
2734EXC_REAL_NONE(0x1800, 0x100)
2735EXC_VIRT_NONE(0x5800, 0x100)
2736#endif
2737
2738
2739#ifdef CONFIG_PPC_WATCHDOG
2740
2741INT_DEFINE_BEGIN(soft_nmi)
2742	IVEC=0x900
2743	ISTACK=0
2744	ICFAR=0
2745INT_DEFINE_END(soft_nmi)
2746
2747/*
2748 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2749 * stack is one that is usable by maskable interrupts so long as MSR_EE
2750 * remains off. It is used for recovery when something has corrupted the
2751 * normal kernel stack, for example. The "soft NMI" must not use the process
2752 * stack because we want irq disabled sections to avoid touching the stack
2753 * at all (other than PMU interrupts), so use the emergency stack for this,
2754 * and run it entirely with interrupts hard disabled.
2755 */
2756EXC_COMMON_BEGIN(soft_nmi_common)
2757	mr	r10,r1
2758	ld	r1,PACAEMERGSP(r13)
2759	subi	r1,r1,INT_FRAME_SIZE
2760	__GEN_COMMON_BODY soft_nmi
2761
2762	addi	r3,r1,STACK_FRAME_OVERHEAD
2763	bl	soft_nmi_interrupt
2764
2765	/* Clear MSR_RI before setting SRR0 and SRR1. */
2766	li	r9,0
2767	mtmsrd	r9,1
2768
2769	kuap_kernel_restore r9, r10
2770
2771	EXCEPTION_RESTORE_REGS hsrr=0
2772	RFI_TO_KERNEL
2773
2774#endif /* CONFIG_PPC_WATCHDOG */
2775
2776/*
2777 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2778 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2779 * - If it was a doorbell we return immediately since doorbells are edge
2780 *   triggered and won't automatically refire.
2781 * - If it was a HMI we return immediately since we handled it in realmode
2782 *   and it won't refire.
2783 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2784 * This is called with r10 containing the value to OR to the paca field.
2785 */
2786.macro MASKED_INTERRUPT hsrr=0
2787	.if \hsrr
2788masked_Hinterrupt:
2789	.else
2790masked_interrupt:
2791	.endif
2792	stw	r9,PACA_EXGEN+EX_CCR(r13)
2793	lbz	r9,PACAIRQHAPPENED(r13)
2794	or	r9,r9,r10
2795	stb	r9,PACAIRQHAPPENED(r13)
2796
2797	.if ! \hsrr
2798	cmpwi	r10,PACA_IRQ_DEC
2799	bne	1f
2800	LOAD_REG_IMMEDIATE(r9, 0x7fffffff)
2801	mtspr	SPRN_DEC,r9
2802#ifdef CONFIG_PPC_WATCHDOG
2803	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2804	b	soft_nmi_common
2805#else
2806	b	2f
2807#endif
2808	.endif
2809
28101:	andi.	r10,r10,PACA_IRQ_MUST_HARD_MASK
2811	beq	2f
2812	xori	r12,r12,MSR_EE	/* clear MSR_EE */
2813	.if \hsrr
2814	mtspr	SPRN_HSRR1,r12
2815	.else
2816	mtspr	SPRN_SRR1,r12
2817	.endif
2818	ori	r9,r9,PACA_IRQ_HARD_DIS
2819	stb	r9,PACAIRQHAPPENED(r13)
28202:	/* done */
2821	li	r9,0
2822	.if \hsrr
2823	stb	r9,PACAHSRR_VALID(r13)
2824	.else
2825	stb	r9,PACASRR_VALID(r13)
2826	.endif
2827
2828	SEARCH_RESTART_TABLE
2829	cmpdi	r12,0
2830	beq	3f
2831	.if \hsrr
2832	mtspr	SPRN_HSRR0,r12
2833	.else
2834	mtspr	SPRN_SRR0,r12
2835	.endif
28363:
2837
2838	ld	r9,PACA_EXGEN+EX_CTR(r13)
2839	mtctr	r9
2840	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2841	mtcrf	0x80,r9
2842	std	r1,PACAR1(r13)
2843	ld	r9,PACA_EXGEN+EX_R9(r13)
2844	ld	r10,PACA_EXGEN+EX_R10(r13)
2845	ld	r11,PACA_EXGEN+EX_R11(r13)
2846	ld	r12,PACA_EXGEN+EX_R12(r13)
2847	ld	r13,PACA_EXGEN+EX_R13(r13)
2848	/* May return to masked low address where r13 is not set up */
2849	.if \hsrr
2850	HRFI_TO_KERNEL
2851	.else
2852	RFI_TO_KERNEL
2853	.endif
2854	b	.
2855.endm
2856
2857TRAMP_REAL_BEGIN(stf_barrier_fallback)
2858	std	r9,PACA_EXRFI+EX_R9(r13)
2859	std	r10,PACA_EXRFI+EX_R10(r13)
2860	sync
2861	ld	r9,PACA_EXRFI+EX_R9(r13)
2862	ld	r10,PACA_EXRFI+EX_R10(r13)
2863	ori	31,31,0
2864	.rept 14
2865	b	1f
28661:
2867	.endr
2868	blr
2869
2870/* Clobbers r10, r11, ctr */
2871.macro L1D_DISPLACEMENT_FLUSH
2872	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2873	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
2874	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2875	mtctr	r11
2876	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2877
2878	/* order ld/st prior to dcbt stop all streams with flushing */
2879	sync
2880
2881	/*
2882	 * The load addresses are at staggered offsets within cachelines,
2883	 * which suits some pipelines better (on others it should not
2884	 * hurt).
2885	 */
28861:
2887	ld	r11,(0x80 + 8)*0(r10)
2888	ld	r11,(0x80 + 8)*1(r10)
2889	ld	r11,(0x80 + 8)*2(r10)
2890	ld	r11,(0x80 + 8)*3(r10)
2891	ld	r11,(0x80 + 8)*4(r10)
2892	ld	r11,(0x80 + 8)*5(r10)
2893	ld	r11,(0x80 + 8)*6(r10)
2894	ld	r11,(0x80 + 8)*7(r10)
2895	addi	r10,r10,0x80*8
2896	bdnz	1b
2897.endm
2898
2899TRAMP_REAL_BEGIN(entry_flush_fallback)
2900	std	r9,PACA_EXRFI+EX_R9(r13)
2901	std	r10,PACA_EXRFI+EX_R10(r13)
2902	std	r11,PACA_EXRFI+EX_R11(r13)
2903	mfctr	r9
2904	L1D_DISPLACEMENT_FLUSH
2905	mtctr	r9
2906	ld	r9,PACA_EXRFI+EX_R9(r13)
2907	ld	r10,PACA_EXRFI+EX_R10(r13)
2908	ld	r11,PACA_EXRFI+EX_R11(r13)
2909	blr
2910
2911/*
2912 * The SCV entry flush happens with interrupts enabled, so it must disable
2913 * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10
2914 * (containing LR) does not need to be preserved here because scv entry
2915 * puts 0 in the pt_regs, CTR can be clobbered for the same reason.
2916 */
2917TRAMP_REAL_BEGIN(scv_entry_flush_fallback)
2918	li	r10,0
2919	mtmsrd	r10,1
2920	lbz	r10,PACAIRQHAPPENED(r13)
2921	ori	r10,r10,PACA_IRQ_HARD_DIS
2922	stb	r10,PACAIRQHAPPENED(r13)
2923	std	r11,PACA_EXRFI+EX_R11(r13)
2924	L1D_DISPLACEMENT_FLUSH
2925	ld	r11,PACA_EXRFI+EX_R11(r13)
2926	li	r10,MSR_RI
2927	mtmsrd	r10,1
2928	blr
2929
2930TRAMP_REAL_BEGIN(rfi_flush_fallback)
2931	SET_SCRATCH0(r13);
2932	GET_PACA(r13);
2933	std	r1,PACA_EXRFI+EX_R12(r13)
2934	ld	r1,PACAKSAVE(r13)
2935	std	r9,PACA_EXRFI+EX_R9(r13)
2936	std	r10,PACA_EXRFI+EX_R10(r13)
2937	std	r11,PACA_EXRFI+EX_R11(r13)
2938	mfctr	r9
2939	L1D_DISPLACEMENT_FLUSH
2940	mtctr	r9
2941	ld	r9,PACA_EXRFI+EX_R9(r13)
2942	ld	r10,PACA_EXRFI+EX_R10(r13)
2943	ld	r11,PACA_EXRFI+EX_R11(r13)
2944	ld	r1,PACA_EXRFI+EX_R12(r13)
2945	GET_SCRATCH0(r13);
2946	rfid
2947
2948TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2949	SET_SCRATCH0(r13);
2950	GET_PACA(r13);
2951	std	r1,PACA_EXRFI+EX_R12(r13)
2952	ld	r1,PACAKSAVE(r13)
2953	std	r9,PACA_EXRFI+EX_R9(r13)
2954	std	r10,PACA_EXRFI+EX_R10(r13)
2955	std	r11,PACA_EXRFI+EX_R11(r13)
2956	mfctr	r9
2957	L1D_DISPLACEMENT_FLUSH
2958	mtctr	r9
2959	ld	r9,PACA_EXRFI+EX_R9(r13)
2960	ld	r10,PACA_EXRFI+EX_R10(r13)
2961	ld	r11,PACA_EXRFI+EX_R11(r13)
2962	ld	r1,PACA_EXRFI+EX_R12(r13)
2963	GET_SCRATCH0(r13);
2964	hrfid
2965
2966TRAMP_REAL_BEGIN(rfscv_flush_fallback)
2967	/* system call volatile */
2968	mr	r7,r13
2969	GET_PACA(r13);
2970	mr	r8,r1
2971	ld	r1,PACAKSAVE(r13)
2972	mfctr	r9
2973	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2974	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
2975	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2976	mtctr	r11
2977	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2978
2979	/* order ld/st prior to dcbt stop all streams with flushing */
2980	sync
2981
2982	/*
2983	 * The load adresses are at staggered offsets within cachelines,
2984	 * which suits some pipelines better (on others it should not
2985	 * hurt).
2986	 */
29871:
2988	ld	r11,(0x80 + 8)*0(r10)
2989	ld	r11,(0x80 + 8)*1(r10)
2990	ld	r11,(0x80 + 8)*2(r10)
2991	ld	r11,(0x80 + 8)*3(r10)
2992	ld	r11,(0x80 + 8)*4(r10)
2993	ld	r11,(0x80 + 8)*5(r10)
2994	ld	r11,(0x80 + 8)*6(r10)
2995	ld	r11,(0x80 + 8)*7(r10)
2996	addi	r10,r10,0x80*8
2997	bdnz	1b
2998
2999	mtctr	r9
3000	li	r9,0
3001	li	r10,0
3002	li	r11,0
3003	mr	r1,r8
3004	mr	r13,r7
3005	RFSCV
3006
3007USE_TEXT_SECTION()
3008
3009#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3010kvm_interrupt:
3011	/*
3012	 * The conditional branch in KVMTEST can't reach all the way,
3013	 * make a stub.
3014	 */
3015	b	kvmppc_interrupt
3016#endif
3017
3018_GLOBAL(do_uaccess_flush)
3019	UACCESS_FLUSH_FIXUP_SECTION
3020	nop
3021	nop
3022	nop
3023	blr
3024	L1D_DISPLACEMENT_FLUSH
3025	blr
3026_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
3027EXPORT_SYMBOL(do_uaccess_flush)
3028
3029
3030MASKED_INTERRUPT
3031MASKED_INTERRUPT hsrr=1
3032
3033	/*
3034	 * Relocation-on interrupts: A subset of the interrupts can be delivered
3035	 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
3036	 * it.  Addresses are the same as the original interrupt addresses, but
3037	 * offset by 0xc000000000004000.
3038	 * It's impossible to receive interrupts below 0x300 via this mechanism.
3039	 * KVM: None of these traps are from the guest ; anything that escalated
3040	 * to HV=1 from HV=0 is delivered via real mode handlers.
3041	 */
3042
3043	/*
3044	 * This uses the standard macro, since the original 0x300 vector
3045	 * only has extra guff for STAB-based processors -- which never
3046	 * come here.
3047	 */
3048
3049USE_FIXED_SECTION(virt_trampolines)
3050	/*
3051	 * All code below __end_soft_masked is treated as soft-masked. If
3052	 * any code runs here with MSR[EE]=1, it must then cope with pending
3053	 * soft interrupt being raised (i.e., by ensuring it is replayed).
3054	 *
3055	 * The __end_interrupts marker must be past the out-of-line (OOL)
3056	 * handlers, so that they are copied to real address 0x100 when running
3057	 * a relocatable kernel. This ensures they can be reached from the short
3058	 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3059	 * directly, without using LOAD_HANDLER().
3060	 */
3061	.align	7
3062	.globl	__end_interrupts
3063__end_interrupts:
3064DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines)
3065
3066CLOSE_FIXED_SECTION(real_vectors);
3067CLOSE_FIXED_SECTION(real_trampolines);
3068CLOSE_FIXED_SECTION(virt_vectors);
3069CLOSE_FIXED_SECTION(virt_trampolines);
3070
3071USE_TEXT_SECTION()
3072
3073/* MSR[RI] should be clear because this uses SRR[01] */
3074enable_machine_check:
3075	mflr	r0
3076	bcl	20,31,$+4
30770:	mflr	r3
3078	addi	r3,r3,(1f - 0b)
3079	mtspr	SPRN_SRR0,r3
3080	mfmsr	r3
3081	ori	r3,r3,MSR_ME
3082	mtspr	SPRN_SRR1,r3
3083	RFI_TO_KERNEL
30841:	mtlr	r0
3085	blr
3086
3087/* MSR[RI] should be clear because this uses SRR[01] */
3088disable_machine_check:
3089	mflr	r0
3090	bcl	20,31,$+4
30910:	mflr	r3
3092	addi	r3,r3,(1f - 0b)
3093	mtspr	SPRN_SRR0,r3
3094	mfmsr	r3
3095	li	r4,MSR_ME
3096	andc	r3,r3,r4
3097	mtspr	SPRN_SRR1,r3
3098	RFI_TO_KERNEL
30991:	mtlr	r0
3100	blr
3101