xref: /openbmc/linux/arch/powerpc/kernel/eeh_pe.c (revision d2999e1b)
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static LIST_HEAD(eeh_phb_pe);
36 
37 /**
38  * eeh_pe_alloc - Allocate PE
39  * @phb: PCI controller
40  * @type: PE type
41  *
42  * Allocate PE instance dynamically.
43  */
44 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
45 {
46 	struct eeh_pe *pe;
47 
48 	/* Allocate PHB PE */
49 	pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
50 	if (!pe) return NULL;
51 
52 	/* Initialize PHB PE */
53 	pe->type = type;
54 	pe->phb = phb;
55 	INIT_LIST_HEAD(&pe->child_list);
56 	INIT_LIST_HEAD(&pe->child);
57 	INIT_LIST_HEAD(&pe->edevs);
58 
59 	return pe;
60 }
61 
62 /**
63  * eeh_phb_pe_create - Create PHB PE
64  * @phb: PCI controller
65  *
66  * The function should be called while the PHB is detected during
67  * system boot or PCI hotplug in order to create PHB PE.
68  */
69 int eeh_phb_pe_create(struct pci_controller *phb)
70 {
71 	struct eeh_pe *pe;
72 
73 	/* Allocate PHB PE */
74 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
75 	if (!pe) {
76 		pr_err("%s: out of memory!\n", __func__);
77 		return -ENOMEM;
78 	}
79 
80 	/* Put it into the list */
81 	list_add_tail(&pe->child, &eeh_phb_pe);
82 
83 	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
84 
85 	return 0;
86 }
87 
88 /**
89  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
90  * @phb: PCI controller
91  *
92  * The overall PEs form hierarchy tree. The first layer of the
93  * hierarchy tree is composed of PHB PEs. The function is used
94  * to retrieve the corresponding PHB PE according to the given PHB.
95  */
96 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
97 {
98 	struct eeh_pe *pe;
99 
100 	list_for_each_entry(pe, &eeh_phb_pe, child) {
101 		/*
102 		 * Actually, we needn't check the type since
103 		 * the PE for PHB has been determined when that
104 		 * was created.
105 		 */
106 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
107 			return pe;
108 	}
109 
110 	return NULL;
111 }
112 
113 /**
114  * eeh_pe_next - Retrieve the next PE in the tree
115  * @pe: current PE
116  * @root: root PE
117  *
118  * The function is used to retrieve the next PE in the
119  * hierarchy PE tree.
120  */
121 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
122 				  struct eeh_pe *root)
123 {
124 	struct list_head *next = pe->child_list.next;
125 
126 	if (next == &pe->child_list) {
127 		while (1) {
128 			if (pe == root)
129 				return NULL;
130 			next = pe->child.next;
131 			if (next != &pe->parent->child_list)
132 				break;
133 			pe = pe->parent;
134 		}
135 	}
136 
137 	return list_entry(next, struct eeh_pe, child);
138 }
139 
140 /**
141  * eeh_pe_traverse - Traverse PEs in the specified PHB
142  * @root: root PE
143  * @fn: callback
144  * @flag: extra parameter to callback
145  *
146  * The function is used to traverse the specified PE and its
147  * child PEs. The traversing is to be terminated once the
148  * callback returns something other than NULL, or no more PEs
149  * to be traversed.
150  */
151 void *eeh_pe_traverse(struct eeh_pe *root,
152 		      eeh_traverse_func fn, void *flag)
153 {
154 	struct eeh_pe *pe;
155 	void *ret;
156 
157 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
158 		ret = fn(pe, flag);
159 		if (ret) return ret;
160 	}
161 
162 	return NULL;
163 }
164 
165 /**
166  * eeh_pe_dev_traverse - Traverse the devices from the PE
167  * @root: EEH PE
168  * @fn: function callback
169  * @flag: extra parameter to callback
170  *
171  * The function is used to traverse the devices of the specified
172  * PE and its child PEs.
173  */
174 void *eeh_pe_dev_traverse(struct eeh_pe *root,
175 		eeh_traverse_func fn, void *flag)
176 {
177 	struct eeh_pe *pe;
178 	struct eeh_dev *edev, *tmp;
179 	void *ret;
180 
181 	if (!root) {
182 		pr_warning("%s: Invalid PE %p\n", __func__, root);
183 		return NULL;
184 	}
185 
186 	/* Traverse root PE */
187 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
188 		eeh_pe_for_each_dev(pe, edev, tmp) {
189 			ret = fn(edev, flag);
190 			if (ret)
191 				return ret;
192 		}
193 	}
194 
195 	return NULL;
196 }
197 
198 /**
199  * __eeh_pe_get - Check the PE address
200  * @data: EEH PE
201  * @flag: EEH device
202  *
203  * For one particular PE, it can be identified by PE address
204  * or tranditional BDF address. BDF address is composed of
205  * Bus/Device/Function number. The extra data referred by flag
206  * indicates which type of address should be used.
207  */
208 static void *__eeh_pe_get(void *data, void *flag)
209 {
210 	struct eeh_pe *pe = (struct eeh_pe *)data;
211 	struct eeh_dev *edev = (struct eeh_dev *)flag;
212 
213 	/* Unexpected PHB PE */
214 	if (pe->type & EEH_PE_PHB)
215 		return NULL;
216 
217 	/* We prefer PE address */
218 	if (edev->pe_config_addr &&
219 	   (edev->pe_config_addr == pe->addr))
220 		return pe;
221 
222 	/* Try BDF address */
223 	if (edev->config_addr &&
224 	   (edev->config_addr == pe->config_addr))
225 		return pe;
226 
227 	return NULL;
228 }
229 
230 /**
231  * eeh_pe_get - Search PE based on the given address
232  * @edev: EEH device
233  *
234  * Search the corresponding PE based on the specified address which
235  * is included in the eeh device. The function is used to check if
236  * the associated PE has been created against the PE address. It's
237  * notable that the PE address has 2 format: traditional PE address
238  * which is composed of PCI bus/device/function number, or unified
239  * PE address.
240  */
241 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
242 {
243 	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
244 	struct eeh_pe *pe;
245 
246 	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
247 
248 	return pe;
249 }
250 
251 /**
252  * eeh_pe_get_parent - Retrieve the parent PE
253  * @edev: EEH device
254  *
255  * The whole PEs existing in the system are organized as hierarchy
256  * tree. The function is used to retrieve the parent PE according
257  * to the parent EEH device.
258  */
259 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
260 {
261 	struct device_node *dn;
262 	struct eeh_dev *parent;
263 
264 	/*
265 	 * It might have the case for the indirect parent
266 	 * EEH device already having associated PE, but
267 	 * the direct parent EEH device doesn't have yet.
268 	 */
269 	dn = edev->dn->parent;
270 	while (dn) {
271 		/* We're poking out of PCI territory */
272 		if (!PCI_DN(dn)) return NULL;
273 
274 		parent = of_node_to_eeh_dev(dn);
275 		/* We're poking out of PCI territory */
276 		if (!parent) return NULL;
277 
278 		if (parent->pe)
279 			return parent->pe;
280 
281 		dn = dn->parent;
282 	}
283 
284 	return NULL;
285 }
286 
287 /**
288  * eeh_add_to_parent_pe - Add EEH device to parent PE
289  * @edev: EEH device
290  *
291  * Add EEH device to the parent PE. If the parent PE already
292  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
293  * we have to create new PE to hold the EEH device and the new
294  * PE will be linked to its parent PE as well.
295  */
296 int eeh_add_to_parent_pe(struct eeh_dev *edev)
297 {
298 	struct eeh_pe *pe, *parent;
299 
300 	/*
301 	 * Search the PE has been existing or not according
302 	 * to the PE address. If that has been existing, the
303 	 * PE should be composed of PCI bus and its subordinate
304 	 * components.
305 	 */
306 	pe = eeh_pe_get(edev);
307 	if (pe && !(pe->type & EEH_PE_INVALID)) {
308 		if (!edev->pe_config_addr) {
309 			pr_err("%s: PE with addr 0x%x already exists\n",
310 				__func__, edev->config_addr);
311 			return -EEXIST;
312 		}
313 
314 		/* Mark the PE as type of PCI bus */
315 		pe->type = EEH_PE_BUS;
316 		edev->pe = pe;
317 
318 		/* Put the edev to PE */
319 		list_add_tail(&edev->list, &pe->edevs);
320 		pr_debug("EEH: Add %s to Bus PE#%x\n",
321 			edev->dn->full_name, pe->addr);
322 
323 		return 0;
324 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
325 		list_add_tail(&edev->list, &pe->edevs);
326 		edev->pe = pe;
327 		/*
328 		 * We're running to here because of PCI hotplug caused by
329 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
330 		 */
331 		parent = pe;
332 		while (parent) {
333 			if (!(parent->type & EEH_PE_INVALID))
334 				break;
335 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
336 			parent = parent->parent;
337 		}
338 		pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
339 			edev->dn->full_name, pe->addr, pe->parent->addr);
340 
341 		return 0;
342 	}
343 
344 	/* Create a new EEH PE */
345 	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
346 	if (!pe) {
347 		pr_err("%s: out of memory!\n", __func__);
348 		return -ENOMEM;
349 	}
350 	pe->addr	= edev->pe_config_addr;
351 	pe->config_addr	= edev->config_addr;
352 
353 	/*
354 	 * While doing PE reset, we probably hot-reset the
355 	 * upstream bridge. However, the PCI devices including
356 	 * the associated EEH devices might be removed when EEH
357 	 * core is doing recovery. So that won't safe to retrieve
358 	 * the bridge through downstream EEH device. We have to
359 	 * trace the parent PCI bus, then the upstream bridge.
360 	 */
361 	if (eeh_probe_mode_dev())
362 		pe->bus = eeh_dev_to_pci_dev(edev)->bus;
363 
364 	/*
365 	 * Put the new EEH PE into hierarchy tree. If the parent
366 	 * can't be found, the newly created PE will be attached
367 	 * to PHB directly. Otherwise, we have to associate the
368 	 * PE with its parent.
369 	 */
370 	parent = eeh_pe_get_parent(edev);
371 	if (!parent) {
372 		parent = eeh_phb_pe_get(edev->phb);
373 		if (!parent) {
374 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
375 				__func__, edev->phb->global_number);
376 			edev->pe = NULL;
377 			kfree(pe);
378 			return -EEXIST;
379 		}
380 	}
381 	pe->parent = parent;
382 
383 	/*
384 	 * Put the newly created PE into the child list and
385 	 * link the EEH device accordingly.
386 	 */
387 	list_add_tail(&pe->child, &parent->child_list);
388 	list_add_tail(&edev->list, &pe->edevs);
389 	edev->pe = pe;
390 	pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
391 		edev->dn->full_name, pe->addr, pe->parent->addr);
392 
393 	return 0;
394 }
395 
396 /**
397  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
398  * @edev: EEH device
399  *
400  * The PE hierarchy tree might be changed when doing PCI hotplug.
401  * Also, the PCI devices or buses could be removed from the system
402  * during EEH recovery. So we have to call the function remove the
403  * corresponding PE accordingly if necessary.
404  */
405 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
406 {
407 	struct eeh_pe *pe, *parent, *child;
408 	int cnt;
409 
410 	if (!edev->pe) {
411 		pr_debug("%s: No PE found for EEH device %s\n",
412 			 __func__, edev->dn->full_name);
413 		return -EEXIST;
414 	}
415 
416 	/* Remove the EEH device */
417 	pe = edev->pe;
418 	edev->pe = NULL;
419 	list_del(&edev->list);
420 
421 	/*
422 	 * Check if the parent PE includes any EEH devices.
423 	 * If not, we should delete that. Also, we should
424 	 * delete the parent PE if it doesn't have associated
425 	 * child PEs and EEH devices.
426 	 */
427 	while (1) {
428 		parent = pe->parent;
429 		if (pe->type & EEH_PE_PHB)
430 			break;
431 
432 		if (!(pe->state & EEH_PE_KEEP)) {
433 			if (list_empty(&pe->edevs) &&
434 			    list_empty(&pe->child_list)) {
435 				list_del(&pe->child);
436 				kfree(pe);
437 			} else {
438 				break;
439 			}
440 		} else {
441 			if (list_empty(&pe->edevs)) {
442 				cnt = 0;
443 				list_for_each_entry(child, &pe->child_list, child) {
444 					if (!(child->type & EEH_PE_INVALID)) {
445 						cnt++;
446 						break;
447 					}
448 				}
449 
450 				if (!cnt)
451 					pe->type |= EEH_PE_INVALID;
452 				else
453 					break;
454 			}
455 		}
456 
457 		pe = parent;
458 	}
459 
460 	return 0;
461 }
462 
463 /**
464  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
465  * @pe: EEH PE
466  *
467  * We have time stamp for each PE to trace its time of getting
468  * frozen in last hour. The function should be called to update
469  * the time stamp on first error of the specific PE. On the other
470  * handle, we needn't account for errors happened in last hour.
471  */
472 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
473 {
474 	struct timeval tstamp;
475 
476 	if (!pe) return;
477 
478 	if (pe->freeze_count <= 0) {
479 		pe->freeze_count = 0;
480 		do_gettimeofday(&pe->tstamp);
481 	} else {
482 		do_gettimeofday(&tstamp);
483 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
484 			pe->tstamp = tstamp;
485 			pe->freeze_count = 0;
486 		}
487 	}
488 }
489 
490 /**
491  * __eeh_pe_state_mark - Mark the state for the PE
492  * @data: EEH PE
493  * @flag: state
494  *
495  * The function is used to mark the indicated state for the given
496  * PE. Also, the associated PCI devices will be put into IO frozen
497  * state as well.
498  */
499 static void *__eeh_pe_state_mark(void *data, void *flag)
500 {
501 	struct eeh_pe *pe = (struct eeh_pe *)data;
502 	int state = *((int *)flag);
503 	struct eeh_dev *edev, *tmp;
504 	struct pci_dev *pdev;
505 
506 	/* Keep the state of permanently removed PE intact */
507 	if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
508 	    (state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
509 		return NULL;
510 
511 	pe->state |= state;
512 
513 	/* Offline PCI devices if applicable */
514 	if (state != EEH_PE_ISOLATED)
515 		return NULL;
516 
517 	eeh_pe_for_each_dev(pe, edev, tmp) {
518 		pdev = eeh_dev_to_pci_dev(edev);
519 		if (pdev)
520 			pdev->error_state = pci_channel_io_frozen;
521 	}
522 
523 	return NULL;
524 }
525 
526 /**
527  * eeh_pe_state_mark - Mark specified state for PE and its associated device
528  * @pe: EEH PE
529  *
530  * EEH error affects the current PE and its child PEs. The function
531  * is used to mark appropriate state for the affected PEs and the
532  * associated devices.
533  */
534 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
535 {
536 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
537 }
538 
539 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
540 {
541 	struct eeh_dev *edev = data;
542 	int mode = *((int *)flag);
543 
544 	edev->mode |= mode;
545 
546 	return NULL;
547 }
548 
549 /**
550  * eeh_pe_dev_state_mark - Mark state for all device under the PE
551  * @pe: EEH PE
552  *
553  * Mark specific state for all child devices of the PE.
554  */
555 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
556 {
557 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
558 }
559 
560 /**
561  * __eeh_pe_state_clear - Clear state for the PE
562  * @data: EEH PE
563  * @flag: state
564  *
565  * The function is used to clear the indicated state from the
566  * given PE. Besides, we also clear the check count of the PE
567  * as well.
568  */
569 static void *__eeh_pe_state_clear(void *data, void *flag)
570 {
571 	struct eeh_pe *pe = (struct eeh_pe *)data;
572 	int state = *((int *)flag);
573 
574 	/* Keep the state of permanently removed PE intact */
575 	if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
576 	    (state & EEH_PE_ISOLATED))
577 		return NULL;
578 
579 	pe->state &= ~state;
580 
581 	/* Clear check count since last isolation */
582 	if (state & EEH_PE_ISOLATED)
583 		pe->check_count = 0;
584 
585 	return NULL;
586 }
587 
588 /**
589  * eeh_pe_state_clear - Clear state for the PE and its children
590  * @pe: PE
591  * @state: state to be cleared
592  *
593  * When the PE and its children has been recovered from error,
594  * we need clear the error state for that. The function is used
595  * for the purpose.
596  */
597 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
598 {
599 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
600 }
601 
602 /*
603  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
604  * buses assigned explicitly by firmware, and we probably have
605  * lost that after reset. So we have to delay the check until
606  * the PCI-CFG registers have been restored for the parent
607  * bridge.
608  *
609  * Don't use normal PCI-CFG accessors, which probably has been
610  * blocked on normal path during the stage. So we need utilize
611  * eeh operations, which is always permitted.
612  */
613 static void eeh_bridge_check_link(struct eeh_dev *edev,
614 				  struct device_node *dn)
615 {
616 	int cap;
617 	uint32_t val;
618 	int timeout = 0;
619 
620 	/*
621 	 * We only check root port and downstream ports of
622 	 * PCIe switches
623 	 */
624 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
625 		return;
626 
627 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
628 		 __func__, edev->phb->global_number,
629 		 edev->config_addr >> 8,
630 		 PCI_SLOT(edev->config_addr & 0xFF),
631 		 PCI_FUNC(edev->config_addr & 0xFF));
632 
633 	/* Check slot status */
634 	cap = edev->pcie_cap;
635 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
636 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
637 		pr_debug("  No card in the slot (0x%04x) !\n", val);
638 		return;
639 	}
640 
641 	/* Check power status if we have the capability */
642 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
643 	if (val & PCI_EXP_SLTCAP_PCP) {
644 		eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
645 		if (val & PCI_EXP_SLTCTL_PCC) {
646 			pr_debug("  In power-off state, power it on ...\n");
647 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
648 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
649 			eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
650 			msleep(2 * 1000);
651 		}
652 	}
653 
654 	/* Enable link */
655 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
656 	val &= ~PCI_EXP_LNKCTL_LD;
657 	eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
658 
659 	/* Check link */
660 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
661 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
662 		pr_debug("  No link reporting capability (0x%08x) \n", val);
663 		msleep(1000);
664 		return;
665 	}
666 
667 	/* Wait the link is up until timeout (5s) */
668 	timeout = 0;
669 	while (timeout < 5000) {
670 		msleep(20);
671 		timeout += 20;
672 
673 		eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
674 		if (val & PCI_EXP_LNKSTA_DLLLA)
675 			break;
676 	}
677 
678 	if (val & PCI_EXP_LNKSTA_DLLLA)
679 		pr_debug("  Link up (%s)\n",
680 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
681 	else
682 		pr_debug("  Link not ready (0x%04x)\n", val);
683 }
684 
685 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
686 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
687 
688 static void eeh_restore_bridge_bars(struct eeh_dev *edev,
689 				    struct device_node *dn)
690 {
691 	int i;
692 
693 	/*
694 	 * Device BARs: 0x10 - 0x18
695 	 * Bus numbers and windows: 0x18 - 0x30
696 	 */
697 	for (i = 4; i < 13; i++)
698 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
699 	/* Rom: 0x38 */
700 	eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
701 
702 	/* Cache line & Latency timer: 0xC 0xD */
703 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
704                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
705         eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
706                 SAVED_BYTE(PCI_LATENCY_TIMER));
707 	/* Max latency, min grant, interrupt ping and line: 0x3C */
708 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
709 
710 	/* PCI Command: 0x4 */
711 	eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
712 
713 	/* Check the PCIe link is ready */
714 	eeh_bridge_check_link(edev, dn);
715 }
716 
717 static void eeh_restore_device_bars(struct eeh_dev *edev,
718 				    struct device_node *dn)
719 {
720 	int i;
721 	u32 cmd;
722 
723 	for (i = 4; i < 10; i++)
724 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
725 	/* 12 == Expansion ROM Address */
726 	eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
727 
728 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
729 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
730 	eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
731 		SAVED_BYTE(PCI_LATENCY_TIMER));
732 
733 	/* max latency, min grant, interrupt pin and line */
734 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
735 
736 	/*
737 	 * Restore PERR & SERR bits, some devices require it,
738 	 * don't touch the other command bits
739 	 */
740 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
741 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
742 		cmd |= PCI_COMMAND_PARITY;
743 	else
744 		cmd &= ~PCI_COMMAND_PARITY;
745 	if (edev->config_space[1] & PCI_COMMAND_SERR)
746 		cmd |= PCI_COMMAND_SERR;
747 	else
748 		cmd &= ~PCI_COMMAND_SERR;
749 	eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
750 }
751 
752 /**
753  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
754  * @data: EEH device
755  * @flag: Unused
756  *
757  * Loads the PCI configuration space base address registers,
758  * the expansion ROM base address, the latency timer, and etc.
759  * from the saved values in the device node.
760  */
761 static void *eeh_restore_one_device_bars(void *data, void *flag)
762 {
763 	struct eeh_dev *edev = (struct eeh_dev *)data;
764 	struct device_node *dn = eeh_dev_to_of_node(edev);
765 
766 	/* Do special restore for bridges */
767 	if (edev->mode & EEH_DEV_BRIDGE)
768 		eeh_restore_bridge_bars(edev, dn);
769 	else
770 		eeh_restore_device_bars(edev, dn);
771 
772 	if (eeh_ops->restore_config)
773 		eeh_ops->restore_config(dn);
774 
775 	return NULL;
776 }
777 
778 /**
779  * eeh_pe_restore_bars - Restore the PCI config space info
780  * @pe: EEH PE
781  *
782  * This routine performs a recursive walk to the children
783  * of this device as well.
784  */
785 void eeh_pe_restore_bars(struct eeh_pe *pe)
786 {
787 	/*
788 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
789 	 * will take that.
790 	 */
791 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
792 }
793 
794 /**
795  * eeh_pe_loc_get - Retrieve location code binding to the given PE
796  * @pe: EEH PE
797  *
798  * Retrieve the location code of the given PE. If the primary PE bus
799  * is root bus, we will grab location code from PHB device tree node
800  * or root port. Otherwise, the upstream bridge's device tree node
801  * of the primary PE bus will be checked for the location code.
802  */
803 const char *eeh_pe_loc_get(struct eeh_pe *pe)
804 {
805 	struct pci_controller *hose;
806 	struct pci_bus *bus = eeh_pe_bus_get(pe);
807 	struct pci_dev *pdev;
808 	struct device_node *dn;
809 	const char *loc;
810 
811 	if (!bus)
812 		return "N/A";
813 
814 	/* PHB PE or root PE ? */
815 	if (pci_is_root_bus(bus)) {
816 		hose = pci_bus_to_host(bus);
817 		loc = of_get_property(hose->dn,
818 				"ibm,loc-code", NULL);
819 		if (loc)
820 			return loc;
821 		loc = of_get_property(hose->dn,
822 				"ibm,io-base-loc-code", NULL);
823 		if (loc)
824 			return loc;
825 
826 		pdev = pci_get_slot(bus, 0x0);
827 	} else {
828 		pdev = bus->self;
829 	}
830 
831 	if (!pdev) {
832 		loc = "N/A";
833 		goto out;
834 	}
835 
836 	dn = pci_device_to_OF_node(pdev);
837 	if (!dn) {
838 		loc = "N/A";
839 		goto out;
840 	}
841 
842 	loc = of_get_property(dn, "ibm,loc-code", NULL);
843 	if (!loc)
844 		loc = of_get_property(dn, "ibm,slot-location-code", NULL);
845 	if (!loc)
846 		loc = "N/A";
847 
848 out:
849 	if (pci_is_root_bus(bus) && pdev)
850 		pci_dev_put(pdev);
851 	return loc;
852 }
853 
854 /**
855  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
856  * @pe: EEH PE
857  *
858  * Retrieve the PCI bus according to the given PE. Basically,
859  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
860  * primary PCI bus will be retrieved. The parent bus will be
861  * returned for BUS PE. However, we don't have associated PCI
862  * bus for DEVICE PE.
863  */
864 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
865 {
866 	struct pci_bus *bus = NULL;
867 	struct eeh_dev *edev;
868 	struct pci_dev *pdev;
869 
870 	if (pe->type & EEH_PE_PHB) {
871 		bus = pe->phb->bus;
872 	} else if (pe->type & EEH_PE_BUS ||
873 		   pe->type & EEH_PE_DEVICE) {
874 		if (pe->bus) {
875 			bus = pe->bus;
876 			goto out;
877 		}
878 
879 		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
880 		pdev = eeh_dev_to_pci_dev(edev);
881 		if (pdev)
882 			bus = pdev->bus;
883 	}
884 
885 out:
886 	return bus;
887 }
888