1 /* 2 * The file intends to implement PE based on the information from 3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 4 * All the PEs should be organized as hierarchy tree. The first level 5 * of the tree will be associated to existing PHBs since the particular 6 * PE is only meaningful in one PHB domain. 7 * 8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/pci.h> 30 #include <linux/string.h> 31 32 #include <asm/pci-bridge.h> 33 #include <asm/ppc-pci.h> 34 35 static int eeh_pe_aux_size = 0; 36 static LIST_HEAD(eeh_phb_pe); 37 38 /** 39 * eeh_set_pe_aux_size - Set PE auxillary data size 40 * @size: PE auxillary data size 41 * 42 * Set PE auxillary data size 43 */ 44 void eeh_set_pe_aux_size(int size) 45 { 46 if (size < 0) 47 return; 48 49 eeh_pe_aux_size = size; 50 } 51 52 /** 53 * eeh_pe_alloc - Allocate PE 54 * @phb: PCI controller 55 * @type: PE type 56 * 57 * Allocate PE instance dynamically. 58 */ 59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 60 { 61 struct eeh_pe *pe; 62 size_t alloc_size; 63 64 alloc_size = sizeof(struct eeh_pe); 65 if (eeh_pe_aux_size) { 66 alloc_size = ALIGN(alloc_size, cache_line_size()); 67 alloc_size += eeh_pe_aux_size; 68 } 69 70 /* Allocate PHB PE */ 71 pe = kzalloc(alloc_size, GFP_KERNEL); 72 if (!pe) return NULL; 73 74 /* Initialize PHB PE */ 75 pe->type = type; 76 pe->phb = phb; 77 INIT_LIST_HEAD(&pe->child_list); 78 INIT_LIST_HEAD(&pe->child); 79 INIT_LIST_HEAD(&pe->edevs); 80 81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 82 cache_line_size()); 83 return pe; 84 } 85 86 /** 87 * eeh_phb_pe_create - Create PHB PE 88 * @phb: PCI controller 89 * 90 * The function should be called while the PHB is detected during 91 * system boot or PCI hotplug in order to create PHB PE. 92 */ 93 int eeh_phb_pe_create(struct pci_controller *phb) 94 { 95 struct eeh_pe *pe; 96 97 /* Allocate PHB PE */ 98 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 99 if (!pe) { 100 pr_err("%s: out of memory!\n", __func__); 101 return -ENOMEM; 102 } 103 104 /* Put it into the list */ 105 list_add_tail(&pe->child, &eeh_phb_pe); 106 107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); 108 109 return 0; 110 } 111 112 /** 113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 114 * @phb: PCI controller 115 * 116 * The overall PEs form hierarchy tree. The first layer of the 117 * hierarchy tree is composed of PHB PEs. The function is used 118 * to retrieve the corresponding PHB PE according to the given PHB. 119 */ 120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 121 { 122 struct eeh_pe *pe; 123 124 list_for_each_entry(pe, &eeh_phb_pe, child) { 125 /* 126 * Actually, we needn't check the type since 127 * the PE for PHB has been determined when that 128 * was created. 129 */ 130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 131 return pe; 132 } 133 134 return NULL; 135 } 136 137 /** 138 * eeh_pe_next - Retrieve the next PE in the tree 139 * @pe: current PE 140 * @root: root PE 141 * 142 * The function is used to retrieve the next PE in the 143 * hierarchy PE tree. 144 */ 145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, 146 struct eeh_pe *root) 147 { 148 struct list_head *next = pe->child_list.next; 149 150 if (next == &pe->child_list) { 151 while (1) { 152 if (pe == root) 153 return NULL; 154 next = pe->child.next; 155 if (next != &pe->parent->child_list) 156 break; 157 pe = pe->parent; 158 } 159 } 160 161 return list_entry(next, struct eeh_pe, child); 162 } 163 164 /** 165 * eeh_pe_traverse - Traverse PEs in the specified PHB 166 * @root: root PE 167 * @fn: callback 168 * @flag: extra parameter to callback 169 * 170 * The function is used to traverse the specified PE and its 171 * child PEs. The traversing is to be terminated once the 172 * callback returns something other than NULL, or no more PEs 173 * to be traversed. 174 */ 175 void *eeh_pe_traverse(struct eeh_pe *root, 176 eeh_traverse_func fn, void *flag) 177 { 178 struct eeh_pe *pe; 179 void *ret; 180 181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 182 ret = fn(pe, flag); 183 if (ret) return ret; 184 } 185 186 return NULL; 187 } 188 189 /** 190 * eeh_pe_dev_traverse - Traverse the devices from the PE 191 * @root: EEH PE 192 * @fn: function callback 193 * @flag: extra parameter to callback 194 * 195 * The function is used to traverse the devices of the specified 196 * PE and its child PEs. 197 */ 198 void *eeh_pe_dev_traverse(struct eeh_pe *root, 199 eeh_traverse_func fn, void *flag) 200 { 201 struct eeh_pe *pe; 202 struct eeh_dev *edev, *tmp; 203 void *ret; 204 205 if (!root) { 206 pr_warn("%s: Invalid PE %p\n", 207 __func__, root); 208 return NULL; 209 } 210 211 /* Traverse root PE */ 212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 213 eeh_pe_for_each_dev(pe, edev, tmp) { 214 ret = fn(edev, flag); 215 if (ret) 216 return ret; 217 } 218 } 219 220 return NULL; 221 } 222 223 /** 224 * __eeh_pe_get - Check the PE address 225 * @data: EEH PE 226 * @flag: EEH device 227 * 228 * For one particular PE, it can be identified by PE address 229 * or tranditional BDF address. BDF address is composed of 230 * Bus/Device/Function number. The extra data referred by flag 231 * indicates which type of address should be used. 232 */ 233 static void *__eeh_pe_get(void *data, void *flag) 234 { 235 struct eeh_pe *pe = (struct eeh_pe *)data; 236 struct eeh_dev *edev = (struct eeh_dev *)flag; 237 238 /* Unexpected PHB PE */ 239 if (pe->type & EEH_PE_PHB) 240 return NULL; 241 242 /* 243 * We prefer PE address. For most cases, we should 244 * have non-zero PE address 245 */ 246 if (eeh_has_flag(EEH_VALID_PE_ZERO)) { 247 if (edev->pe_config_addr == pe->addr) 248 return pe; 249 } else { 250 if (edev->pe_config_addr && 251 (edev->pe_config_addr == pe->addr)) 252 return pe; 253 } 254 255 /* Try BDF address */ 256 if (edev->config_addr && 257 (edev->config_addr == pe->config_addr)) 258 return pe; 259 260 return NULL; 261 } 262 263 /** 264 * eeh_pe_get - Search PE based on the given address 265 * @edev: EEH device 266 * 267 * Search the corresponding PE based on the specified address which 268 * is included in the eeh device. The function is used to check if 269 * the associated PE has been created against the PE address. It's 270 * notable that the PE address has 2 format: traditional PE address 271 * which is composed of PCI bus/device/function number, or unified 272 * PE address. 273 */ 274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) 275 { 276 struct eeh_pe *root = eeh_phb_pe_get(edev->phb); 277 struct eeh_pe *pe; 278 279 pe = eeh_pe_traverse(root, __eeh_pe_get, edev); 280 281 return pe; 282 } 283 284 /** 285 * eeh_pe_get_parent - Retrieve the parent PE 286 * @edev: EEH device 287 * 288 * The whole PEs existing in the system are organized as hierarchy 289 * tree. The function is used to retrieve the parent PE according 290 * to the parent EEH device. 291 */ 292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) 293 { 294 struct eeh_dev *parent; 295 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 296 297 /* 298 * It might have the case for the indirect parent 299 * EEH device already having associated PE, but 300 * the direct parent EEH device doesn't have yet. 301 */ 302 pdn = pdn ? pdn->parent : NULL; 303 while (pdn) { 304 /* We're poking out of PCI territory */ 305 parent = pdn_to_eeh_dev(pdn); 306 if (!parent) 307 return NULL; 308 309 if (parent->pe) 310 return parent->pe; 311 312 pdn = pdn->parent; 313 } 314 315 return NULL; 316 } 317 318 /** 319 * eeh_add_to_parent_pe - Add EEH device to parent PE 320 * @edev: EEH device 321 * 322 * Add EEH device to the parent PE. If the parent PE already 323 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, 324 * we have to create new PE to hold the EEH device and the new 325 * PE will be linked to its parent PE as well. 326 */ 327 int eeh_add_to_parent_pe(struct eeh_dev *edev) 328 { 329 struct eeh_pe *pe, *parent; 330 331 /* Check if the PE number is valid */ 332 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) { 333 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%d\n", 334 __func__, edev->config_addr, edev->phb->global_number); 335 return -EINVAL; 336 } 337 338 /* 339 * Search the PE has been existing or not according 340 * to the PE address. If that has been existing, the 341 * PE should be composed of PCI bus and its subordinate 342 * components. 343 */ 344 pe = eeh_pe_get(edev); 345 if (pe && !(pe->type & EEH_PE_INVALID)) { 346 /* Mark the PE as type of PCI bus */ 347 pe->type = EEH_PE_BUS; 348 edev->pe = pe; 349 350 /* Put the edev to PE */ 351 list_add_tail(&edev->list, &pe->edevs); 352 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n", 353 edev->phb->global_number, 354 edev->config_addr >> 8, 355 PCI_SLOT(edev->config_addr & 0xFF), 356 PCI_FUNC(edev->config_addr & 0xFF), 357 pe->addr); 358 return 0; 359 } else if (pe && (pe->type & EEH_PE_INVALID)) { 360 list_add_tail(&edev->list, &pe->edevs); 361 edev->pe = pe; 362 /* 363 * We're running to here because of PCI hotplug caused by 364 * EEH recovery. We need clear EEH_PE_INVALID until the top. 365 */ 366 parent = pe; 367 while (parent) { 368 if (!(parent->type & EEH_PE_INVALID)) 369 break; 370 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP); 371 parent = parent->parent; 372 } 373 374 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device " 375 "PE#%x, Parent PE#%x\n", 376 edev->phb->global_number, 377 edev->config_addr >> 8, 378 PCI_SLOT(edev->config_addr & 0xFF), 379 PCI_FUNC(edev->config_addr & 0xFF), 380 pe->addr, pe->parent->addr); 381 return 0; 382 } 383 384 /* Create a new EEH PE */ 385 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); 386 if (!pe) { 387 pr_err("%s: out of memory!\n", __func__); 388 return -ENOMEM; 389 } 390 pe->addr = edev->pe_config_addr; 391 pe->config_addr = edev->config_addr; 392 393 /* 394 * Put the new EEH PE into hierarchy tree. If the parent 395 * can't be found, the newly created PE will be attached 396 * to PHB directly. Otherwise, we have to associate the 397 * PE with its parent. 398 */ 399 parent = eeh_pe_get_parent(edev); 400 if (!parent) { 401 parent = eeh_phb_pe_get(edev->phb); 402 if (!parent) { 403 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 404 __func__, edev->phb->global_number); 405 edev->pe = NULL; 406 kfree(pe); 407 return -EEXIST; 408 } 409 } 410 pe->parent = parent; 411 412 /* 413 * Put the newly created PE into the child list and 414 * link the EEH device accordingly. 415 */ 416 list_add_tail(&pe->child, &parent->child_list); 417 list_add_tail(&edev->list, &pe->edevs); 418 edev->pe = pe; 419 pr_debug("EEH: Add %04x:%02x:%02x.%01x to " 420 "Device PE#%x, Parent PE#%x\n", 421 edev->phb->global_number, 422 edev->config_addr >> 8, 423 PCI_SLOT(edev->config_addr & 0xFF), 424 PCI_FUNC(edev->config_addr & 0xFF), 425 pe->addr, pe->parent->addr); 426 427 return 0; 428 } 429 430 /** 431 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE 432 * @edev: EEH device 433 * 434 * The PE hierarchy tree might be changed when doing PCI hotplug. 435 * Also, the PCI devices or buses could be removed from the system 436 * during EEH recovery. So we have to call the function remove the 437 * corresponding PE accordingly if necessary. 438 */ 439 int eeh_rmv_from_parent_pe(struct eeh_dev *edev) 440 { 441 struct eeh_pe *pe, *parent, *child; 442 int cnt; 443 444 if (!edev->pe) { 445 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n", 446 __func__, edev->phb->global_number, 447 edev->config_addr >> 8, 448 PCI_SLOT(edev->config_addr & 0xFF), 449 PCI_FUNC(edev->config_addr & 0xFF)); 450 return -EEXIST; 451 } 452 453 /* Remove the EEH device */ 454 pe = eeh_dev_to_pe(edev); 455 edev->pe = NULL; 456 list_del(&edev->list); 457 458 /* 459 * Check if the parent PE includes any EEH devices. 460 * If not, we should delete that. Also, we should 461 * delete the parent PE if it doesn't have associated 462 * child PEs and EEH devices. 463 */ 464 while (1) { 465 parent = pe->parent; 466 if (pe->type & EEH_PE_PHB) 467 break; 468 469 if (!(pe->state & EEH_PE_KEEP)) { 470 if (list_empty(&pe->edevs) && 471 list_empty(&pe->child_list)) { 472 list_del(&pe->child); 473 kfree(pe); 474 } else { 475 break; 476 } 477 } else { 478 if (list_empty(&pe->edevs)) { 479 cnt = 0; 480 list_for_each_entry(child, &pe->child_list, child) { 481 if (!(child->type & EEH_PE_INVALID)) { 482 cnt++; 483 break; 484 } 485 } 486 487 if (!cnt) 488 pe->type |= EEH_PE_INVALID; 489 else 490 break; 491 } 492 } 493 494 pe = parent; 495 } 496 497 return 0; 498 } 499 500 /** 501 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 502 * @pe: EEH PE 503 * 504 * We have time stamp for each PE to trace its time of getting 505 * frozen in last hour. The function should be called to update 506 * the time stamp on first error of the specific PE. On the other 507 * handle, we needn't account for errors happened in last hour. 508 */ 509 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 510 { 511 struct timeval tstamp; 512 513 if (!pe) return; 514 515 if (pe->freeze_count <= 0) { 516 pe->freeze_count = 0; 517 do_gettimeofday(&pe->tstamp); 518 } else { 519 do_gettimeofday(&tstamp); 520 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) { 521 pe->tstamp = tstamp; 522 pe->freeze_count = 0; 523 } 524 } 525 } 526 527 /** 528 * __eeh_pe_state_mark - Mark the state for the PE 529 * @data: EEH PE 530 * @flag: state 531 * 532 * The function is used to mark the indicated state for the given 533 * PE. Also, the associated PCI devices will be put into IO frozen 534 * state as well. 535 */ 536 static void *__eeh_pe_state_mark(void *data, void *flag) 537 { 538 struct eeh_pe *pe = (struct eeh_pe *)data; 539 int state = *((int *)flag); 540 struct eeh_dev *edev, *tmp; 541 struct pci_dev *pdev; 542 543 /* Keep the state of permanently removed PE intact */ 544 if (pe->state & EEH_PE_REMOVED) 545 return NULL; 546 547 pe->state |= state; 548 549 /* Offline PCI devices if applicable */ 550 if (!(state & EEH_PE_ISOLATED)) 551 return NULL; 552 553 eeh_pe_for_each_dev(pe, edev, tmp) { 554 pdev = eeh_dev_to_pci_dev(edev); 555 if (pdev) 556 pdev->error_state = pci_channel_io_frozen; 557 } 558 559 /* Block PCI config access if required */ 560 if (pe->state & EEH_PE_CFG_RESTRICTED) 561 pe->state |= EEH_PE_CFG_BLOCKED; 562 563 return NULL; 564 } 565 566 /** 567 * eeh_pe_state_mark - Mark specified state for PE and its associated device 568 * @pe: EEH PE 569 * 570 * EEH error affects the current PE and its child PEs. The function 571 * is used to mark appropriate state for the affected PEs and the 572 * associated devices. 573 */ 574 void eeh_pe_state_mark(struct eeh_pe *pe, int state) 575 { 576 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 577 } 578 579 static void *__eeh_pe_dev_mode_mark(void *data, void *flag) 580 { 581 struct eeh_dev *edev = data; 582 int mode = *((int *)flag); 583 584 edev->mode |= mode; 585 586 return NULL; 587 } 588 589 /** 590 * eeh_pe_dev_state_mark - Mark state for all device under the PE 591 * @pe: EEH PE 592 * 593 * Mark specific state for all child devices of the PE. 594 */ 595 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 596 { 597 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 598 } 599 600 /** 601 * __eeh_pe_state_clear - Clear state for the PE 602 * @data: EEH PE 603 * @flag: state 604 * 605 * The function is used to clear the indicated state from the 606 * given PE. Besides, we also clear the check count of the PE 607 * as well. 608 */ 609 static void *__eeh_pe_state_clear(void *data, void *flag) 610 { 611 struct eeh_pe *pe = (struct eeh_pe *)data; 612 int state = *((int *)flag); 613 struct eeh_dev *edev, *tmp; 614 struct pci_dev *pdev; 615 616 /* Keep the state of permanently removed PE intact */ 617 if (pe->state & EEH_PE_REMOVED) 618 return NULL; 619 620 pe->state &= ~state; 621 622 /* 623 * Special treatment on clearing isolated state. Clear 624 * check count since last isolation and put all affected 625 * devices to normal state. 626 */ 627 if (!(state & EEH_PE_ISOLATED)) 628 return NULL; 629 630 pe->check_count = 0; 631 eeh_pe_for_each_dev(pe, edev, tmp) { 632 pdev = eeh_dev_to_pci_dev(edev); 633 if (!pdev) 634 continue; 635 636 pdev->error_state = pci_channel_io_normal; 637 } 638 639 /* Unblock PCI config access if required */ 640 if (pe->state & EEH_PE_CFG_RESTRICTED) 641 pe->state &= ~EEH_PE_CFG_BLOCKED; 642 643 return NULL; 644 } 645 646 /** 647 * eeh_pe_state_clear - Clear state for the PE and its children 648 * @pe: PE 649 * @state: state to be cleared 650 * 651 * When the PE and its children has been recovered from error, 652 * we need clear the error state for that. The function is used 653 * for the purpose. 654 */ 655 void eeh_pe_state_clear(struct eeh_pe *pe, int state) 656 { 657 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 658 } 659 660 /** 661 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space 662 * @pe: PE 663 * @state: PE state to be set 664 * 665 * Set specified flag to PE and its child PEs. The PCI config space 666 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set, 667 * which isn't needed in some situations. The function allows to set 668 * the specified flag to indicated PEs without blocking their PCI 669 * config space. 670 */ 671 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state) 672 { 673 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 674 if (!(state & EEH_PE_ISOLATED)) 675 return; 676 677 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */ 678 state = EEH_PE_CFG_BLOCKED; 679 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 680 } 681 682 /* 683 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 684 * buses assigned explicitly by firmware, and we probably have 685 * lost that after reset. So we have to delay the check until 686 * the PCI-CFG registers have been restored for the parent 687 * bridge. 688 * 689 * Don't use normal PCI-CFG accessors, which probably has been 690 * blocked on normal path during the stage. So we need utilize 691 * eeh operations, which is always permitted. 692 */ 693 static void eeh_bridge_check_link(struct eeh_dev *edev) 694 { 695 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 696 int cap; 697 uint32_t val; 698 int timeout = 0; 699 700 /* 701 * We only check root port and downstream ports of 702 * PCIe switches 703 */ 704 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 705 return; 706 707 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n", 708 __func__, edev->phb->global_number, 709 edev->config_addr >> 8, 710 PCI_SLOT(edev->config_addr & 0xFF), 711 PCI_FUNC(edev->config_addr & 0xFF)); 712 713 /* Check slot status */ 714 cap = edev->pcie_cap; 715 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val); 716 if (!(val & PCI_EXP_SLTSTA_PDS)) { 717 pr_debug(" No card in the slot (0x%04x) !\n", val); 718 return; 719 } 720 721 /* Check power status if we have the capability */ 722 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val); 723 if (val & PCI_EXP_SLTCAP_PCP) { 724 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val); 725 if (val & PCI_EXP_SLTCTL_PCC) { 726 pr_debug(" In power-off state, power it on ...\n"); 727 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 728 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 729 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val); 730 msleep(2 * 1000); 731 } 732 } 733 734 /* Enable link */ 735 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val); 736 val &= ~PCI_EXP_LNKCTL_LD; 737 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val); 738 739 /* Check link */ 740 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val); 741 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 742 pr_debug(" No link reporting capability (0x%08x) \n", val); 743 msleep(1000); 744 return; 745 } 746 747 /* Wait the link is up until timeout (5s) */ 748 timeout = 0; 749 while (timeout < 5000) { 750 msleep(20); 751 timeout += 20; 752 753 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val); 754 if (val & PCI_EXP_LNKSTA_DLLLA) 755 break; 756 } 757 758 if (val & PCI_EXP_LNKSTA_DLLLA) 759 pr_debug(" Link up (%s)\n", 760 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 761 else 762 pr_debug(" Link not ready (0x%04x)\n", val); 763 } 764 765 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 766 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 767 768 static void eeh_restore_bridge_bars(struct eeh_dev *edev) 769 { 770 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 771 int i; 772 773 /* 774 * Device BARs: 0x10 - 0x18 775 * Bus numbers and windows: 0x18 - 0x30 776 */ 777 for (i = 4; i < 13; i++) 778 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); 779 /* Rom: 0x38 */ 780 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]); 781 782 /* Cache line & Latency timer: 0xC 0xD */ 783 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, 784 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 785 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, 786 SAVED_BYTE(PCI_LATENCY_TIMER)); 787 /* Max latency, min grant, interrupt ping and line: 0x3C */ 788 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); 789 790 /* PCI Command: 0x4 */ 791 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]); 792 793 /* Check the PCIe link is ready */ 794 eeh_bridge_check_link(edev); 795 } 796 797 static void eeh_restore_device_bars(struct eeh_dev *edev) 798 { 799 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 800 int i; 801 u32 cmd; 802 803 for (i = 4; i < 10; i++) 804 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); 805 /* 12 == Expansion ROM Address */ 806 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]); 807 808 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, 809 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 810 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, 811 SAVED_BYTE(PCI_LATENCY_TIMER)); 812 813 /* max latency, min grant, interrupt pin and line */ 814 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); 815 816 /* 817 * Restore PERR & SERR bits, some devices require it, 818 * don't touch the other command bits 819 */ 820 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd); 821 if (edev->config_space[1] & PCI_COMMAND_PARITY) 822 cmd |= PCI_COMMAND_PARITY; 823 else 824 cmd &= ~PCI_COMMAND_PARITY; 825 if (edev->config_space[1] & PCI_COMMAND_SERR) 826 cmd |= PCI_COMMAND_SERR; 827 else 828 cmd &= ~PCI_COMMAND_SERR; 829 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd); 830 } 831 832 /** 833 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 834 * @data: EEH device 835 * @flag: Unused 836 * 837 * Loads the PCI configuration space base address registers, 838 * the expansion ROM base address, the latency timer, and etc. 839 * from the saved values in the device node. 840 */ 841 static void *eeh_restore_one_device_bars(void *data, void *flag) 842 { 843 struct eeh_dev *edev = (struct eeh_dev *)data; 844 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 845 846 /* Do special restore for bridges */ 847 if (edev->mode & EEH_DEV_BRIDGE) 848 eeh_restore_bridge_bars(edev); 849 else 850 eeh_restore_device_bars(edev); 851 852 if (eeh_ops->restore_config && pdn) 853 eeh_ops->restore_config(pdn); 854 855 return NULL; 856 } 857 858 /** 859 * eeh_pe_restore_bars - Restore the PCI config space info 860 * @pe: EEH PE 861 * 862 * This routine performs a recursive walk to the children 863 * of this device as well. 864 */ 865 void eeh_pe_restore_bars(struct eeh_pe *pe) 866 { 867 /* 868 * We needn't take the EEH lock since eeh_pe_dev_traverse() 869 * will take that. 870 */ 871 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 872 } 873 874 /** 875 * eeh_pe_loc_get - Retrieve location code binding to the given PE 876 * @pe: EEH PE 877 * 878 * Retrieve the location code of the given PE. If the primary PE bus 879 * is root bus, we will grab location code from PHB device tree node 880 * or root port. Otherwise, the upstream bridge's device tree node 881 * of the primary PE bus will be checked for the location code. 882 */ 883 const char *eeh_pe_loc_get(struct eeh_pe *pe) 884 { 885 struct pci_bus *bus = eeh_pe_bus_get(pe); 886 struct device_node *dn = pci_bus_to_OF_node(bus); 887 const char *loc = NULL; 888 889 if (!dn) 890 goto out; 891 892 /* PHB PE or root PE ? */ 893 if (pci_is_root_bus(bus)) { 894 loc = of_get_property(dn, "ibm,loc-code", NULL); 895 if (!loc) 896 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 897 if (loc) 898 goto out; 899 900 /* Check the root port */ 901 dn = dn->child; 902 if (!dn) 903 goto out; 904 } 905 906 loc = of_get_property(dn, "ibm,loc-code", NULL); 907 if (!loc) 908 loc = of_get_property(dn, "ibm,slot-location-code", NULL); 909 910 out: 911 return loc ? loc : "N/A"; 912 } 913 914 /** 915 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 916 * @pe: EEH PE 917 * 918 * Retrieve the PCI bus according to the given PE. Basically, 919 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 920 * primary PCI bus will be retrieved. The parent bus will be 921 * returned for BUS PE. However, we don't have associated PCI 922 * bus for DEVICE PE. 923 */ 924 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 925 { 926 struct pci_bus *bus = NULL; 927 struct eeh_dev *edev; 928 struct pci_dev *pdev; 929 930 if (pe->type & EEH_PE_PHB) { 931 bus = pe->phb->bus; 932 } else if (pe->type & EEH_PE_BUS || 933 pe->type & EEH_PE_DEVICE) { 934 if (pe->bus) { 935 bus = pe->bus; 936 goto out; 937 } 938 939 edev = list_first_entry(&pe->edevs, struct eeh_dev, list); 940 pdev = eeh_dev_to_pci_dev(edev); 941 if (pdev) 942 bus = pdev->bus; 943 } 944 945 out: 946 return bus; 947 } 948