xref: /openbmc/linux/arch/powerpc/kernel/eeh_pe.c (revision 8c0b9ee8)
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37 
38 /**
39  * eeh_set_pe_aux_size - Set PE auxillary data size
40  * @size: PE auxillary data size
41  *
42  * Set PE auxillary data size
43  */
44 void eeh_set_pe_aux_size(int size)
45 {
46 	if (size < 0)
47 		return;
48 
49 	eeh_pe_aux_size = size;
50 }
51 
52 /**
53  * eeh_pe_alloc - Allocate PE
54  * @phb: PCI controller
55  * @type: PE type
56  *
57  * Allocate PE instance dynamically.
58  */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 	struct eeh_pe *pe;
62 	size_t alloc_size;
63 
64 	alloc_size = sizeof(struct eeh_pe);
65 	if (eeh_pe_aux_size) {
66 		alloc_size = ALIGN(alloc_size, cache_line_size());
67 		alloc_size += eeh_pe_aux_size;
68 	}
69 
70 	/* Allocate PHB PE */
71 	pe = kzalloc(alloc_size, GFP_KERNEL);
72 	if (!pe) return NULL;
73 
74 	/* Initialize PHB PE */
75 	pe->type = type;
76 	pe->phb = phb;
77 	INIT_LIST_HEAD(&pe->child_list);
78 	INIT_LIST_HEAD(&pe->child);
79 	INIT_LIST_HEAD(&pe->edevs);
80 
81 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 				      cache_line_size());
83 	return pe;
84 }
85 
86 /**
87  * eeh_phb_pe_create - Create PHB PE
88  * @phb: PCI controller
89  *
90  * The function should be called while the PHB is detected during
91  * system boot or PCI hotplug in order to create PHB PE.
92  */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 	struct eeh_pe *pe;
96 
97 	/* Allocate PHB PE */
98 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 	if (!pe) {
100 		pr_err("%s: out of memory!\n", __func__);
101 		return -ENOMEM;
102 	}
103 
104 	/* Put it into the list */
105 	list_add_tail(&pe->child, &eeh_phb_pe);
106 
107 	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108 
109 	return 0;
110 }
111 
112 /**
113  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114  * @phb: PCI controller
115  *
116  * The overall PEs form hierarchy tree. The first layer of the
117  * hierarchy tree is composed of PHB PEs. The function is used
118  * to retrieve the corresponding PHB PE according to the given PHB.
119  */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 	struct eeh_pe *pe;
123 
124 	list_for_each_entry(pe, &eeh_phb_pe, child) {
125 		/*
126 		 * Actually, we needn't check the type since
127 		 * the PE for PHB has been determined when that
128 		 * was created.
129 		 */
130 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 			return pe;
132 	}
133 
134 	return NULL;
135 }
136 
137 /**
138  * eeh_pe_next - Retrieve the next PE in the tree
139  * @pe: current PE
140  * @root: root PE
141  *
142  * The function is used to retrieve the next PE in the
143  * hierarchy PE tree.
144  */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 				  struct eeh_pe *root)
147 {
148 	struct list_head *next = pe->child_list.next;
149 
150 	if (next == &pe->child_list) {
151 		while (1) {
152 			if (pe == root)
153 				return NULL;
154 			next = pe->child.next;
155 			if (next != &pe->parent->child_list)
156 				break;
157 			pe = pe->parent;
158 		}
159 	}
160 
161 	return list_entry(next, struct eeh_pe, child);
162 }
163 
164 /**
165  * eeh_pe_traverse - Traverse PEs in the specified PHB
166  * @root: root PE
167  * @fn: callback
168  * @flag: extra parameter to callback
169  *
170  * The function is used to traverse the specified PE and its
171  * child PEs. The traversing is to be terminated once the
172  * callback returns something other than NULL, or no more PEs
173  * to be traversed.
174  */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 		      eeh_traverse_func fn, void *flag)
177 {
178 	struct eeh_pe *pe;
179 	void *ret;
180 
181 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 		ret = fn(pe, flag);
183 		if (ret) return ret;
184 	}
185 
186 	return NULL;
187 }
188 
189 /**
190  * eeh_pe_dev_traverse - Traverse the devices from the PE
191  * @root: EEH PE
192  * @fn: function callback
193  * @flag: extra parameter to callback
194  *
195  * The function is used to traverse the devices of the specified
196  * PE and its child PEs.
197  */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 		eeh_traverse_func fn, void *flag)
200 {
201 	struct eeh_pe *pe;
202 	struct eeh_dev *edev, *tmp;
203 	void *ret;
204 
205 	if (!root) {
206 		pr_warn("%s: Invalid PE %p\n",
207 			__func__, root);
208 		return NULL;
209 	}
210 
211 	/* Traverse root PE */
212 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 		eeh_pe_for_each_dev(pe, edev, tmp) {
214 			ret = fn(edev, flag);
215 			if (ret)
216 				return ret;
217 		}
218 	}
219 
220 	return NULL;
221 }
222 
223 /**
224  * __eeh_pe_get - Check the PE address
225  * @data: EEH PE
226  * @flag: EEH device
227  *
228  * For one particular PE, it can be identified by PE address
229  * or tranditional BDF address. BDF address is composed of
230  * Bus/Device/Function number. The extra data referred by flag
231  * indicates which type of address should be used.
232  */
233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 	struct eeh_pe *pe = (struct eeh_pe *)data;
236 	struct eeh_dev *edev = (struct eeh_dev *)flag;
237 
238 	/* Unexpected PHB PE */
239 	if (pe->type & EEH_PE_PHB)
240 		return NULL;
241 
242 	/*
243 	 * We prefer PE address. For most cases, we should
244 	 * have non-zero PE address
245 	 */
246 	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247 		if (edev->pe_config_addr == pe->addr)
248 			return pe;
249 	} else {
250 		if (edev->pe_config_addr &&
251 		    (edev->pe_config_addr == pe->addr))
252 		return pe;
253 	}
254 
255 	/* Try BDF address */
256 	if (edev->config_addr &&
257 	   (edev->config_addr == pe->config_addr))
258 		return pe;
259 
260 	return NULL;
261 }
262 
263 /**
264  * eeh_pe_get - Search PE based on the given address
265  * @edev: EEH device
266  *
267  * Search the corresponding PE based on the specified address which
268  * is included in the eeh device. The function is used to check if
269  * the associated PE has been created against the PE address. It's
270  * notable that the PE address has 2 format: traditional PE address
271  * which is composed of PCI bus/device/function number, or unified
272  * PE address.
273  */
274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275 {
276 	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277 	struct eeh_pe *pe;
278 
279 	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280 
281 	return pe;
282 }
283 
284 /**
285  * eeh_pe_get_parent - Retrieve the parent PE
286  * @edev: EEH device
287  *
288  * The whole PEs existing in the system are organized as hierarchy
289  * tree. The function is used to retrieve the parent PE according
290  * to the parent EEH device.
291  */
292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293 {
294 	struct device_node *dn;
295 	struct eeh_dev *parent;
296 
297 	/*
298 	 * It might have the case for the indirect parent
299 	 * EEH device already having associated PE, but
300 	 * the direct parent EEH device doesn't have yet.
301 	 */
302 	dn = edev->dn->parent;
303 	while (dn) {
304 		/* We're poking out of PCI territory */
305 		if (!PCI_DN(dn)) return NULL;
306 
307 		parent = of_node_to_eeh_dev(dn);
308 		/* We're poking out of PCI territory */
309 		if (!parent) return NULL;
310 
311 		if (parent->pe)
312 			return parent->pe;
313 
314 		dn = dn->parent;
315 	}
316 
317 	return NULL;
318 }
319 
320 /**
321  * eeh_add_to_parent_pe - Add EEH device to parent PE
322  * @edev: EEH device
323  *
324  * Add EEH device to the parent PE. If the parent PE already
325  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
326  * we have to create new PE to hold the EEH device and the new
327  * PE will be linked to its parent PE as well.
328  */
329 int eeh_add_to_parent_pe(struct eeh_dev *edev)
330 {
331 	struct eeh_pe *pe, *parent;
332 
333 	/*
334 	 * Search the PE has been existing or not according
335 	 * to the PE address. If that has been existing, the
336 	 * PE should be composed of PCI bus and its subordinate
337 	 * components.
338 	 */
339 	pe = eeh_pe_get(edev);
340 	if (pe && !(pe->type & EEH_PE_INVALID)) {
341 		if (!edev->pe_config_addr) {
342 			pr_err("%s: PE with addr 0x%x already exists\n",
343 				__func__, edev->config_addr);
344 			return -EEXIST;
345 		}
346 
347 		/* Mark the PE as type of PCI bus */
348 		pe->type = EEH_PE_BUS;
349 		edev->pe = pe;
350 
351 		/* Put the edev to PE */
352 		list_add_tail(&edev->list, &pe->edevs);
353 		pr_debug("EEH: Add %s to Bus PE#%x\n",
354 			edev->dn->full_name, pe->addr);
355 
356 		return 0;
357 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
358 		list_add_tail(&edev->list, &pe->edevs);
359 		edev->pe = pe;
360 		/*
361 		 * We're running to here because of PCI hotplug caused by
362 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
363 		 */
364 		parent = pe;
365 		while (parent) {
366 			if (!(parent->type & EEH_PE_INVALID))
367 				break;
368 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
369 			parent = parent->parent;
370 		}
371 		pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
372 			edev->dn->full_name, pe->addr, pe->parent->addr);
373 
374 		return 0;
375 	}
376 
377 	/* Create a new EEH PE */
378 	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
379 	if (!pe) {
380 		pr_err("%s: out of memory!\n", __func__);
381 		return -ENOMEM;
382 	}
383 	pe->addr	= edev->pe_config_addr;
384 	pe->config_addr	= edev->config_addr;
385 
386 	/*
387 	 * Put the new EEH PE into hierarchy tree. If the parent
388 	 * can't be found, the newly created PE will be attached
389 	 * to PHB directly. Otherwise, we have to associate the
390 	 * PE with its parent.
391 	 */
392 	parent = eeh_pe_get_parent(edev);
393 	if (!parent) {
394 		parent = eeh_phb_pe_get(edev->phb);
395 		if (!parent) {
396 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
397 				__func__, edev->phb->global_number);
398 			edev->pe = NULL;
399 			kfree(pe);
400 			return -EEXIST;
401 		}
402 	}
403 	pe->parent = parent;
404 
405 	/*
406 	 * Put the newly created PE into the child list and
407 	 * link the EEH device accordingly.
408 	 */
409 	list_add_tail(&pe->child, &parent->child_list);
410 	list_add_tail(&edev->list, &pe->edevs);
411 	edev->pe = pe;
412 	pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
413 		edev->dn->full_name, pe->addr, pe->parent->addr);
414 
415 	return 0;
416 }
417 
418 /**
419  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
420  * @edev: EEH device
421  *
422  * The PE hierarchy tree might be changed when doing PCI hotplug.
423  * Also, the PCI devices or buses could be removed from the system
424  * during EEH recovery. So we have to call the function remove the
425  * corresponding PE accordingly if necessary.
426  */
427 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
428 {
429 	struct eeh_pe *pe, *parent, *child;
430 	int cnt;
431 
432 	if (!edev->pe) {
433 		pr_debug("%s: No PE found for EEH device %s\n",
434 			 __func__, edev->dn->full_name);
435 		return -EEXIST;
436 	}
437 
438 	/* Remove the EEH device */
439 	pe = eeh_dev_to_pe(edev);
440 	edev->pe = NULL;
441 	list_del(&edev->list);
442 
443 	/*
444 	 * Check if the parent PE includes any EEH devices.
445 	 * If not, we should delete that. Also, we should
446 	 * delete the parent PE if it doesn't have associated
447 	 * child PEs and EEH devices.
448 	 */
449 	while (1) {
450 		parent = pe->parent;
451 		if (pe->type & EEH_PE_PHB)
452 			break;
453 
454 		if (!(pe->state & EEH_PE_KEEP)) {
455 			if (list_empty(&pe->edevs) &&
456 			    list_empty(&pe->child_list)) {
457 				list_del(&pe->child);
458 				kfree(pe);
459 			} else {
460 				break;
461 			}
462 		} else {
463 			if (list_empty(&pe->edevs)) {
464 				cnt = 0;
465 				list_for_each_entry(child, &pe->child_list, child) {
466 					if (!(child->type & EEH_PE_INVALID)) {
467 						cnt++;
468 						break;
469 					}
470 				}
471 
472 				if (!cnt)
473 					pe->type |= EEH_PE_INVALID;
474 				else
475 					break;
476 			}
477 		}
478 
479 		pe = parent;
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
487  * @pe: EEH PE
488  *
489  * We have time stamp for each PE to trace its time of getting
490  * frozen in last hour. The function should be called to update
491  * the time stamp on first error of the specific PE. On the other
492  * handle, we needn't account for errors happened in last hour.
493  */
494 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
495 {
496 	struct timeval tstamp;
497 
498 	if (!pe) return;
499 
500 	if (pe->freeze_count <= 0) {
501 		pe->freeze_count = 0;
502 		do_gettimeofday(&pe->tstamp);
503 	} else {
504 		do_gettimeofday(&tstamp);
505 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
506 			pe->tstamp = tstamp;
507 			pe->freeze_count = 0;
508 		}
509 	}
510 }
511 
512 /**
513  * __eeh_pe_state_mark - Mark the state for the PE
514  * @data: EEH PE
515  * @flag: state
516  *
517  * The function is used to mark the indicated state for the given
518  * PE. Also, the associated PCI devices will be put into IO frozen
519  * state as well.
520  */
521 static void *__eeh_pe_state_mark(void *data, void *flag)
522 {
523 	struct eeh_pe *pe = (struct eeh_pe *)data;
524 	int state = *((int *)flag);
525 	struct eeh_dev *edev, *tmp;
526 	struct pci_dev *pdev;
527 
528 	/* Keep the state of permanently removed PE intact */
529 	if (pe->state & EEH_PE_REMOVED)
530 		return NULL;
531 
532 	pe->state |= state;
533 
534 	/* Offline PCI devices if applicable */
535 	if (!(state & EEH_PE_ISOLATED))
536 		return NULL;
537 
538 	eeh_pe_for_each_dev(pe, edev, tmp) {
539 		pdev = eeh_dev_to_pci_dev(edev);
540 		if (pdev)
541 			pdev->error_state = pci_channel_io_frozen;
542 	}
543 
544 	/* Block PCI config access if required */
545 	if (pe->state & EEH_PE_CFG_RESTRICTED)
546 		pe->state |= EEH_PE_CFG_BLOCKED;
547 
548 	return NULL;
549 }
550 
551 /**
552  * eeh_pe_state_mark - Mark specified state for PE and its associated device
553  * @pe: EEH PE
554  *
555  * EEH error affects the current PE and its child PEs. The function
556  * is used to mark appropriate state for the affected PEs and the
557  * associated devices.
558  */
559 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
560 {
561 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
562 }
563 
564 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
565 {
566 	struct eeh_dev *edev = data;
567 	int mode = *((int *)flag);
568 
569 	edev->mode |= mode;
570 
571 	return NULL;
572 }
573 
574 /**
575  * eeh_pe_dev_state_mark - Mark state for all device under the PE
576  * @pe: EEH PE
577  *
578  * Mark specific state for all child devices of the PE.
579  */
580 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
581 {
582 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
583 }
584 
585 /**
586  * __eeh_pe_state_clear - Clear state for the PE
587  * @data: EEH PE
588  * @flag: state
589  *
590  * The function is used to clear the indicated state from the
591  * given PE. Besides, we also clear the check count of the PE
592  * as well.
593  */
594 static void *__eeh_pe_state_clear(void *data, void *flag)
595 {
596 	struct eeh_pe *pe = (struct eeh_pe *)data;
597 	int state = *((int *)flag);
598 	struct eeh_dev *edev, *tmp;
599 	struct pci_dev *pdev;
600 
601 	/* Keep the state of permanently removed PE intact */
602 	if (pe->state & EEH_PE_REMOVED)
603 		return NULL;
604 
605 	pe->state &= ~state;
606 
607 	/*
608 	 * Special treatment on clearing isolated state. Clear
609 	 * check count since last isolation and put all affected
610 	 * devices to normal state.
611 	 */
612 	if (!(state & EEH_PE_ISOLATED))
613 		return NULL;
614 
615 	pe->check_count = 0;
616 	eeh_pe_for_each_dev(pe, edev, tmp) {
617 		pdev = eeh_dev_to_pci_dev(edev);
618 		if (!pdev)
619 			continue;
620 
621 		pdev->error_state = pci_channel_io_normal;
622 	}
623 
624 	/* Unblock PCI config access if required */
625 	if (pe->state & EEH_PE_CFG_RESTRICTED)
626 		pe->state &= ~EEH_PE_CFG_BLOCKED;
627 
628 	return NULL;
629 }
630 
631 /**
632  * eeh_pe_state_clear - Clear state for the PE and its children
633  * @pe: PE
634  * @state: state to be cleared
635  *
636  * When the PE and its children has been recovered from error,
637  * we need clear the error state for that. The function is used
638  * for the purpose.
639  */
640 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
641 {
642 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
643 }
644 
645 /*
646  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
647  * buses assigned explicitly by firmware, and we probably have
648  * lost that after reset. So we have to delay the check until
649  * the PCI-CFG registers have been restored for the parent
650  * bridge.
651  *
652  * Don't use normal PCI-CFG accessors, which probably has been
653  * blocked on normal path during the stage. So we need utilize
654  * eeh operations, which is always permitted.
655  */
656 static void eeh_bridge_check_link(struct eeh_dev *edev,
657 				  struct device_node *dn)
658 {
659 	int cap;
660 	uint32_t val;
661 	int timeout = 0;
662 
663 	/*
664 	 * We only check root port and downstream ports of
665 	 * PCIe switches
666 	 */
667 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
668 		return;
669 
670 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
671 		 __func__, edev->phb->global_number,
672 		 edev->config_addr >> 8,
673 		 PCI_SLOT(edev->config_addr & 0xFF),
674 		 PCI_FUNC(edev->config_addr & 0xFF));
675 
676 	/* Check slot status */
677 	cap = edev->pcie_cap;
678 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
679 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
680 		pr_debug("  No card in the slot (0x%04x) !\n", val);
681 		return;
682 	}
683 
684 	/* Check power status if we have the capability */
685 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
686 	if (val & PCI_EXP_SLTCAP_PCP) {
687 		eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
688 		if (val & PCI_EXP_SLTCTL_PCC) {
689 			pr_debug("  In power-off state, power it on ...\n");
690 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
691 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
692 			eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
693 			msleep(2 * 1000);
694 		}
695 	}
696 
697 	/* Enable link */
698 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
699 	val &= ~PCI_EXP_LNKCTL_LD;
700 	eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
701 
702 	/* Check link */
703 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
704 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
705 		pr_debug("  No link reporting capability (0x%08x) \n", val);
706 		msleep(1000);
707 		return;
708 	}
709 
710 	/* Wait the link is up until timeout (5s) */
711 	timeout = 0;
712 	while (timeout < 5000) {
713 		msleep(20);
714 		timeout += 20;
715 
716 		eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
717 		if (val & PCI_EXP_LNKSTA_DLLLA)
718 			break;
719 	}
720 
721 	if (val & PCI_EXP_LNKSTA_DLLLA)
722 		pr_debug("  Link up (%s)\n",
723 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
724 	else
725 		pr_debug("  Link not ready (0x%04x)\n", val);
726 }
727 
728 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
729 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
730 
731 static void eeh_restore_bridge_bars(struct eeh_dev *edev,
732 				    struct device_node *dn)
733 {
734 	int i;
735 
736 	/*
737 	 * Device BARs: 0x10 - 0x18
738 	 * Bus numbers and windows: 0x18 - 0x30
739 	 */
740 	for (i = 4; i < 13; i++)
741 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
742 	/* Rom: 0x38 */
743 	eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
744 
745 	/* Cache line & Latency timer: 0xC 0xD */
746 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
747                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
748         eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
749                 SAVED_BYTE(PCI_LATENCY_TIMER));
750 	/* Max latency, min grant, interrupt ping and line: 0x3C */
751 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
752 
753 	/* PCI Command: 0x4 */
754 	eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
755 
756 	/* Check the PCIe link is ready */
757 	eeh_bridge_check_link(edev, dn);
758 }
759 
760 static void eeh_restore_device_bars(struct eeh_dev *edev,
761 				    struct device_node *dn)
762 {
763 	int i;
764 	u32 cmd;
765 
766 	for (i = 4; i < 10; i++)
767 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
768 	/* 12 == Expansion ROM Address */
769 	eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
770 
771 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
772 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
773 	eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
774 		SAVED_BYTE(PCI_LATENCY_TIMER));
775 
776 	/* max latency, min grant, interrupt pin and line */
777 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
778 
779 	/*
780 	 * Restore PERR & SERR bits, some devices require it,
781 	 * don't touch the other command bits
782 	 */
783 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
784 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
785 		cmd |= PCI_COMMAND_PARITY;
786 	else
787 		cmd &= ~PCI_COMMAND_PARITY;
788 	if (edev->config_space[1] & PCI_COMMAND_SERR)
789 		cmd |= PCI_COMMAND_SERR;
790 	else
791 		cmd &= ~PCI_COMMAND_SERR;
792 	eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
793 }
794 
795 /**
796  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
797  * @data: EEH device
798  * @flag: Unused
799  *
800  * Loads the PCI configuration space base address registers,
801  * the expansion ROM base address, the latency timer, and etc.
802  * from the saved values in the device node.
803  */
804 static void *eeh_restore_one_device_bars(void *data, void *flag)
805 {
806 	struct eeh_dev *edev = (struct eeh_dev *)data;
807 	struct device_node *dn = eeh_dev_to_of_node(edev);
808 
809 	/* Do special restore for bridges */
810 	if (edev->mode & EEH_DEV_BRIDGE)
811 		eeh_restore_bridge_bars(edev, dn);
812 	else
813 		eeh_restore_device_bars(edev, dn);
814 
815 	if (eeh_ops->restore_config)
816 		eeh_ops->restore_config(dn);
817 
818 	return NULL;
819 }
820 
821 /**
822  * eeh_pe_restore_bars - Restore the PCI config space info
823  * @pe: EEH PE
824  *
825  * This routine performs a recursive walk to the children
826  * of this device as well.
827  */
828 void eeh_pe_restore_bars(struct eeh_pe *pe)
829 {
830 	/*
831 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
832 	 * will take that.
833 	 */
834 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
835 }
836 
837 /**
838  * eeh_pe_loc_get - Retrieve location code binding to the given PE
839  * @pe: EEH PE
840  *
841  * Retrieve the location code of the given PE. If the primary PE bus
842  * is root bus, we will grab location code from PHB device tree node
843  * or root port. Otherwise, the upstream bridge's device tree node
844  * of the primary PE bus will be checked for the location code.
845  */
846 const char *eeh_pe_loc_get(struct eeh_pe *pe)
847 {
848 	struct pci_bus *bus = eeh_pe_bus_get(pe);
849 	struct device_node *dn = pci_bus_to_OF_node(bus);
850 	const char *loc = NULL;
851 
852 	if (!dn)
853 		goto out;
854 
855 	/* PHB PE or root PE ? */
856 	if (pci_is_root_bus(bus)) {
857 		loc = of_get_property(dn, "ibm,loc-code", NULL);
858 		if (!loc)
859 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
860 		if (loc)
861 			goto out;
862 
863 		/* Check the root port */
864 		dn = dn->child;
865 		if (!dn)
866 			goto out;
867 	}
868 
869 	loc = of_get_property(dn, "ibm,loc-code", NULL);
870 	if (!loc)
871 		loc = of_get_property(dn, "ibm,slot-location-code", NULL);
872 
873 out:
874 	return loc ? loc : "N/A";
875 }
876 
877 /**
878  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
879  * @pe: EEH PE
880  *
881  * Retrieve the PCI bus according to the given PE. Basically,
882  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
883  * primary PCI bus will be retrieved. The parent bus will be
884  * returned for BUS PE. However, we don't have associated PCI
885  * bus for DEVICE PE.
886  */
887 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
888 {
889 	struct pci_bus *bus = NULL;
890 	struct eeh_dev *edev;
891 	struct pci_dev *pdev;
892 
893 	if (pe->type & EEH_PE_PHB) {
894 		bus = pe->phb->bus;
895 	} else if (pe->type & EEH_PE_BUS ||
896 		   pe->type & EEH_PE_DEVICE) {
897 		if (pe->bus) {
898 			bus = pe->bus;
899 			goto out;
900 		}
901 
902 		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
903 		pdev = eeh_dev_to_pci_dev(edev);
904 		if (pdev)
905 			bus = pdev->bus;
906 	}
907 
908 out:
909 	return bus;
910 }
911