1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * The file intends to implement PE based on the information from 4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 5 * All the PEs should be organized as hierarchy tree. The first level 6 * of the tree will be associated to existing PHBs since the particular 7 * PE is only meaningful in one PHB domain. 8 * 9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 10 */ 11 12 #include <linux/delay.h> 13 #include <linux/export.h> 14 #include <linux/gfp.h> 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/string.h> 18 19 #include <asm/pci-bridge.h> 20 #include <asm/ppc-pci.h> 21 22 static int eeh_pe_aux_size = 0; 23 static LIST_HEAD(eeh_phb_pe); 24 25 /** 26 * eeh_set_pe_aux_size - Set PE auxillary data size 27 * @size: PE auxillary data size 28 * 29 * Set PE auxillary data size 30 */ 31 void eeh_set_pe_aux_size(int size) 32 { 33 if (size < 0) 34 return; 35 36 eeh_pe_aux_size = size; 37 } 38 39 /** 40 * eeh_pe_alloc - Allocate PE 41 * @phb: PCI controller 42 * @type: PE type 43 * 44 * Allocate PE instance dynamically. 45 */ 46 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 47 { 48 struct eeh_pe *pe; 49 size_t alloc_size; 50 51 alloc_size = sizeof(struct eeh_pe); 52 if (eeh_pe_aux_size) { 53 alloc_size = ALIGN(alloc_size, cache_line_size()); 54 alloc_size += eeh_pe_aux_size; 55 } 56 57 /* Allocate PHB PE */ 58 pe = kzalloc(alloc_size, GFP_KERNEL); 59 if (!pe) return NULL; 60 61 /* Initialize PHB PE */ 62 pe->type = type; 63 pe->phb = phb; 64 INIT_LIST_HEAD(&pe->child_list); 65 INIT_LIST_HEAD(&pe->edevs); 66 67 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 68 cache_line_size()); 69 return pe; 70 } 71 72 /** 73 * eeh_phb_pe_create - Create PHB PE 74 * @phb: PCI controller 75 * 76 * The function should be called while the PHB is detected during 77 * system boot or PCI hotplug in order to create PHB PE. 78 */ 79 int eeh_phb_pe_create(struct pci_controller *phb) 80 { 81 struct eeh_pe *pe; 82 83 /* Allocate PHB PE */ 84 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 85 if (!pe) { 86 pr_err("%s: out of memory!\n", __func__); 87 return -ENOMEM; 88 } 89 90 /* Put it into the list */ 91 list_add_tail(&pe->child, &eeh_phb_pe); 92 93 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); 94 95 return 0; 96 } 97 98 /** 99 * eeh_wait_state - Wait for PE state 100 * @pe: EEH PE 101 * @max_wait: maximal period in millisecond 102 * 103 * Wait for the state of associated PE. It might take some time 104 * to retrieve the PE's state. 105 */ 106 int eeh_wait_state(struct eeh_pe *pe, int max_wait) 107 { 108 int ret; 109 int mwait; 110 111 /* 112 * According to PAPR, the state of PE might be temporarily 113 * unavailable. Under the circumstance, we have to wait 114 * for indicated time determined by firmware. The maximal 115 * wait time is 5 minutes, which is acquired from the original 116 * EEH implementation. Also, the original implementation 117 * also defined the minimal wait time as 1 second. 118 */ 119 #define EEH_STATE_MIN_WAIT_TIME (1000) 120 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) 121 122 while (1) { 123 ret = eeh_ops->get_state(pe, &mwait); 124 125 if (ret != EEH_STATE_UNAVAILABLE) 126 return ret; 127 128 if (max_wait <= 0) { 129 pr_warn("%s: Timeout when getting PE's state (%d)\n", 130 __func__, max_wait); 131 return EEH_STATE_NOT_SUPPORT; 132 } 133 134 if (mwait < EEH_STATE_MIN_WAIT_TIME) { 135 pr_warn("%s: Firmware returned bad wait value %d\n", 136 __func__, mwait); 137 mwait = EEH_STATE_MIN_WAIT_TIME; 138 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { 139 pr_warn("%s: Firmware returned too long wait value %d\n", 140 __func__, mwait); 141 mwait = EEH_STATE_MAX_WAIT_TIME; 142 } 143 144 msleep(min(mwait, max_wait)); 145 max_wait -= mwait; 146 } 147 } 148 149 /** 150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 151 * @phb: PCI controller 152 * 153 * The overall PEs form hierarchy tree. The first layer of the 154 * hierarchy tree is composed of PHB PEs. The function is used 155 * to retrieve the corresponding PHB PE according to the given PHB. 156 */ 157 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 158 { 159 struct eeh_pe *pe; 160 161 list_for_each_entry(pe, &eeh_phb_pe, child) { 162 /* 163 * Actually, we needn't check the type since 164 * the PE for PHB has been determined when that 165 * was created. 166 */ 167 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 168 return pe; 169 } 170 171 return NULL; 172 } 173 174 /** 175 * eeh_pe_next - Retrieve the next PE in the tree 176 * @pe: current PE 177 * @root: root PE 178 * 179 * The function is used to retrieve the next PE in the 180 * hierarchy PE tree. 181 */ 182 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) 183 { 184 struct list_head *next = pe->child_list.next; 185 186 if (next == &pe->child_list) { 187 while (1) { 188 if (pe == root) 189 return NULL; 190 next = pe->child.next; 191 if (next != &pe->parent->child_list) 192 break; 193 pe = pe->parent; 194 } 195 } 196 197 return list_entry(next, struct eeh_pe, child); 198 } 199 200 /** 201 * eeh_pe_traverse - Traverse PEs in the specified PHB 202 * @root: root PE 203 * @fn: callback 204 * @flag: extra parameter to callback 205 * 206 * The function is used to traverse the specified PE and its 207 * child PEs. The traversing is to be terminated once the 208 * callback returns something other than NULL, or no more PEs 209 * to be traversed. 210 */ 211 void *eeh_pe_traverse(struct eeh_pe *root, 212 eeh_pe_traverse_func fn, void *flag) 213 { 214 struct eeh_pe *pe; 215 void *ret; 216 217 eeh_for_each_pe(root, pe) { 218 ret = fn(pe, flag); 219 if (ret) return ret; 220 } 221 222 return NULL; 223 } 224 225 /** 226 * eeh_pe_dev_traverse - Traverse the devices from the PE 227 * @root: EEH PE 228 * @fn: function callback 229 * @flag: extra parameter to callback 230 * 231 * The function is used to traverse the devices of the specified 232 * PE and its child PEs. 233 */ 234 void eeh_pe_dev_traverse(struct eeh_pe *root, 235 eeh_edev_traverse_func fn, void *flag) 236 { 237 struct eeh_pe *pe; 238 struct eeh_dev *edev, *tmp; 239 240 if (!root) { 241 pr_warn("%s: Invalid PE %p\n", 242 __func__, root); 243 return; 244 } 245 246 /* Traverse root PE */ 247 eeh_for_each_pe(root, pe) 248 eeh_pe_for_each_dev(pe, edev, tmp) 249 fn(edev, flag); 250 } 251 252 /** 253 * __eeh_pe_get - Check the PE address 254 * @data: EEH PE 255 * @flag: EEH device 256 * 257 * For one particular PE, it can be identified by PE address 258 * or tranditional BDF address. BDF address is composed of 259 * Bus/Device/Function number. The extra data referred by flag 260 * indicates which type of address should be used. 261 */ 262 struct eeh_pe_get_flag { 263 int pe_no; 264 int config_addr; 265 }; 266 267 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) 268 { 269 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag; 270 271 /* Unexpected PHB PE */ 272 if (pe->type & EEH_PE_PHB) 273 return NULL; 274 275 /* 276 * We prefer PE address. For most cases, we should 277 * have non-zero PE address 278 */ 279 if (eeh_has_flag(EEH_VALID_PE_ZERO)) { 280 if (tmp->pe_no == pe->addr) 281 return pe; 282 } else { 283 if (tmp->pe_no && 284 (tmp->pe_no == pe->addr)) 285 return pe; 286 } 287 288 /* Try BDF address */ 289 if (tmp->config_addr && 290 (tmp->config_addr == pe->config_addr)) 291 return pe; 292 293 return NULL; 294 } 295 296 /** 297 * eeh_pe_get - Search PE based on the given address 298 * @phb: PCI controller 299 * @pe_no: PE number 300 * @config_addr: Config address 301 * 302 * Search the corresponding PE based on the specified address which 303 * is included in the eeh device. The function is used to check if 304 * the associated PE has been created against the PE address. It's 305 * notable that the PE address has 2 format: traditional PE address 306 * which is composed of PCI bus/device/function number, or unified 307 * PE address. 308 */ 309 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, 310 int pe_no, int config_addr) 311 { 312 struct eeh_pe *root = eeh_phb_pe_get(phb); 313 struct eeh_pe_get_flag tmp = { pe_no, config_addr }; 314 struct eeh_pe *pe; 315 316 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp); 317 318 return pe; 319 } 320 321 /** 322 * eeh_pe_tree_insert - Add EEH device to parent PE 323 * @edev: EEH device 324 * @new_pe_parent: PE to create additional PEs under 325 * 326 * Add EEH device to the PE in edev->pe_config_addr. If a PE already 327 * exists with that address then @edev is added to that PE. Otherwise 328 * a new PE is created and inserted into the PE tree as a child of 329 * @new_pe_parent. 330 * 331 * If @new_pe_parent is NULL then the new PE will be inserted under 332 * directly under the the PHB. 333 */ 334 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent) 335 { 336 struct pci_controller *hose = edev->controller; 337 struct eeh_pe *pe, *parent; 338 339 /* Check if the PE number is valid */ 340 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) { 341 eeh_edev_err(edev, "PE#0 is invalid for this PHB!\n"); 342 return -EINVAL; 343 } 344 345 /* 346 * Search the PE has been existing or not according 347 * to the PE address. If that has been existing, the 348 * PE should be composed of PCI bus and its subordinate 349 * components. 350 */ 351 pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn); 352 if (pe) { 353 if (pe->type & EEH_PE_INVALID) { 354 list_add_tail(&edev->entry, &pe->edevs); 355 edev->pe = pe; 356 /* 357 * We're running to here because of PCI hotplug caused by 358 * EEH recovery. We need clear EEH_PE_INVALID until the top. 359 */ 360 parent = pe; 361 while (parent) { 362 if (!(parent->type & EEH_PE_INVALID)) 363 break; 364 parent->type &= ~EEH_PE_INVALID; 365 parent = parent->parent; 366 } 367 368 eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n", 369 pe->parent->addr); 370 } else { 371 /* Mark the PE as type of PCI bus */ 372 pe->type = EEH_PE_BUS; 373 edev->pe = pe; 374 375 /* Put the edev to PE */ 376 list_add_tail(&edev->entry, &pe->edevs); 377 eeh_edev_dbg(edev, "Added to bus PE\n"); 378 } 379 return 0; 380 } 381 382 /* Create a new EEH PE */ 383 if (edev->physfn) 384 pe = eeh_pe_alloc(hose, EEH_PE_VF); 385 else 386 pe = eeh_pe_alloc(hose, EEH_PE_DEVICE); 387 if (!pe) { 388 pr_err("%s: out of memory!\n", __func__); 389 return -ENOMEM; 390 } 391 pe->addr = edev->pe_config_addr; 392 pe->config_addr = edev->bdfn; 393 394 /* 395 * Put the new EEH PE into hierarchy tree. If the parent 396 * can't be found, the newly created PE will be attached 397 * to PHB directly. Otherwise, we have to associate the 398 * PE with its parent. 399 */ 400 if (!new_pe_parent) { 401 new_pe_parent = eeh_phb_pe_get(hose); 402 if (!new_pe_parent) { 403 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 404 __func__, hose->global_number); 405 edev->pe = NULL; 406 kfree(pe); 407 return -EEXIST; 408 } 409 } 410 411 /* link new PE into the tree */ 412 pe->parent = new_pe_parent; 413 list_add_tail(&pe->child, &new_pe_parent->child_list); 414 415 /* 416 * Put the newly created PE into the child list and 417 * link the EEH device accordingly. 418 */ 419 list_add_tail(&edev->entry, &pe->edevs); 420 edev->pe = pe; 421 eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n", 422 new_pe_parent->addr); 423 424 return 0; 425 } 426 427 /** 428 * eeh_pe_tree_remove - Remove one EEH device from the associated PE 429 * @edev: EEH device 430 * 431 * The PE hierarchy tree might be changed when doing PCI hotplug. 432 * Also, the PCI devices or buses could be removed from the system 433 * during EEH recovery. So we have to call the function remove the 434 * corresponding PE accordingly if necessary. 435 */ 436 int eeh_pe_tree_remove(struct eeh_dev *edev) 437 { 438 struct eeh_pe *pe, *parent, *child; 439 bool keep, recover; 440 int cnt; 441 442 pe = eeh_dev_to_pe(edev); 443 if (!pe) { 444 eeh_edev_dbg(edev, "No PE found for device.\n"); 445 return -EEXIST; 446 } 447 448 /* Remove the EEH device */ 449 edev->pe = NULL; 450 list_del(&edev->entry); 451 452 /* 453 * Check if the parent PE includes any EEH devices. 454 * If not, we should delete that. Also, we should 455 * delete the parent PE if it doesn't have associated 456 * child PEs and EEH devices. 457 */ 458 while (1) { 459 parent = pe->parent; 460 461 /* PHB PEs should never be removed */ 462 if (pe->type & EEH_PE_PHB) 463 break; 464 465 /* 466 * XXX: KEEP is set while resetting a PE. I don't think it's 467 * ever set without RECOVERING also being set. I could 468 * be wrong though so catch that with a WARN. 469 */ 470 keep = !!(pe->state & EEH_PE_KEEP); 471 recover = !!(pe->state & EEH_PE_RECOVERING); 472 WARN_ON(keep && !recover); 473 474 if (!keep && !recover) { 475 if (list_empty(&pe->edevs) && 476 list_empty(&pe->child_list)) { 477 list_del(&pe->child); 478 kfree(pe); 479 } else { 480 break; 481 } 482 } else { 483 /* 484 * Mark the PE as invalid. At the end of the recovery 485 * process any invalid PEs will be garbage collected. 486 * 487 * We need to delay the free()ing of them since we can 488 * remove edev's while traversing the PE tree which 489 * might trigger the removal of a PE and we can't 490 * deal with that (yet). 491 */ 492 if (list_empty(&pe->edevs)) { 493 cnt = 0; 494 list_for_each_entry(child, &pe->child_list, child) { 495 if (!(child->type & EEH_PE_INVALID)) { 496 cnt++; 497 break; 498 } 499 } 500 501 if (!cnt) 502 pe->type |= EEH_PE_INVALID; 503 else 504 break; 505 } 506 } 507 508 pe = parent; 509 } 510 511 return 0; 512 } 513 514 /** 515 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 516 * @pe: EEH PE 517 * 518 * We have time stamp for each PE to trace its time of getting 519 * frozen in last hour. The function should be called to update 520 * the time stamp on first error of the specific PE. On the other 521 * handle, we needn't account for errors happened in last hour. 522 */ 523 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 524 { 525 time64_t tstamp; 526 527 if (!pe) return; 528 529 if (pe->freeze_count <= 0) { 530 pe->freeze_count = 0; 531 pe->tstamp = ktime_get_seconds(); 532 } else { 533 tstamp = ktime_get_seconds(); 534 if (tstamp - pe->tstamp > 3600) { 535 pe->tstamp = tstamp; 536 pe->freeze_count = 0; 537 } 538 } 539 } 540 541 /** 542 * eeh_pe_state_mark - Mark specified state for PE and its associated device 543 * @pe: EEH PE 544 * 545 * EEH error affects the current PE and its child PEs. The function 546 * is used to mark appropriate state for the affected PEs and the 547 * associated devices. 548 */ 549 void eeh_pe_state_mark(struct eeh_pe *root, int state) 550 { 551 struct eeh_pe *pe; 552 553 eeh_for_each_pe(root, pe) 554 if (!(pe->state & EEH_PE_REMOVED)) 555 pe->state |= state; 556 } 557 EXPORT_SYMBOL_GPL(eeh_pe_state_mark); 558 559 /** 560 * eeh_pe_mark_isolated 561 * @pe: EEH PE 562 * 563 * Record that a PE has been isolated by marking the PE and it's children as 564 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices 565 * as pci_channel_io_frozen. 566 */ 567 void eeh_pe_mark_isolated(struct eeh_pe *root) 568 { 569 struct eeh_pe *pe; 570 struct eeh_dev *edev; 571 struct pci_dev *pdev; 572 573 eeh_pe_state_mark(root, EEH_PE_ISOLATED); 574 eeh_for_each_pe(root, pe) { 575 list_for_each_entry(edev, &pe->edevs, entry) { 576 pdev = eeh_dev_to_pci_dev(edev); 577 if (pdev) 578 pdev->error_state = pci_channel_io_frozen; 579 } 580 /* Block PCI config access if required */ 581 if (pe->state & EEH_PE_CFG_RESTRICTED) 582 pe->state |= EEH_PE_CFG_BLOCKED; 583 } 584 } 585 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); 586 587 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) 588 { 589 int mode = *((int *)flag); 590 591 edev->mode |= mode; 592 } 593 594 /** 595 * eeh_pe_dev_state_mark - Mark state for all device under the PE 596 * @pe: EEH PE 597 * 598 * Mark specific state for all child devices of the PE. 599 */ 600 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 601 { 602 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 603 } 604 605 /** 606 * eeh_pe_state_clear - Clear state for the PE 607 * @data: EEH PE 608 * @state: state 609 * @include_passed: include passed-through devices? 610 * 611 * The function is used to clear the indicated state from the 612 * given PE. Besides, we also clear the check count of the PE 613 * as well. 614 */ 615 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) 616 { 617 struct eeh_pe *pe; 618 struct eeh_dev *edev, *tmp; 619 struct pci_dev *pdev; 620 621 eeh_for_each_pe(root, pe) { 622 /* Keep the state of permanently removed PE intact */ 623 if (pe->state & EEH_PE_REMOVED) 624 continue; 625 626 if (!include_passed && eeh_pe_passed(pe)) 627 continue; 628 629 pe->state &= ~state; 630 631 /* 632 * Special treatment on clearing isolated state. Clear 633 * check count since last isolation and put all affected 634 * devices to normal state. 635 */ 636 if (!(state & EEH_PE_ISOLATED)) 637 continue; 638 639 pe->check_count = 0; 640 eeh_pe_for_each_dev(pe, edev, tmp) { 641 pdev = eeh_dev_to_pci_dev(edev); 642 if (!pdev) 643 continue; 644 645 pdev->error_state = pci_channel_io_normal; 646 } 647 648 /* Unblock PCI config access if required */ 649 if (pe->state & EEH_PE_CFG_RESTRICTED) 650 pe->state &= ~EEH_PE_CFG_BLOCKED; 651 } 652 } 653 654 /* 655 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 656 * buses assigned explicitly by firmware, and we probably have 657 * lost that after reset. So we have to delay the check until 658 * the PCI-CFG registers have been restored for the parent 659 * bridge. 660 * 661 * Don't use normal PCI-CFG accessors, which probably has been 662 * blocked on normal path during the stage. So we need utilize 663 * eeh operations, which is always permitted. 664 */ 665 static void eeh_bridge_check_link(struct eeh_dev *edev) 666 { 667 int cap; 668 uint32_t val; 669 int timeout = 0; 670 671 /* 672 * We only check root port and downstream ports of 673 * PCIe switches 674 */ 675 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 676 return; 677 678 eeh_edev_dbg(edev, "Checking PCIe link...\n"); 679 680 /* Check slot status */ 681 cap = edev->pcie_cap; 682 eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val); 683 if (!(val & PCI_EXP_SLTSTA_PDS)) { 684 eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); 685 return; 686 } 687 688 /* Check power status if we have the capability */ 689 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val); 690 if (val & PCI_EXP_SLTCAP_PCP) { 691 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val); 692 if (val & PCI_EXP_SLTCTL_PCC) { 693 eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); 694 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 695 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 696 eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val); 697 msleep(2 * 1000); 698 } 699 } 700 701 /* Enable link */ 702 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val); 703 val &= ~PCI_EXP_LNKCTL_LD; 704 eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val); 705 706 /* Check link */ 707 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val); 708 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 709 eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val); 710 msleep(1000); 711 return; 712 } 713 714 /* Wait the link is up until timeout (5s) */ 715 timeout = 0; 716 while (timeout < 5000) { 717 msleep(20); 718 timeout += 20; 719 720 eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val); 721 if (val & PCI_EXP_LNKSTA_DLLLA) 722 break; 723 } 724 725 if (val & PCI_EXP_LNKSTA_DLLLA) 726 eeh_edev_dbg(edev, "Link up (%s)\n", 727 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 728 else 729 eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); 730 } 731 732 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 733 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 734 735 static void eeh_restore_bridge_bars(struct eeh_dev *edev) 736 { 737 int i; 738 739 /* 740 * Device BARs: 0x10 - 0x18 741 * Bus numbers and windows: 0x18 - 0x30 742 */ 743 for (i = 4; i < 13; i++) 744 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); 745 /* Rom: 0x38 */ 746 eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]); 747 748 /* Cache line & Latency timer: 0xC 0xD */ 749 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, 750 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 751 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, 752 SAVED_BYTE(PCI_LATENCY_TIMER)); 753 /* Max latency, min grant, interrupt ping and line: 0x3C */ 754 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); 755 756 /* PCI Command: 0x4 */ 757 eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] | 758 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 759 760 /* Check the PCIe link is ready */ 761 eeh_bridge_check_link(edev); 762 } 763 764 static void eeh_restore_device_bars(struct eeh_dev *edev) 765 { 766 int i; 767 u32 cmd; 768 769 for (i = 4; i < 10; i++) 770 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); 771 /* 12 == Expansion ROM Address */ 772 eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]); 773 774 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, 775 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 776 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, 777 SAVED_BYTE(PCI_LATENCY_TIMER)); 778 779 /* max latency, min grant, interrupt pin and line */ 780 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); 781 782 /* 783 * Restore PERR & SERR bits, some devices require it, 784 * don't touch the other command bits 785 */ 786 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd); 787 if (edev->config_space[1] & PCI_COMMAND_PARITY) 788 cmd |= PCI_COMMAND_PARITY; 789 else 790 cmd &= ~PCI_COMMAND_PARITY; 791 if (edev->config_space[1] & PCI_COMMAND_SERR) 792 cmd |= PCI_COMMAND_SERR; 793 else 794 cmd &= ~PCI_COMMAND_SERR; 795 eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd); 796 } 797 798 /** 799 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 800 * @data: EEH device 801 * @flag: Unused 802 * 803 * Loads the PCI configuration space base address registers, 804 * the expansion ROM base address, the latency timer, and etc. 805 * from the saved values in the device node. 806 */ 807 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) 808 { 809 /* Do special restore for bridges */ 810 if (edev->mode & EEH_DEV_BRIDGE) 811 eeh_restore_bridge_bars(edev); 812 else 813 eeh_restore_device_bars(edev); 814 815 if (eeh_ops->restore_config) 816 eeh_ops->restore_config(edev); 817 } 818 819 /** 820 * eeh_pe_restore_bars - Restore the PCI config space info 821 * @pe: EEH PE 822 * 823 * This routine performs a recursive walk to the children 824 * of this device as well. 825 */ 826 void eeh_pe_restore_bars(struct eeh_pe *pe) 827 { 828 /* 829 * We needn't take the EEH lock since eeh_pe_dev_traverse() 830 * will take that. 831 */ 832 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 833 } 834 835 /** 836 * eeh_pe_loc_get - Retrieve location code binding to the given PE 837 * @pe: EEH PE 838 * 839 * Retrieve the location code of the given PE. If the primary PE bus 840 * is root bus, we will grab location code from PHB device tree node 841 * or root port. Otherwise, the upstream bridge's device tree node 842 * of the primary PE bus will be checked for the location code. 843 */ 844 const char *eeh_pe_loc_get(struct eeh_pe *pe) 845 { 846 struct pci_bus *bus = eeh_pe_bus_get(pe); 847 struct device_node *dn; 848 const char *loc = NULL; 849 850 while (bus) { 851 dn = pci_bus_to_OF_node(bus); 852 if (!dn) { 853 bus = bus->parent; 854 continue; 855 } 856 857 if (pci_is_root_bus(bus)) 858 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 859 else 860 loc = of_get_property(dn, "ibm,slot-location-code", 861 NULL); 862 863 if (loc) 864 return loc; 865 866 bus = bus->parent; 867 } 868 869 return "N/A"; 870 } 871 872 /** 873 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 874 * @pe: EEH PE 875 * 876 * Retrieve the PCI bus according to the given PE. Basically, 877 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 878 * primary PCI bus will be retrieved. The parent bus will be 879 * returned for BUS PE. However, we don't have associated PCI 880 * bus for DEVICE PE. 881 */ 882 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 883 { 884 struct eeh_dev *edev; 885 struct pci_dev *pdev; 886 887 if (pe->type & EEH_PE_PHB) 888 return pe->phb->bus; 889 890 /* The primary bus might be cached during probe time */ 891 if (pe->state & EEH_PE_PRI_BUS) 892 return pe->bus; 893 894 /* Retrieve the parent PCI bus of first (top) PCI device */ 895 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); 896 pdev = eeh_dev_to_pci_dev(edev); 897 if (pdev) 898 return pdev->bus; 899 900 return NULL; 901 } 902