1 /* 2 * The file intends to implement PE based on the information from 3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 4 * All the PEs should be organized as hierarchy tree. The first level 5 * of the tree will be associated to existing PHBs since the particular 6 * PE is only meaningful in one PHB domain. 7 * 8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/pci.h> 30 #include <linux/string.h> 31 32 #include <asm/pci-bridge.h> 33 #include <asm/ppc-pci.h> 34 35 static int eeh_pe_aux_size = 0; 36 static LIST_HEAD(eeh_phb_pe); 37 38 /** 39 * eeh_set_pe_aux_size - Set PE auxillary data size 40 * @size: PE auxillary data size 41 * 42 * Set PE auxillary data size 43 */ 44 void eeh_set_pe_aux_size(int size) 45 { 46 if (size < 0) 47 return; 48 49 eeh_pe_aux_size = size; 50 } 51 52 /** 53 * eeh_pe_alloc - Allocate PE 54 * @phb: PCI controller 55 * @type: PE type 56 * 57 * Allocate PE instance dynamically. 58 */ 59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 60 { 61 struct eeh_pe *pe; 62 size_t alloc_size; 63 64 alloc_size = sizeof(struct eeh_pe); 65 if (eeh_pe_aux_size) { 66 alloc_size = ALIGN(alloc_size, cache_line_size()); 67 alloc_size += eeh_pe_aux_size; 68 } 69 70 /* Allocate PHB PE */ 71 pe = kzalloc(alloc_size, GFP_KERNEL); 72 if (!pe) return NULL; 73 74 /* Initialize PHB PE */ 75 pe->type = type; 76 pe->phb = phb; 77 INIT_LIST_HEAD(&pe->child_list); 78 INIT_LIST_HEAD(&pe->child); 79 INIT_LIST_HEAD(&pe->edevs); 80 81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 82 cache_line_size()); 83 return pe; 84 } 85 86 /** 87 * eeh_phb_pe_create - Create PHB PE 88 * @phb: PCI controller 89 * 90 * The function should be called while the PHB is detected during 91 * system boot or PCI hotplug in order to create PHB PE. 92 */ 93 int eeh_phb_pe_create(struct pci_controller *phb) 94 { 95 struct eeh_pe *pe; 96 97 /* Allocate PHB PE */ 98 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 99 if (!pe) { 100 pr_err("%s: out of memory!\n", __func__); 101 return -ENOMEM; 102 } 103 104 /* Put it into the list */ 105 list_add_tail(&pe->child, &eeh_phb_pe); 106 107 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); 108 109 return 0; 110 } 111 112 /** 113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 114 * @phb: PCI controller 115 * 116 * The overall PEs form hierarchy tree. The first layer of the 117 * hierarchy tree is composed of PHB PEs. The function is used 118 * to retrieve the corresponding PHB PE according to the given PHB. 119 */ 120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 121 { 122 struct eeh_pe *pe; 123 124 list_for_each_entry(pe, &eeh_phb_pe, child) { 125 /* 126 * Actually, we needn't check the type since 127 * the PE for PHB has been determined when that 128 * was created. 129 */ 130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 131 return pe; 132 } 133 134 return NULL; 135 } 136 137 /** 138 * eeh_pe_next - Retrieve the next PE in the tree 139 * @pe: current PE 140 * @root: root PE 141 * 142 * The function is used to retrieve the next PE in the 143 * hierarchy PE tree. 144 */ 145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, 146 struct eeh_pe *root) 147 { 148 struct list_head *next = pe->child_list.next; 149 150 if (next == &pe->child_list) { 151 while (1) { 152 if (pe == root) 153 return NULL; 154 next = pe->child.next; 155 if (next != &pe->parent->child_list) 156 break; 157 pe = pe->parent; 158 } 159 } 160 161 return list_entry(next, struct eeh_pe, child); 162 } 163 164 /** 165 * eeh_pe_traverse - Traverse PEs in the specified PHB 166 * @root: root PE 167 * @fn: callback 168 * @flag: extra parameter to callback 169 * 170 * The function is used to traverse the specified PE and its 171 * child PEs. The traversing is to be terminated once the 172 * callback returns something other than NULL, or no more PEs 173 * to be traversed. 174 */ 175 void *eeh_pe_traverse(struct eeh_pe *root, 176 eeh_traverse_func fn, void *flag) 177 { 178 struct eeh_pe *pe; 179 void *ret; 180 181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 182 ret = fn(pe, flag); 183 if (ret) return ret; 184 } 185 186 return NULL; 187 } 188 189 /** 190 * eeh_pe_dev_traverse - Traverse the devices from the PE 191 * @root: EEH PE 192 * @fn: function callback 193 * @flag: extra parameter to callback 194 * 195 * The function is used to traverse the devices of the specified 196 * PE and its child PEs. 197 */ 198 void *eeh_pe_dev_traverse(struct eeh_pe *root, 199 eeh_traverse_func fn, void *flag) 200 { 201 struct eeh_pe *pe; 202 struct eeh_dev *edev, *tmp; 203 void *ret; 204 205 if (!root) { 206 pr_warn("%s: Invalid PE %p\n", 207 __func__, root); 208 return NULL; 209 } 210 211 /* Traverse root PE */ 212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 213 eeh_pe_for_each_dev(pe, edev, tmp) { 214 ret = fn(edev, flag); 215 if (ret) 216 return ret; 217 } 218 } 219 220 return NULL; 221 } 222 223 /** 224 * __eeh_pe_get - Check the PE address 225 * @data: EEH PE 226 * @flag: EEH device 227 * 228 * For one particular PE, it can be identified by PE address 229 * or tranditional BDF address. BDF address is composed of 230 * Bus/Device/Function number. The extra data referred by flag 231 * indicates which type of address should be used. 232 */ 233 struct eeh_pe_get_flag { 234 int pe_no; 235 int config_addr; 236 }; 237 238 static void *__eeh_pe_get(void *data, void *flag) 239 { 240 struct eeh_pe *pe = (struct eeh_pe *)data; 241 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag; 242 243 /* Unexpected PHB PE */ 244 if (pe->type & EEH_PE_PHB) 245 return NULL; 246 247 /* 248 * We prefer PE address. For most cases, we should 249 * have non-zero PE address 250 */ 251 if (eeh_has_flag(EEH_VALID_PE_ZERO)) { 252 if (tmp->pe_no == pe->addr) 253 return pe; 254 } else { 255 if (tmp->pe_no && 256 (tmp->pe_no == pe->addr)) 257 return pe; 258 } 259 260 /* Try BDF address */ 261 if (tmp->config_addr && 262 (tmp->config_addr == pe->config_addr)) 263 return pe; 264 265 return NULL; 266 } 267 268 /** 269 * eeh_pe_get - Search PE based on the given address 270 * @phb: PCI controller 271 * @pe_no: PE number 272 * @config_addr: Config address 273 * 274 * Search the corresponding PE based on the specified address which 275 * is included in the eeh device. The function is used to check if 276 * the associated PE has been created against the PE address. It's 277 * notable that the PE address has 2 format: traditional PE address 278 * which is composed of PCI bus/device/function number, or unified 279 * PE address. 280 */ 281 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, 282 int pe_no, int config_addr) 283 { 284 struct eeh_pe *root = eeh_phb_pe_get(phb); 285 struct eeh_pe_get_flag tmp = { pe_no, config_addr }; 286 struct eeh_pe *pe; 287 288 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp); 289 290 return pe; 291 } 292 293 /** 294 * eeh_pe_get_parent - Retrieve the parent PE 295 * @edev: EEH device 296 * 297 * The whole PEs existing in the system are organized as hierarchy 298 * tree. The function is used to retrieve the parent PE according 299 * to the parent EEH device. 300 */ 301 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) 302 { 303 struct eeh_dev *parent; 304 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 305 306 /* 307 * It might have the case for the indirect parent 308 * EEH device already having associated PE, but 309 * the direct parent EEH device doesn't have yet. 310 */ 311 if (edev->physfn) 312 pdn = pci_get_pdn(edev->physfn); 313 else 314 pdn = pdn ? pdn->parent : NULL; 315 while (pdn) { 316 /* We're poking out of PCI territory */ 317 parent = pdn_to_eeh_dev(pdn); 318 if (!parent) 319 return NULL; 320 321 if (parent->pe) 322 return parent->pe; 323 324 pdn = pdn->parent; 325 } 326 327 return NULL; 328 } 329 330 /** 331 * eeh_add_to_parent_pe - Add EEH device to parent PE 332 * @edev: EEH device 333 * 334 * Add EEH device to the parent PE. If the parent PE already 335 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, 336 * we have to create new PE to hold the EEH device and the new 337 * PE will be linked to its parent PE as well. 338 */ 339 int eeh_add_to_parent_pe(struct eeh_dev *edev) 340 { 341 struct eeh_pe *pe, *parent; 342 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 343 int config_addr = (pdn->busno << 8) | (pdn->devfn); 344 345 /* Check if the PE number is valid */ 346 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) { 347 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n", 348 __func__, config_addr, pdn->phb->global_number); 349 return -EINVAL; 350 } 351 352 /* 353 * Search the PE has been existing or not according 354 * to the PE address. If that has been existing, the 355 * PE should be composed of PCI bus and its subordinate 356 * components. 357 */ 358 pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr); 359 if (pe && !(pe->type & EEH_PE_INVALID)) { 360 /* Mark the PE as type of PCI bus */ 361 pe->type = EEH_PE_BUS; 362 edev->pe = pe; 363 364 /* Put the edev to PE */ 365 list_add_tail(&edev->list, &pe->edevs); 366 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n", 367 pdn->phb->global_number, 368 pdn->busno, 369 PCI_SLOT(pdn->devfn), 370 PCI_FUNC(pdn->devfn), 371 pe->addr); 372 return 0; 373 } else if (pe && (pe->type & EEH_PE_INVALID)) { 374 list_add_tail(&edev->list, &pe->edevs); 375 edev->pe = pe; 376 /* 377 * We're running to here because of PCI hotplug caused by 378 * EEH recovery. We need clear EEH_PE_INVALID until the top. 379 */ 380 parent = pe; 381 while (parent) { 382 if (!(parent->type & EEH_PE_INVALID)) 383 break; 384 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP); 385 parent = parent->parent; 386 } 387 388 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device " 389 "PE#%x, Parent PE#%x\n", 390 pdn->phb->global_number, 391 pdn->busno, 392 PCI_SLOT(pdn->devfn), 393 PCI_FUNC(pdn->devfn), 394 pe->addr, pe->parent->addr); 395 return 0; 396 } 397 398 /* Create a new EEH PE */ 399 if (edev->physfn) 400 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF); 401 else 402 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE); 403 if (!pe) { 404 pr_err("%s: out of memory!\n", __func__); 405 return -ENOMEM; 406 } 407 pe->addr = edev->pe_config_addr; 408 pe->config_addr = config_addr; 409 410 /* 411 * Put the new EEH PE into hierarchy tree. If the parent 412 * can't be found, the newly created PE will be attached 413 * to PHB directly. Otherwise, we have to associate the 414 * PE with its parent. 415 */ 416 parent = eeh_pe_get_parent(edev); 417 if (!parent) { 418 parent = eeh_phb_pe_get(pdn->phb); 419 if (!parent) { 420 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 421 __func__, pdn->phb->global_number); 422 edev->pe = NULL; 423 kfree(pe); 424 return -EEXIST; 425 } 426 } 427 pe->parent = parent; 428 429 /* 430 * Put the newly created PE into the child list and 431 * link the EEH device accordingly. 432 */ 433 list_add_tail(&pe->child, &parent->child_list); 434 list_add_tail(&edev->list, &pe->edevs); 435 edev->pe = pe; 436 pr_debug("EEH: Add %04x:%02x:%02x.%01x to " 437 "Device PE#%x, Parent PE#%x\n", 438 pdn->phb->global_number, 439 pdn->busno, 440 PCI_SLOT(pdn->devfn), 441 PCI_FUNC(pdn->devfn), 442 pe->addr, pe->parent->addr); 443 444 return 0; 445 } 446 447 /** 448 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE 449 * @edev: EEH device 450 * 451 * The PE hierarchy tree might be changed when doing PCI hotplug. 452 * Also, the PCI devices or buses could be removed from the system 453 * during EEH recovery. So we have to call the function remove the 454 * corresponding PE accordingly if necessary. 455 */ 456 int eeh_rmv_from_parent_pe(struct eeh_dev *edev) 457 { 458 struct eeh_pe *pe, *parent, *child; 459 int cnt; 460 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 461 462 if (!edev->pe) { 463 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n", 464 __func__, pdn->phb->global_number, 465 pdn->busno, 466 PCI_SLOT(pdn->devfn), 467 PCI_FUNC(pdn->devfn)); 468 return -EEXIST; 469 } 470 471 /* Remove the EEH device */ 472 pe = eeh_dev_to_pe(edev); 473 edev->pe = NULL; 474 list_del(&edev->list); 475 476 /* 477 * Check if the parent PE includes any EEH devices. 478 * If not, we should delete that. Also, we should 479 * delete the parent PE if it doesn't have associated 480 * child PEs and EEH devices. 481 */ 482 while (1) { 483 parent = pe->parent; 484 if (pe->type & EEH_PE_PHB) 485 break; 486 487 if (!(pe->state & EEH_PE_KEEP)) { 488 if (list_empty(&pe->edevs) && 489 list_empty(&pe->child_list)) { 490 list_del(&pe->child); 491 kfree(pe); 492 } else { 493 break; 494 } 495 } else { 496 if (list_empty(&pe->edevs)) { 497 cnt = 0; 498 list_for_each_entry(child, &pe->child_list, child) { 499 if (!(child->type & EEH_PE_INVALID)) { 500 cnt++; 501 break; 502 } 503 } 504 505 if (!cnt) 506 pe->type |= EEH_PE_INVALID; 507 else 508 break; 509 } 510 } 511 512 pe = parent; 513 } 514 515 return 0; 516 } 517 518 /** 519 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 520 * @pe: EEH PE 521 * 522 * We have time stamp for each PE to trace its time of getting 523 * frozen in last hour. The function should be called to update 524 * the time stamp on first error of the specific PE. On the other 525 * handle, we needn't account for errors happened in last hour. 526 */ 527 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 528 { 529 struct timeval tstamp; 530 531 if (!pe) return; 532 533 if (pe->freeze_count <= 0) { 534 pe->freeze_count = 0; 535 do_gettimeofday(&pe->tstamp); 536 } else { 537 do_gettimeofday(&tstamp); 538 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) { 539 pe->tstamp = tstamp; 540 pe->freeze_count = 0; 541 } 542 } 543 } 544 545 /** 546 * __eeh_pe_state_mark - Mark the state for the PE 547 * @data: EEH PE 548 * @flag: state 549 * 550 * The function is used to mark the indicated state for the given 551 * PE. Also, the associated PCI devices will be put into IO frozen 552 * state as well. 553 */ 554 static void *__eeh_pe_state_mark(void *data, void *flag) 555 { 556 struct eeh_pe *pe = (struct eeh_pe *)data; 557 int state = *((int *)flag); 558 struct eeh_dev *edev, *tmp; 559 struct pci_dev *pdev; 560 561 /* Keep the state of permanently removed PE intact */ 562 if (pe->state & EEH_PE_REMOVED) 563 return NULL; 564 565 pe->state |= state; 566 567 /* Offline PCI devices if applicable */ 568 if (!(state & EEH_PE_ISOLATED)) 569 return NULL; 570 571 eeh_pe_for_each_dev(pe, edev, tmp) { 572 pdev = eeh_dev_to_pci_dev(edev); 573 if (pdev) 574 pdev->error_state = pci_channel_io_frozen; 575 } 576 577 /* Block PCI config access if required */ 578 if (pe->state & EEH_PE_CFG_RESTRICTED) 579 pe->state |= EEH_PE_CFG_BLOCKED; 580 581 return NULL; 582 } 583 584 /** 585 * eeh_pe_state_mark - Mark specified state for PE and its associated device 586 * @pe: EEH PE 587 * 588 * EEH error affects the current PE and its child PEs. The function 589 * is used to mark appropriate state for the affected PEs and the 590 * associated devices. 591 */ 592 void eeh_pe_state_mark(struct eeh_pe *pe, int state) 593 { 594 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 595 } 596 EXPORT_SYMBOL_GPL(eeh_pe_state_mark); 597 598 static void *__eeh_pe_dev_mode_mark(void *data, void *flag) 599 { 600 struct eeh_dev *edev = data; 601 int mode = *((int *)flag); 602 603 edev->mode |= mode; 604 605 return NULL; 606 } 607 608 /** 609 * eeh_pe_dev_state_mark - Mark state for all device under the PE 610 * @pe: EEH PE 611 * 612 * Mark specific state for all child devices of the PE. 613 */ 614 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 615 { 616 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 617 } 618 619 /** 620 * __eeh_pe_state_clear - Clear state for the PE 621 * @data: EEH PE 622 * @flag: state 623 * 624 * The function is used to clear the indicated state from the 625 * given PE. Besides, we also clear the check count of the PE 626 * as well. 627 */ 628 static void *__eeh_pe_state_clear(void *data, void *flag) 629 { 630 struct eeh_pe *pe = (struct eeh_pe *)data; 631 int state = *((int *)flag); 632 struct eeh_dev *edev, *tmp; 633 struct pci_dev *pdev; 634 635 /* Keep the state of permanently removed PE intact */ 636 if (pe->state & EEH_PE_REMOVED) 637 return NULL; 638 639 pe->state &= ~state; 640 641 /* 642 * Special treatment on clearing isolated state. Clear 643 * check count since last isolation and put all affected 644 * devices to normal state. 645 */ 646 if (!(state & EEH_PE_ISOLATED)) 647 return NULL; 648 649 pe->check_count = 0; 650 eeh_pe_for_each_dev(pe, edev, tmp) { 651 pdev = eeh_dev_to_pci_dev(edev); 652 if (!pdev) 653 continue; 654 655 pdev->error_state = pci_channel_io_normal; 656 } 657 658 /* Unblock PCI config access if required */ 659 if (pe->state & EEH_PE_CFG_RESTRICTED) 660 pe->state &= ~EEH_PE_CFG_BLOCKED; 661 662 return NULL; 663 } 664 665 /** 666 * eeh_pe_state_clear - Clear state for the PE and its children 667 * @pe: PE 668 * @state: state to be cleared 669 * 670 * When the PE and its children has been recovered from error, 671 * we need clear the error state for that. The function is used 672 * for the purpose. 673 */ 674 void eeh_pe_state_clear(struct eeh_pe *pe, int state) 675 { 676 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 677 } 678 679 /** 680 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space 681 * @pe: PE 682 * @state: PE state to be set 683 * 684 * Set specified flag to PE and its child PEs. The PCI config space 685 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set, 686 * which isn't needed in some situations. The function allows to set 687 * the specified flag to indicated PEs without blocking their PCI 688 * config space. 689 */ 690 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state) 691 { 692 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 693 if (!(state & EEH_PE_ISOLATED)) 694 return; 695 696 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */ 697 state = EEH_PE_CFG_BLOCKED; 698 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 699 } 700 701 /* 702 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 703 * buses assigned explicitly by firmware, and we probably have 704 * lost that after reset. So we have to delay the check until 705 * the PCI-CFG registers have been restored for the parent 706 * bridge. 707 * 708 * Don't use normal PCI-CFG accessors, which probably has been 709 * blocked on normal path during the stage. So we need utilize 710 * eeh operations, which is always permitted. 711 */ 712 static void eeh_bridge_check_link(struct eeh_dev *edev) 713 { 714 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 715 int cap; 716 uint32_t val; 717 int timeout = 0; 718 719 /* 720 * We only check root port and downstream ports of 721 * PCIe switches 722 */ 723 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 724 return; 725 726 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n", 727 __func__, pdn->phb->global_number, 728 pdn->busno, 729 PCI_SLOT(pdn->devfn), 730 PCI_FUNC(pdn->devfn)); 731 732 /* Check slot status */ 733 cap = edev->pcie_cap; 734 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val); 735 if (!(val & PCI_EXP_SLTSTA_PDS)) { 736 pr_debug(" No card in the slot (0x%04x) !\n", val); 737 return; 738 } 739 740 /* Check power status if we have the capability */ 741 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val); 742 if (val & PCI_EXP_SLTCAP_PCP) { 743 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val); 744 if (val & PCI_EXP_SLTCTL_PCC) { 745 pr_debug(" In power-off state, power it on ...\n"); 746 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 747 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 748 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val); 749 msleep(2 * 1000); 750 } 751 } 752 753 /* Enable link */ 754 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val); 755 val &= ~PCI_EXP_LNKCTL_LD; 756 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val); 757 758 /* Check link */ 759 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val); 760 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 761 pr_debug(" No link reporting capability (0x%08x) \n", val); 762 msleep(1000); 763 return; 764 } 765 766 /* Wait the link is up until timeout (5s) */ 767 timeout = 0; 768 while (timeout < 5000) { 769 msleep(20); 770 timeout += 20; 771 772 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val); 773 if (val & PCI_EXP_LNKSTA_DLLLA) 774 break; 775 } 776 777 if (val & PCI_EXP_LNKSTA_DLLLA) 778 pr_debug(" Link up (%s)\n", 779 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 780 else 781 pr_debug(" Link not ready (0x%04x)\n", val); 782 } 783 784 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 785 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 786 787 static void eeh_restore_bridge_bars(struct eeh_dev *edev) 788 { 789 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 790 int i; 791 792 /* 793 * Device BARs: 0x10 - 0x18 794 * Bus numbers and windows: 0x18 - 0x30 795 */ 796 for (i = 4; i < 13; i++) 797 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); 798 /* Rom: 0x38 */ 799 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]); 800 801 /* Cache line & Latency timer: 0xC 0xD */ 802 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, 803 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 804 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, 805 SAVED_BYTE(PCI_LATENCY_TIMER)); 806 /* Max latency, min grant, interrupt ping and line: 0x3C */ 807 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); 808 809 /* PCI Command: 0x4 */ 810 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]); 811 812 /* Check the PCIe link is ready */ 813 eeh_bridge_check_link(edev); 814 } 815 816 static void eeh_restore_device_bars(struct eeh_dev *edev) 817 { 818 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 819 int i; 820 u32 cmd; 821 822 for (i = 4; i < 10; i++) 823 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]); 824 /* 12 == Expansion ROM Address */ 825 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]); 826 827 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1, 828 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 829 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1, 830 SAVED_BYTE(PCI_LATENCY_TIMER)); 831 832 /* max latency, min grant, interrupt pin and line */ 833 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]); 834 835 /* 836 * Restore PERR & SERR bits, some devices require it, 837 * don't touch the other command bits 838 */ 839 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd); 840 if (edev->config_space[1] & PCI_COMMAND_PARITY) 841 cmd |= PCI_COMMAND_PARITY; 842 else 843 cmd &= ~PCI_COMMAND_PARITY; 844 if (edev->config_space[1] & PCI_COMMAND_SERR) 845 cmd |= PCI_COMMAND_SERR; 846 else 847 cmd &= ~PCI_COMMAND_SERR; 848 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd); 849 } 850 851 /** 852 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 853 * @data: EEH device 854 * @flag: Unused 855 * 856 * Loads the PCI configuration space base address registers, 857 * the expansion ROM base address, the latency timer, and etc. 858 * from the saved values in the device node. 859 */ 860 static void *eeh_restore_one_device_bars(void *data, void *flag) 861 { 862 struct eeh_dev *edev = (struct eeh_dev *)data; 863 struct pci_dn *pdn = eeh_dev_to_pdn(edev); 864 865 /* Do special restore for bridges */ 866 if (edev->mode & EEH_DEV_BRIDGE) 867 eeh_restore_bridge_bars(edev); 868 else 869 eeh_restore_device_bars(edev); 870 871 if (eeh_ops->restore_config && pdn) 872 eeh_ops->restore_config(pdn); 873 874 return NULL; 875 } 876 877 /** 878 * eeh_pe_restore_bars - Restore the PCI config space info 879 * @pe: EEH PE 880 * 881 * This routine performs a recursive walk to the children 882 * of this device as well. 883 */ 884 void eeh_pe_restore_bars(struct eeh_pe *pe) 885 { 886 /* 887 * We needn't take the EEH lock since eeh_pe_dev_traverse() 888 * will take that. 889 */ 890 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 891 } 892 893 /** 894 * eeh_pe_loc_get - Retrieve location code binding to the given PE 895 * @pe: EEH PE 896 * 897 * Retrieve the location code of the given PE. If the primary PE bus 898 * is root bus, we will grab location code from PHB device tree node 899 * or root port. Otherwise, the upstream bridge's device tree node 900 * of the primary PE bus will be checked for the location code. 901 */ 902 const char *eeh_pe_loc_get(struct eeh_pe *pe) 903 { 904 struct pci_bus *bus = eeh_pe_bus_get(pe); 905 struct device_node *dn; 906 const char *loc = NULL; 907 908 while (bus) { 909 dn = pci_bus_to_OF_node(bus); 910 if (!dn) { 911 bus = bus->parent; 912 continue; 913 } 914 915 if (pci_is_root_bus(bus)) 916 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 917 else 918 loc = of_get_property(dn, "ibm,slot-location-code", 919 NULL); 920 921 if (loc) 922 return loc; 923 924 bus = bus->parent; 925 } 926 927 return "N/A"; 928 } 929 930 /** 931 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 932 * @pe: EEH PE 933 * 934 * Retrieve the PCI bus according to the given PE. Basically, 935 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 936 * primary PCI bus will be retrieved. The parent bus will be 937 * returned for BUS PE. However, we don't have associated PCI 938 * bus for DEVICE PE. 939 */ 940 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 941 { 942 struct eeh_dev *edev; 943 struct pci_dev *pdev; 944 945 if (pe->type & EEH_PE_PHB) 946 return pe->phb->bus; 947 948 /* The primary bus might be cached during probe time */ 949 if (pe->state & EEH_PE_PRI_BUS) 950 return pe->bus; 951 952 /* Retrieve the parent PCI bus of first (top) PCI device */ 953 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list); 954 pdev = eeh_dev_to_pci_dev(edev); 955 if (pdev) 956 return pdev->bus; 957 958 return NULL; 959 } 960