xref: /openbmc/linux/arch/powerpc/kernel/eeh_pe.c (revision 6aa7de05)
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37 
38 /**
39  * eeh_set_pe_aux_size - Set PE auxillary data size
40  * @size: PE auxillary data size
41  *
42  * Set PE auxillary data size
43  */
44 void eeh_set_pe_aux_size(int size)
45 {
46 	if (size < 0)
47 		return;
48 
49 	eeh_pe_aux_size = size;
50 }
51 
52 /**
53  * eeh_pe_alloc - Allocate PE
54  * @phb: PCI controller
55  * @type: PE type
56  *
57  * Allocate PE instance dynamically.
58  */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 	struct eeh_pe *pe;
62 	size_t alloc_size;
63 
64 	alloc_size = sizeof(struct eeh_pe);
65 	if (eeh_pe_aux_size) {
66 		alloc_size = ALIGN(alloc_size, cache_line_size());
67 		alloc_size += eeh_pe_aux_size;
68 	}
69 
70 	/* Allocate PHB PE */
71 	pe = kzalloc(alloc_size, GFP_KERNEL);
72 	if (!pe) return NULL;
73 
74 	/* Initialize PHB PE */
75 	pe->type = type;
76 	pe->phb = phb;
77 	INIT_LIST_HEAD(&pe->child_list);
78 	INIT_LIST_HEAD(&pe->child);
79 	INIT_LIST_HEAD(&pe->edevs);
80 
81 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 				      cache_line_size());
83 	return pe;
84 }
85 
86 /**
87  * eeh_phb_pe_create - Create PHB PE
88  * @phb: PCI controller
89  *
90  * The function should be called while the PHB is detected during
91  * system boot or PCI hotplug in order to create PHB PE.
92  */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 	struct eeh_pe *pe;
96 
97 	/* Allocate PHB PE */
98 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 	if (!pe) {
100 		pr_err("%s: out of memory!\n", __func__);
101 		return -ENOMEM;
102 	}
103 
104 	/* Put it into the list */
105 	list_add_tail(&pe->child, &eeh_phb_pe);
106 
107 	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
108 
109 	return 0;
110 }
111 
112 /**
113  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114  * @phb: PCI controller
115  *
116  * The overall PEs form hierarchy tree. The first layer of the
117  * hierarchy tree is composed of PHB PEs. The function is used
118  * to retrieve the corresponding PHB PE according to the given PHB.
119  */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 	struct eeh_pe *pe;
123 
124 	list_for_each_entry(pe, &eeh_phb_pe, child) {
125 		/*
126 		 * Actually, we needn't check the type since
127 		 * the PE for PHB has been determined when that
128 		 * was created.
129 		 */
130 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 			return pe;
132 	}
133 
134 	return NULL;
135 }
136 
137 /**
138  * eeh_pe_next - Retrieve the next PE in the tree
139  * @pe: current PE
140  * @root: root PE
141  *
142  * The function is used to retrieve the next PE in the
143  * hierarchy PE tree.
144  */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 				  struct eeh_pe *root)
147 {
148 	struct list_head *next = pe->child_list.next;
149 
150 	if (next == &pe->child_list) {
151 		while (1) {
152 			if (pe == root)
153 				return NULL;
154 			next = pe->child.next;
155 			if (next != &pe->parent->child_list)
156 				break;
157 			pe = pe->parent;
158 		}
159 	}
160 
161 	return list_entry(next, struct eeh_pe, child);
162 }
163 
164 /**
165  * eeh_pe_traverse - Traverse PEs in the specified PHB
166  * @root: root PE
167  * @fn: callback
168  * @flag: extra parameter to callback
169  *
170  * The function is used to traverse the specified PE and its
171  * child PEs. The traversing is to be terminated once the
172  * callback returns something other than NULL, or no more PEs
173  * to be traversed.
174  */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 		      eeh_traverse_func fn, void *flag)
177 {
178 	struct eeh_pe *pe;
179 	void *ret;
180 
181 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 		ret = fn(pe, flag);
183 		if (ret) return ret;
184 	}
185 
186 	return NULL;
187 }
188 
189 /**
190  * eeh_pe_dev_traverse - Traverse the devices from the PE
191  * @root: EEH PE
192  * @fn: function callback
193  * @flag: extra parameter to callback
194  *
195  * The function is used to traverse the devices of the specified
196  * PE and its child PEs.
197  */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 		eeh_traverse_func fn, void *flag)
200 {
201 	struct eeh_pe *pe;
202 	struct eeh_dev *edev, *tmp;
203 	void *ret;
204 
205 	if (!root) {
206 		pr_warn("%s: Invalid PE %p\n",
207 			__func__, root);
208 		return NULL;
209 	}
210 
211 	/* Traverse root PE */
212 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 		eeh_pe_for_each_dev(pe, edev, tmp) {
214 			ret = fn(edev, flag);
215 			if (ret)
216 				return ret;
217 		}
218 	}
219 
220 	return NULL;
221 }
222 
223 /**
224  * __eeh_pe_get - Check the PE address
225  * @data: EEH PE
226  * @flag: EEH device
227  *
228  * For one particular PE, it can be identified by PE address
229  * or tranditional BDF address. BDF address is composed of
230  * Bus/Device/Function number. The extra data referred by flag
231  * indicates which type of address should be used.
232  */
233 struct eeh_pe_get_flag {
234 	int pe_no;
235 	int config_addr;
236 };
237 
238 static void *__eeh_pe_get(void *data, void *flag)
239 {
240 	struct eeh_pe *pe = (struct eeh_pe *)data;
241 	struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
242 
243 	/* Unexpected PHB PE */
244 	if (pe->type & EEH_PE_PHB)
245 		return NULL;
246 
247 	/*
248 	 * We prefer PE address. For most cases, we should
249 	 * have non-zero PE address
250 	 */
251 	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
252 		if (tmp->pe_no == pe->addr)
253 			return pe;
254 	} else {
255 		if (tmp->pe_no &&
256 		    (tmp->pe_no == pe->addr))
257 			return pe;
258 	}
259 
260 	/* Try BDF address */
261 	if (tmp->config_addr &&
262 	   (tmp->config_addr == pe->config_addr))
263 		return pe;
264 
265 	return NULL;
266 }
267 
268 /**
269  * eeh_pe_get - Search PE based on the given address
270  * @phb: PCI controller
271  * @pe_no: PE number
272  * @config_addr: Config address
273  *
274  * Search the corresponding PE based on the specified address which
275  * is included in the eeh device. The function is used to check if
276  * the associated PE has been created against the PE address. It's
277  * notable that the PE address has 2 format: traditional PE address
278  * which is composed of PCI bus/device/function number, or unified
279  * PE address.
280  */
281 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
282 		int pe_no, int config_addr)
283 {
284 	struct eeh_pe *root = eeh_phb_pe_get(phb);
285 	struct eeh_pe_get_flag tmp = { pe_no, config_addr };
286 	struct eeh_pe *pe;
287 
288 	pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
289 
290 	return pe;
291 }
292 
293 /**
294  * eeh_pe_get_parent - Retrieve the parent PE
295  * @edev: EEH device
296  *
297  * The whole PEs existing in the system are organized as hierarchy
298  * tree. The function is used to retrieve the parent PE according
299  * to the parent EEH device.
300  */
301 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
302 {
303 	struct eeh_dev *parent;
304 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
305 
306 	/*
307 	 * It might have the case for the indirect parent
308 	 * EEH device already having associated PE, but
309 	 * the direct parent EEH device doesn't have yet.
310 	 */
311 	if (edev->physfn)
312 		pdn = pci_get_pdn(edev->physfn);
313 	else
314 		pdn = pdn ? pdn->parent : NULL;
315 	while (pdn) {
316 		/* We're poking out of PCI territory */
317 		parent = pdn_to_eeh_dev(pdn);
318 		if (!parent)
319 			return NULL;
320 
321 		if (parent->pe)
322 			return parent->pe;
323 
324 		pdn = pdn->parent;
325 	}
326 
327 	return NULL;
328 }
329 
330 /**
331  * eeh_add_to_parent_pe - Add EEH device to parent PE
332  * @edev: EEH device
333  *
334  * Add EEH device to the parent PE. If the parent PE already
335  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
336  * we have to create new PE to hold the EEH device and the new
337  * PE will be linked to its parent PE as well.
338  */
339 int eeh_add_to_parent_pe(struct eeh_dev *edev)
340 {
341 	struct eeh_pe *pe, *parent;
342 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
343 	int config_addr = (pdn->busno << 8) | (pdn->devfn);
344 
345 	/* Check if the PE number is valid */
346 	if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
347 		pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
348 		       __func__, config_addr, pdn->phb->global_number);
349 		return -EINVAL;
350 	}
351 
352 	/*
353 	 * Search the PE has been existing or not according
354 	 * to the PE address. If that has been existing, the
355 	 * PE should be composed of PCI bus and its subordinate
356 	 * components.
357 	 */
358 	pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
359 	if (pe && !(pe->type & EEH_PE_INVALID)) {
360 		/* Mark the PE as type of PCI bus */
361 		pe->type = EEH_PE_BUS;
362 		edev->pe = pe;
363 
364 		/* Put the edev to PE */
365 		list_add_tail(&edev->list, &pe->edevs);
366 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
367 			 pdn->phb->global_number,
368 			 pdn->busno,
369 			 PCI_SLOT(pdn->devfn),
370 			 PCI_FUNC(pdn->devfn),
371 			 pe->addr);
372 		return 0;
373 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
374 		list_add_tail(&edev->list, &pe->edevs);
375 		edev->pe = pe;
376 		/*
377 		 * We're running to here because of PCI hotplug caused by
378 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
379 		 */
380 		parent = pe;
381 		while (parent) {
382 			if (!(parent->type & EEH_PE_INVALID))
383 				break;
384 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
385 			parent = parent->parent;
386 		}
387 
388 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
389 			 "PE#%x, Parent PE#%x\n",
390 			 pdn->phb->global_number,
391 			 pdn->busno,
392 			 PCI_SLOT(pdn->devfn),
393 			 PCI_FUNC(pdn->devfn),
394 			 pe->addr, pe->parent->addr);
395 		return 0;
396 	}
397 
398 	/* Create a new EEH PE */
399 	if (edev->physfn)
400 		pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
401 	else
402 		pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
403 	if (!pe) {
404 		pr_err("%s: out of memory!\n", __func__);
405 		return -ENOMEM;
406 	}
407 	pe->addr	= edev->pe_config_addr;
408 	pe->config_addr	= config_addr;
409 
410 	/*
411 	 * Put the new EEH PE into hierarchy tree. If the parent
412 	 * can't be found, the newly created PE will be attached
413 	 * to PHB directly. Otherwise, we have to associate the
414 	 * PE with its parent.
415 	 */
416 	parent = eeh_pe_get_parent(edev);
417 	if (!parent) {
418 		parent = eeh_phb_pe_get(pdn->phb);
419 		if (!parent) {
420 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
421 				__func__, pdn->phb->global_number);
422 			edev->pe = NULL;
423 			kfree(pe);
424 			return -EEXIST;
425 		}
426 	}
427 	pe->parent = parent;
428 
429 	/*
430 	 * Put the newly created PE into the child list and
431 	 * link the EEH device accordingly.
432 	 */
433 	list_add_tail(&pe->child, &parent->child_list);
434 	list_add_tail(&edev->list, &pe->edevs);
435 	edev->pe = pe;
436 	pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
437 		 "Device PE#%x, Parent PE#%x\n",
438 		 pdn->phb->global_number,
439 		 pdn->busno,
440 		 PCI_SLOT(pdn->devfn),
441 		 PCI_FUNC(pdn->devfn),
442 		 pe->addr, pe->parent->addr);
443 
444 	return 0;
445 }
446 
447 /**
448  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
449  * @edev: EEH device
450  *
451  * The PE hierarchy tree might be changed when doing PCI hotplug.
452  * Also, the PCI devices or buses could be removed from the system
453  * during EEH recovery. So we have to call the function remove the
454  * corresponding PE accordingly if necessary.
455  */
456 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
457 {
458 	struct eeh_pe *pe, *parent, *child;
459 	int cnt;
460 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
461 
462 	if (!edev->pe) {
463 		pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
464 			 __func__,  pdn->phb->global_number,
465 			 pdn->busno,
466 			 PCI_SLOT(pdn->devfn),
467 			 PCI_FUNC(pdn->devfn));
468 		return -EEXIST;
469 	}
470 
471 	/* Remove the EEH device */
472 	pe = eeh_dev_to_pe(edev);
473 	edev->pe = NULL;
474 	list_del(&edev->list);
475 
476 	/*
477 	 * Check if the parent PE includes any EEH devices.
478 	 * If not, we should delete that. Also, we should
479 	 * delete the parent PE if it doesn't have associated
480 	 * child PEs and EEH devices.
481 	 */
482 	while (1) {
483 		parent = pe->parent;
484 		if (pe->type & EEH_PE_PHB)
485 			break;
486 
487 		if (!(pe->state & EEH_PE_KEEP)) {
488 			if (list_empty(&pe->edevs) &&
489 			    list_empty(&pe->child_list)) {
490 				list_del(&pe->child);
491 				kfree(pe);
492 			} else {
493 				break;
494 			}
495 		} else {
496 			if (list_empty(&pe->edevs)) {
497 				cnt = 0;
498 				list_for_each_entry(child, &pe->child_list, child) {
499 					if (!(child->type & EEH_PE_INVALID)) {
500 						cnt++;
501 						break;
502 					}
503 				}
504 
505 				if (!cnt)
506 					pe->type |= EEH_PE_INVALID;
507 				else
508 					break;
509 			}
510 		}
511 
512 		pe = parent;
513 	}
514 
515 	return 0;
516 }
517 
518 /**
519  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
520  * @pe: EEH PE
521  *
522  * We have time stamp for each PE to trace its time of getting
523  * frozen in last hour. The function should be called to update
524  * the time stamp on first error of the specific PE. On the other
525  * handle, we needn't account for errors happened in last hour.
526  */
527 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
528 {
529 	struct timeval tstamp;
530 
531 	if (!pe) return;
532 
533 	if (pe->freeze_count <= 0) {
534 		pe->freeze_count = 0;
535 		do_gettimeofday(&pe->tstamp);
536 	} else {
537 		do_gettimeofday(&tstamp);
538 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
539 			pe->tstamp = tstamp;
540 			pe->freeze_count = 0;
541 		}
542 	}
543 }
544 
545 /**
546  * __eeh_pe_state_mark - Mark the state for the PE
547  * @data: EEH PE
548  * @flag: state
549  *
550  * The function is used to mark the indicated state for the given
551  * PE. Also, the associated PCI devices will be put into IO frozen
552  * state as well.
553  */
554 static void *__eeh_pe_state_mark(void *data, void *flag)
555 {
556 	struct eeh_pe *pe = (struct eeh_pe *)data;
557 	int state = *((int *)flag);
558 	struct eeh_dev *edev, *tmp;
559 	struct pci_dev *pdev;
560 
561 	/* Keep the state of permanently removed PE intact */
562 	if (pe->state & EEH_PE_REMOVED)
563 		return NULL;
564 
565 	pe->state |= state;
566 
567 	/* Offline PCI devices if applicable */
568 	if (!(state & EEH_PE_ISOLATED))
569 		return NULL;
570 
571 	eeh_pe_for_each_dev(pe, edev, tmp) {
572 		pdev = eeh_dev_to_pci_dev(edev);
573 		if (pdev)
574 			pdev->error_state = pci_channel_io_frozen;
575 	}
576 
577 	/* Block PCI config access if required */
578 	if (pe->state & EEH_PE_CFG_RESTRICTED)
579 		pe->state |= EEH_PE_CFG_BLOCKED;
580 
581 	return NULL;
582 }
583 
584 /**
585  * eeh_pe_state_mark - Mark specified state for PE and its associated device
586  * @pe: EEH PE
587  *
588  * EEH error affects the current PE and its child PEs. The function
589  * is used to mark appropriate state for the affected PEs and the
590  * associated devices.
591  */
592 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
593 {
594 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
595 }
596 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
597 
598 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
599 {
600 	struct eeh_dev *edev = data;
601 	int mode = *((int *)flag);
602 
603 	edev->mode |= mode;
604 
605 	return NULL;
606 }
607 
608 /**
609  * eeh_pe_dev_state_mark - Mark state for all device under the PE
610  * @pe: EEH PE
611  *
612  * Mark specific state for all child devices of the PE.
613  */
614 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
615 {
616 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
617 }
618 
619 /**
620  * __eeh_pe_state_clear - Clear state for the PE
621  * @data: EEH PE
622  * @flag: state
623  *
624  * The function is used to clear the indicated state from the
625  * given PE. Besides, we also clear the check count of the PE
626  * as well.
627  */
628 static void *__eeh_pe_state_clear(void *data, void *flag)
629 {
630 	struct eeh_pe *pe = (struct eeh_pe *)data;
631 	int state = *((int *)flag);
632 	struct eeh_dev *edev, *tmp;
633 	struct pci_dev *pdev;
634 
635 	/* Keep the state of permanently removed PE intact */
636 	if (pe->state & EEH_PE_REMOVED)
637 		return NULL;
638 
639 	pe->state &= ~state;
640 
641 	/*
642 	 * Special treatment on clearing isolated state. Clear
643 	 * check count since last isolation and put all affected
644 	 * devices to normal state.
645 	 */
646 	if (!(state & EEH_PE_ISOLATED))
647 		return NULL;
648 
649 	pe->check_count = 0;
650 	eeh_pe_for_each_dev(pe, edev, tmp) {
651 		pdev = eeh_dev_to_pci_dev(edev);
652 		if (!pdev)
653 			continue;
654 
655 		pdev->error_state = pci_channel_io_normal;
656 	}
657 
658 	/* Unblock PCI config access if required */
659 	if (pe->state & EEH_PE_CFG_RESTRICTED)
660 		pe->state &= ~EEH_PE_CFG_BLOCKED;
661 
662 	return NULL;
663 }
664 
665 /**
666  * eeh_pe_state_clear - Clear state for the PE and its children
667  * @pe: PE
668  * @state: state to be cleared
669  *
670  * When the PE and its children has been recovered from error,
671  * we need clear the error state for that. The function is used
672  * for the purpose.
673  */
674 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
675 {
676 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
677 }
678 
679 /**
680  * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
681  * @pe: PE
682  * @state: PE state to be set
683  *
684  * Set specified flag to PE and its child PEs. The PCI config space
685  * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
686  * which isn't needed in some situations. The function allows to set
687  * the specified flag to indicated PEs without blocking their PCI
688  * config space.
689  */
690 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
691 {
692 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
693 	if (!(state & EEH_PE_ISOLATED))
694 		return;
695 
696 	/* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
697 	state = EEH_PE_CFG_BLOCKED;
698 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
699 }
700 
701 /*
702  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
703  * buses assigned explicitly by firmware, and we probably have
704  * lost that after reset. So we have to delay the check until
705  * the PCI-CFG registers have been restored for the parent
706  * bridge.
707  *
708  * Don't use normal PCI-CFG accessors, which probably has been
709  * blocked on normal path during the stage. So we need utilize
710  * eeh operations, which is always permitted.
711  */
712 static void eeh_bridge_check_link(struct eeh_dev *edev)
713 {
714 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
715 	int cap;
716 	uint32_t val;
717 	int timeout = 0;
718 
719 	/*
720 	 * We only check root port and downstream ports of
721 	 * PCIe switches
722 	 */
723 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
724 		return;
725 
726 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
727 		 __func__, pdn->phb->global_number,
728 		 pdn->busno,
729 		 PCI_SLOT(pdn->devfn),
730 		 PCI_FUNC(pdn->devfn));
731 
732 	/* Check slot status */
733 	cap = edev->pcie_cap;
734 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
735 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
736 		pr_debug("  No card in the slot (0x%04x) !\n", val);
737 		return;
738 	}
739 
740 	/* Check power status if we have the capability */
741 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
742 	if (val & PCI_EXP_SLTCAP_PCP) {
743 		eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
744 		if (val & PCI_EXP_SLTCTL_PCC) {
745 			pr_debug("  In power-off state, power it on ...\n");
746 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
747 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
748 			eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
749 			msleep(2 * 1000);
750 		}
751 	}
752 
753 	/* Enable link */
754 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
755 	val &= ~PCI_EXP_LNKCTL_LD;
756 	eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
757 
758 	/* Check link */
759 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
760 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
761 		pr_debug("  No link reporting capability (0x%08x) \n", val);
762 		msleep(1000);
763 		return;
764 	}
765 
766 	/* Wait the link is up until timeout (5s) */
767 	timeout = 0;
768 	while (timeout < 5000) {
769 		msleep(20);
770 		timeout += 20;
771 
772 		eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
773 		if (val & PCI_EXP_LNKSTA_DLLLA)
774 			break;
775 	}
776 
777 	if (val & PCI_EXP_LNKSTA_DLLLA)
778 		pr_debug("  Link up (%s)\n",
779 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
780 	else
781 		pr_debug("  Link not ready (0x%04x)\n", val);
782 }
783 
784 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
785 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
786 
787 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
788 {
789 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
790 	int i;
791 
792 	/*
793 	 * Device BARs: 0x10 - 0x18
794 	 * Bus numbers and windows: 0x18 - 0x30
795 	 */
796 	for (i = 4; i < 13; i++)
797 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
798 	/* Rom: 0x38 */
799 	eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
800 
801 	/* Cache line & Latency timer: 0xC 0xD */
802 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
803                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
804         eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
805                 SAVED_BYTE(PCI_LATENCY_TIMER));
806 	/* Max latency, min grant, interrupt ping and line: 0x3C */
807 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
808 
809 	/* PCI Command: 0x4 */
810 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
811 
812 	/* Check the PCIe link is ready */
813 	eeh_bridge_check_link(edev);
814 }
815 
816 static void eeh_restore_device_bars(struct eeh_dev *edev)
817 {
818 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
819 	int i;
820 	u32 cmd;
821 
822 	for (i = 4; i < 10; i++)
823 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
824 	/* 12 == Expansion ROM Address */
825 	eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
826 
827 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
828 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
829 	eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
830 		SAVED_BYTE(PCI_LATENCY_TIMER));
831 
832 	/* max latency, min grant, interrupt pin and line */
833 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
834 
835 	/*
836 	 * Restore PERR & SERR bits, some devices require it,
837 	 * don't touch the other command bits
838 	 */
839 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
840 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
841 		cmd |= PCI_COMMAND_PARITY;
842 	else
843 		cmd &= ~PCI_COMMAND_PARITY;
844 	if (edev->config_space[1] & PCI_COMMAND_SERR)
845 		cmd |= PCI_COMMAND_SERR;
846 	else
847 		cmd &= ~PCI_COMMAND_SERR;
848 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
849 }
850 
851 /**
852  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
853  * @data: EEH device
854  * @flag: Unused
855  *
856  * Loads the PCI configuration space base address registers,
857  * the expansion ROM base address, the latency timer, and etc.
858  * from the saved values in the device node.
859  */
860 static void *eeh_restore_one_device_bars(void *data, void *flag)
861 {
862 	struct eeh_dev *edev = (struct eeh_dev *)data;
863 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
864 
865 	/* Do special restore for bridges */
866 	if (edev->mode & EEH_DEV_BRIDGE)
867 		eeh_restore_bridge_bars(edev);
868 	else
869 		eeh_restore_device_bars(edev);
870 
871 	if (eeh_ops->restore_config && pdn)
872 		eeh_ops->restore_config(pdn);
873 
874 	return NULL;
875 }
876 
877 /**
878  * eeh_pe_restore_bars - Restore the PCI config space info
879  * @pe: EEH PE
880  *
881  * This routine performs a recursive walk to the children
882  * of this device as well.
883  */
884 void eeh_pe_restore_bars(struct eeh_pe *pe)
885 {
886 	/*
887 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
888 	 * will take that.
889 	 */
890 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
891 }
892 
893 /**
894  * eeh_pe_loc_get - Retrieve location code binding to the given PE
895  * @pe: EEH PE
896  *
897  * Retrieve the location code of the given PE. If the primary PE bus
898  * is root bus, we will grab location code from PHB device tree node
899  * or root port. Otherwise, the upstream bridge's device tree node
900  * of the primary PE bus will be checked for the location code.
901  */
902 const char *eeh_pe_loc_get(struct eeh_pe *pe)
903 {
904 	struct pci_bus *bus = eeh_pe_bus_get(pe);
905 	struct device_node *dn;
906 	const char *loc = NULL;
907 
908 	while (bus) {
909 		dn = pci_bus_to_OF_node(bus);
910 		if (!dn) {
911 			bus = bus->parent;
912 			continue;
913 		}
914 
915 		if (pci_is_root_bus(bus))
916 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
917 		else
918 			loc = of_get_property(dn, "ibm,slot-location-code",
919 					      NULL);
920 
921 		if (loc)
922 			return loc;
923 
924 		bus = bus->parent;
925 	}
926 
927 	return "N/A";
928 }
929 
930 /**
931  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
932  * @pe: EEH PE
933  *
934  * Retrieve the PCI bus according to the given PE. Basically,
935  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
936  * primary PCI bus will be retrieved. The parent bus will be
937  * returned for BUS PE. However, we don't have associated PCI
938  * bus for DEVICE PE.
939  */
940 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
941 {
942 	struct eeh_dev *edev;
943 	struct pci_dev *pdev;
944 
945 	if (pe->type & EEH_PE_PHB)
946 		return pe->phb->bus;
947 
948 	/* The primary bus might be cached during probe time */
949 	if (pe->state & EEH_PE_PRI_BUS)
950 		return pe->bus;
951 
952 	/* Retrieve the parent PCI bus of first (top) PCI device */
953 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
954 	pdev = eeh_dev_to_pci_dev(edev);
955 	if (pdev)
956 		return pdev->bus;
957 
958 	return NULL;
959 }
960