xref: /openbmc/linux/arch/powerpc/kernel/eeh_pe.c (revision 6774def6)
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37 
38 /**
39  * eeh_set_pe_aux_size - Set PE auxillary data size
40  * @size: PE auxillary data size
41  *
42  * Set PE auxillary data size
43  */
44 void eeh_set_pe_aux_size(int size)
45 {
46 	if (size < 0)
47 		return;
48 
49 	eeh_pe_aux_size = size;
50 }
51 
52 /**
53  * eeh_pe_alloc - Allocate PE
54  * @phb: PCI controller
55  * @type: PE type
56  *
57  * Allocate PE instance dynamically.
58  */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 	struct eeh_pe *pe;
62 	size_t alloc_size;
63 
64 	alloc_size = sizeof(struct eeh_pe);
65 	if (eeh_pe_aux_size) {
66 		alloc_size = ALIGN(alloc_size, cache_line_size());
67 		alloc_size += eeh_pe_aux_size;
68 	}
69 
70 	/* Allocate PHB PE */
71 	pe = kzalloc(alloc_size, GFP_KERNEL);
72 	if (!pe) return NULL;
73 
74 	/* Initialize PHB PE */
75 	pe->type = type;
76 	pe->phb = phb;
77 	INIT_LIST_HEAD(&pe->child_list);
78 	INIT_LIST_HEAD(&pe->child);
79 	INIT_LIST_HEAD(&pe->edevs);
80 
81 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 				      cache_line_size());
83 	return pe;
84 }
85 
86 /**
87  * eeh_phb_pe_create - Create PHB PE
88  * @phb: PCI controller
89  *
90  * The function should be called while the PHB is detected during
91  * system boot or PCI hotplug in order to create PHB PE.
92  */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 	struct eeh_pe *pe;
96 
97 	/* Allocate PHB PE */
98 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 	if (!pe) {
100 		pr_err("%s: out of memory!\n", __func__);
101 		return -ENOMEM;
102 	}
103 
104 	/* Put it into the list */
105 	list_add_tail(&pe->child, &eeh_phb_pe);
106 
107 	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108 
109 	return 0;
110 }
111 
112 /**
113  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114  * @phb: PCI controller
115  *
116  * The overall PEs form hierarchy tree. The first layer of the
117  * hierarchy tree is composed of PHB PEs. The function is used
118  * to retrieve the corresponding PHB PE according to the given PHB.
119  */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 	struct eeh_pe *pe;
123 
124 	list_for_each_entry(pe, &eeh_phb_pe, child) {
125 		/*
126 		 * Actually, we needn't check the type since
127 		 * the PE for PHB has been determined when that
128 		 * was created.
129 		 */
130 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 			return pe;
132 	}
133 
134 	return NULL;
135 }
136 
137 /**
138  * eeh_pe_next - Retrieve the next PE in the tree
139  * @pe: current PE
140  * @root: root PE
141  *
142  * The function is used to retrieve the next PE in the
143  * hierarchy PE tree.
144  */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 				  struct eeh_pe *root)
147 {
148 	struct list_head *next = pe->child_list.next;
149 
150 	if (next == &pe->child_list) {
151 		while (1) {
152 			if (pe == root)
153 				return NULL;
154 			next = pe->child.next;
155 			if (next != &pe->parent->child_list)
156 				break;
157 			pe = pe->parent;
158 		}
159 	}
160 
161 	return list_entry(next, struct eeh_pe, child);
162 }
163 
164 /**
165  * eeh_pe_traverse - Traverse PEs in the specified PHB
166  * @root: root PE
167  * @fn: callback
168  * @flag: extra parameter to callback
169  *
170  * The function is used to traverse the specified PE and its
171  * child PEs. The traversing is to be terminated once the
172  * callback returns something other than NULL, or no more PEs
173  * to be traversed.
174  */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 		      eeh_traverse_func fn, void *flag)
177 {
178 	struct eeh_pe *pe;
179 	void *ret;
180 
181 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 		ret = fn(pe, flag);
183 		if (ret) return ret;
184 	}
185 
186 	return NULL;
187 }
188 
189 /**
190  * eeh_pe_dev_traverse - Traverse the devices from the PE
191  * @root: EEH PE
192  * @fn: function callback
193  * @flag: extra parameter to callback
194  *
195  * The function is used to traverse the devices of the specified
196  * PE and its child PEs.
197  */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 		eeh_traverse_func fn, void *flag)
200 {
201 	struct eeh_pe *pe;
202 	struct eeh_dev *edev, *tmp;
203 	void *ret;
204 
205 	if (!root) {
206 		pr_warn("%s: Invalid PE %p\n",
207 			__func__, root);
208 		return NULL;
209 	}
210 
211 	/* Traverse root PE */
212 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 		eeh_pe_for_each_dev(pe, edev, tmp) {
214 			ret = fn(edev, flag);
215 			if (ret)
216 				return ret;
217 		}
218 	}
219 
220 	return NULL;
221 }
222 
223 /**
224  * __eeh_pe_get - Check the PE address
225  * @data: EEH PE
226  * @flag: EEH device
227  *
228  * For one particular PE, it can be identified by PE address
229  * or tranditional BDF address. BDF address is composed of
230  * Bus/Device/Function number. The extra data referred by flag
231  * indicates which type of address should be used.
232  */
233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 	struct eeh_pe *pe = (struct eeh_pe *)data;
236 	struct eeh_dev *edev = (struct eeh_dev *)flag;
237 
238 	/* Unexpected PHB PE */
239 	if (pe->type & EEH_PE_PHB)
240 		return NULL;
241 
242 	/* We prefer PE address */
243 	if (edev->pe_config_addr &&
244 	   (edev->pe_config_addr == pe->addr))
245 		return pe;
246 
247 	/* Try BDF address */
248 	if (edev->config_addr &&
249 	   (edev->config_addr == pe->config_addr))
250 		return pe;
251 
252 	return NULL;
253 }
254 
255 /**
256  * eeh_pe_get - Search PE based on the given address
257  * @edev: EEH device
258  *
259  * Search the corresponding PE based on the specified address which
260  * is included in the eeh device. The function is used to check if
261  * the associated PE has been created against the PE address. It's
262  * notable that the PE address has 2 format: traditional PE address
263  * which is composed of PCI bus/device/function number, or unified
264  * PE address.
265  */
266 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
267 {
268 	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
269 	struct eeh_pe *pe;
270 
271 	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
272 
273 	return pe;
274 }
275 
276 /**
277  * eeh_pe_get_parent - Retrieve the parent PE
278  * @edev: EEH device
279  *
280  * The whole PEs existing in the system are organized as hierarchy
281  * tree. The function is used to retrieve the parent PE according
282  * to the parent EEH device.
283  */
284 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
285 {
286 	struct device_node *dn;
287 	struct eeh_dev *parent;
288 
289 	/*
290 	 * It might have the case for the indirect parent
291 	 * EEH device already having associated PE, but
292 	 * the direct parent EEH device doesn't have yet.
293 	 */
294 	dn = edev->dn->parent;
295 	while (dn) {
296 		/* We're poking out of PCI territory */
297 		if (!PCI_DN(dn)) return NULL;
298 
299 		parent = of_node_to_eeh_dev(dn);
300 		/* We're poking out of PCI territory */
301 		if (!parent) return NULL;
302 
303 		if (parent->pe)
304 			return parent->pe;
305 
306 		dn = dn->parent;
307 	}
308 
309 	return NULL;
310 }
311 
312 /**
313  * eeh_add_to_parent_pe - Add EEH device to parent PE
314  * @edev: EEH device
315  *
316  * Add EEH device to the parent PE. If the parent PE already
317  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
318  * we have to create new PE to hold the EEH device and the new
319  * PE will be linked to its parent PE as well.
320  */
321 int eeh_add_to_parent_pe(struct eeh_dev *edev)
322 {
323 	struct eeh_pe *pe, *parent;
324 
325 	/*
326 	 * Search the PE has been existing or not according
327 	 * to the PE address. If that has been existing, the
328 	 * PE should be composed of PCI bus and its subordinate
329 	 * components.
330 	 */
331 	pe = eeh_pe_get(edev);
332 	if (pe && !(pe->type & EEH_PE_INVALID)) {
333 		if (!edev->pe_config_addr) {
334 			pr_err("%s: PE with addr 0x%x already exists\n",
335 				__func__, edev->config_addr);
336 			return -EEXIST;
337 		}
338 
339 		/* Mark the PE as type of PCI bus */
340 		pe->type = EEH_PE_BUS;
341 		edev->pe = pe;
342 
343 		/* Put the edev to PE */
344 		list_add_tail(&edev->list, &pe->edevs);
345 		pr_debug("EEH: Add %s to Bus PE#%x\n",
346 			edev->dn->full_name, pe->addr);
347 
348 		return 0;
349 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
350 		list_add_tail(&edev->list, &pe->edevs);
351 		edev->pe = pe;
352 		/*
353 		 * We're running to here because of PCI hotplug caused by
354 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
355 		 */
356 		parent = pe;
357 		while (parent) {
358 			if (!(parent->type & EEH_PE_INVALID))
359 				break;
360 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
361 			parent = parent->parent;
362 		}
363 		pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
364 			edev->dn->full_name, pe->addr, pe->parent->addr);
365 
366 		return 0;
367 	}
368 
369 	/* Create a new EEH PE */
370 	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
371 	if (!pe) {
372 		pr_err("%s: out of memory!\n", __func__);
373 		return -ENOMEM;
374 	}
375 	pe->addr	= edev->pe_config_addr;
376 	pe->config_addr	= edev->config_addr;
377 
378 	/*
379 	 * Put the new EEH PE into hierarchy tree. If the parent
380 	 * can't be found, the newly created PE will be attached
381 	 * to PHB directly. Otherwise, we have to associate the
382 	 * PE with its parent.
383 	 */
384 	parent = eeh_pe_get_parent(edev);
385 	if (!parent) {
386 		parent = eeh_phb_pe_get(edev->phb);
387 		if (!parent) {
388 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
389 				__func__, edev->phb->global_number);
390 			edev->pe = NULL;
391 			kfree(pe);
392 			return -EEXIST;
393 		}
394 	}
395 	pe->parent = parent;
396 
397 	/*
398 	 * Put the newly created PE into the child list and
399 	 * link the EEH device accordingly.
400 	 */
401 	list_add_tail(&pe->child, &parent->child_list);
402 	list_add_tail(&edev->list, &pe->edevs);
403 	edev->pe = pe;
404 	pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
405 		edev->dn->full_name, pe->addr, pe->parent->addr);
406 
407 	return 0;
408 }
409 
410 /**
411  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
412  * @edev: EEH device
413  *
414  * The PE hierarchy tree might be changed when doing PCI hotplug.
415  * Also, the PCI devices or buses could be removed from the system
416  * during EEH recovery. So we have to call the function remove the
417  * corresponding PE accordingly if necessary.
418  */
419 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
420 {
421 	struct eeh_pe *pe, *parent, *child;
422 	int cnt;
423 
424 	if (!edev->pe) {
425 		pr_debug("%s: No PE found for EEH device %s\n",
426 			 __func__, edev->dn->full_name);
427 		return -EEXIST;
428 	}
429 
430 	/* Remove the EEH device */
431 	pe = eeh_dev_to_pe(edev);
432 	edev->pe = NULL;
433 	list_del(&edev->list);
434 
435 	/*
436 	 * Check if the parent PE includes any EEH devices.
437 	 * If not, we should delete that. Also, we should
438 	 * delete the parent PE if it doesn't have associated
439 	 * child PEs and EEH devices.
440 	 */
441 	while (1) {
442 		parent = pe->parent;
443 		if (pe->type & EEH_PE_PHB)
444 			break;
445 
446 		if (!(pe->state & EEH_PE_KEEP)) {
447 			if (list_empty(&pe->edevs) &&
448 			    list_empty(&pe->child_list)) {
449 				list_del(&pe->child);
450 				kfree(pe);
451 			} else {
452 				break;
453 			}
454 		} else {
455 			if (list_empty(&pe->edevs)) {
456 				cnt = 0;
457 				list_for_each_entry(child, &pe->child_list, child) {
458 					if (!(child->type & EEH_PE_INVALID)) {
459 						cnt++;
460 						break;
461 					}
462 				}
463 
464 				if (!cnt)
465 					pe->type |= EEH_PE_INVALID;
466 				else
467 					break;
468 			}
469 		}
470 
471 		pe = parent;
472 	}
473 
474 	return 0;
475 }
476 
477 /**
478  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
479  * @pe: EEH PE
480  *
481  * We have time stamp for each PE to trace its time of getting
482  * frozen in last hour. The function should be called to update
483  * the time stamp on first error of the specific PE. On the other
484  * handle, we needn't account for errors happened in last hour.
485  */
486 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
487 {
488 	struct timeval tstamp;
489 
490 	if (!pe) return;
491 
492 	if (pe->freeze_count <= 0) {
493 		pe->freeze_count = 0;
494 		do_gettimeofday(&pe->tstamp);
495 	} else {
496 		do_gettimeofday(&tstamp);
497 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
498 			pe->tstamp = tstamp;
499 			pe->freeze_count = 0;
500 		}
501 	}
502 }
503 
504 /**
505  * __eeh_pe_state_mark - Mark the state for the PE
506  * @data: EEH PE
507  * @flag: state
508  *
509  * The function is used to mark the indicated state for the given
510  * PE. Also, the associated PCI devices will be put into IO frozen
511  * state as well.
512  */
513 static void *__eeh_pe_state_mark(void *data, void *flag)
514 {
515 	struct eeh_pe *pe = (struct eeh_pe *)data;
516 	int state = *((int *)flag);
517 	struct eeh_dev *edev, *tmp;
518 	struct pci_dev *pdev;
519 
520 	/* Keep the state of permanently removed PE intact */
521 	if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
522 	    (state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
523 		return NULL;
524 
525 	pe->state |= state;
526 
527 	/* Offline PCI devices if applicable */
528 	if (!(state & EEH_PE_ISOLATED))
529 		return NULL;
530 
531 	eeh_pe_for_each_dev(pe, edev, tmp) {
532 		pdev = eeh_dev_to_pci_dev(edev);
533 		if (pdev)
534 			pdev->error_state = pci_channel_io_frozen;
535 	}
536 
537 	/* Block PCI config access if required */
538 	if (pe->state & EEH_PE_CFG_RESTRICTED)
539 		pe->state |= EEH_PE_CFG_BLOCKED;
540 
541 	return NULL;
542 }
543 
544 /**
545  * eeh_pe_state_mark - Mark specified state for PE and its associated device
546  * @pe: EEH PE
547  *
548  * EEH error affects the current PE and its child PEs. The function
549  * is used to mark appropriate state for the affected PEs and the
550  * associated devices.
551  */
552 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
553 {
554 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
555 }
556 
557 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
558 {
559 	struct eeh_dev *edev = data;
560 	int mode = *((int *)flag);
561 
562 	edev->mode |= mode;
563 
564 	return NULL;
565 }
566 
567 /**
568  * eeh_pe_dev_state_mark - Mark state for all device under the PE
569  * @pe: EEH PE
570  *
571  * Mark specific state for all child devices of the PE.
572  */
573 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
574 {
575 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
576 }
577 
578 /**
579  * __eeh_pe_state_clear - Clear state for the PE
580  * @data: EEH PE
581  * @flag: state
582  *
583  * The function is used to clear the indicated state from the
584  * given PE. Besides, we also clear the check count of the PE
585  * as well.
586  */
587 static void *__eeh_pe_state_clear(void *data, void *flag)
588 {
589 	struct eeh_pe *pe = (struct eeh_pe *)data;
590 	int state = *((int *)flag);
591 	struct eeh_dev *edev, *tmp;
592 	struct pci_dev *pdev;
593 
594 	/* Keep the state of permanently removed PE intact */
595 	if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) &&
596 	    (state & EEH_PE_ISOLATED))
597 		return NULL;
598 
599 	pe->state &= ~state;
600 
601 	/*
602 	 * Special treatment on clearing isolated state. Clear
603 	 * check count since last isolation and put all affected
604 	 * devices to normal state.
605 	 */
606 	if (!(state & EEH_PE_ISOLATED))
607 		return NULL;
608 
609 	pe->check_count = 0;
610 	eeh_pe_for_each_dev(pe, edev, tmp) {
611 		pdev = eeh_dev_to_pci_dev(edev);
612 		if (!pdev)
613 			continue;
614 
615 		pdev->error_state = pci_channel_io_normal;
616 	}
617 
618 	/* Unblock PCI config access if required */
619 	if (pe->state & EEH_PE_CFG_RESTRICTED)
620 		pe->state &= ~EEH_PE_CFG_BLOCKED;
621 
622 	return NULL;
623 }
624 
625 /**
626  * eeh_pe_state_clear - Clear state for the PE and its children
627  * @pe: PE
628  * @state: state to be cleared
629  *
630  * When the PE and its children has been recovered from error,
631  * we need clear the error state for that. The function is used
632  * for the purpose.
633  */
634 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
635 {
636 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
637 }
638 
639 /*
640  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
641  * buses assigned explicitly by firmware, and we probably have
642  * lost that after reset. So we have to delay the check until
643  * the PCI-CFG registers have been restored for the parent
644  * bridge.
645  *
646  * Don't use normal PCI-CFG accessors, which probably has been
647  * blocked on normal path during the stage. So we need utilize
648  * eeh operations, which is always permitted.
649  */
650 static void eeh_bridge_check_link(struct eeh_dev *edev,
651 				  struct device_node *dn)
652 {
653 	int cap;
654 	uint32_t val;
655 	int timeout = 0;
656 
657 	/*
658 	 * We only check root port and downstream ports of
659 	 * PCIe switches
660 	 */
661 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
662 		return;
663 
664 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
665 		 __func__, edev->phb->global_number,
666 		 edev->config_addr >> 8,
667 		 PCI_SLOT(edev->config_addr & 0xFF),
668 		 PCI_FUNC(edev->config_addr & 0xFF));
669 
670 	/* Check slot status */
671 	cap = edev->pcie_cap;
672 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
673 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
674 		pr_debug("  No card in the slot (0x%04x) !\n", val);
675 		return;
676 	}
677 
678 	/* Check power status if we have the capability */
679 	eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
680 	if (val & PCI_EXP_SLTCAP_PCP) {
681 		eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
682 		if (val & PCI_EXP_SLTCTL_PCC) {
683 			pr_debug("  In power-off state, power it on ...\n");
684 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
685 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
686 			eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
687 			msleep(2 * 1000);
688 		}
689 	}
690 
691 	/* Enable link */
692 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
693 	val &= ~PCI_EXP_LNKCTL_LD;
694 	eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
695 
696 	/* Check link */
697 	eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
698 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
699 		pr_debug("  No link reporting capability (0x%08x) \n", val);
700 		msleep(1000);
701 		return;
702 	}
703 
704 	/* Wait the link is up until timeout (5s) */
705 	timeout = 0;
706 	while (timeout < 5000) {
707 		msleep(20);
708 		timeout += 20;
709 
710 		eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
711 		if (val & PCI_EXP_LNKSTA_DLLLA)
712 			break;
713 	}
714 
715 	if (val & PCI_EXP_LNKSTA_DLLLA)
716 		pr_debug("  Link up (%s)\n",
717 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
718 	else
719 		pr_debug("  Link not ready (0x%04x)\n", val);
720 }
721 
722 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
723 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
724 
725 static void eeh_restore_bridge_bars(struct eeh_dev *edev,
726 				    struct device_node *dn)
727 {
728 	int i;
729 
730 	/*
731 	 * Device BARs: 0x10 - 0x18
732 	 * Bus numbers and windows: 0x18 - 0x30
733 	 */
734 	for (i = 4; i < 13; i++)
735 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
736 	/* Rom: 0x38 */
737 	eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
738 
739 	/* Cache line & Latency timer: 0xC 0xD */
740 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
741                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742         eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
743                 SAVED_BYTE(PCI_LATENCY_TIMER));
744 	/* Max latency, min grant, interrupt ping and line: 0x3C */
745 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
746 
747 	/* PCI Command: 0x4 */
748 	eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
749 
750 	/* Check the PCIe link is ready */
751 	eeh_bridge_check_link(edev, dn);
752 }
753 
754 static void eeh_restore_device_bars(struct eeh_dev *edev,
755 				    struct device_node *dn)
756 {
757 	int i;
758 	u32 cmd;
759 
760 	for (i = 4; i < 10; i++)
761 		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
762 	/* 12 == Expansion ROM Address */
763 	eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
764 
765 	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
766 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
767 	eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
768 		SAVED_BYTE(PCI_LATENCY_TIMER));
769 
770 	/* max latency, min grant, interrupt pin and line */
771 	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
772 
773 	/*
774 	 * Restore PERR & SERR bits, some devices require it,
775 	 * don't touch the other command bits
776 	 */
777 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
778 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
779 		cmd |= PCI_COMMAND_PARITY;
780 	else
781 		cmd &= ~PCI_COMMAND_PARITY;
782 	if (edev->config_space[1] & PCI_COMMAND_SERR)
783 		cmd |= PCI_COMMAND_SERR;
784 	else
785 		cmd &= ~PCI_COMMAND_SERR;
786 	eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
787 }
788 
789 /**
790  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
791  * @data: EEH device
792  * @flag: Unused
793  *
794  * Loads the PCI configuration space base address registers,
795  * the expansion ROM base address, the latency timer, and etc.
796  * from the saved values in the device node.
797  */
798 static void *eeh_restore_one_device_bars(void *data, void *flag)
799 {
800 	struct eeh_dev *edev = (struct eeh_dev *)data;
801 	struct device_node *dn = eeh_dev_to_of_node(edev);
802 
803 	/* Do special restore for bridges */
804 	if (edev->mode & EEH_DEV_BRIDGE)
805 		eeh_restore_bridge_bars(edev, dn);
806 	else
807 		eeh_restore_device_bars(edev, dn);
808 
809 	if (eeh_ops->restore_config)
810 		eeh_ops->restore_config(dn);
811 
812 	return NULL;
813 }
814 
815 /**
816  * eeh_pe_restore_bars - Restore the PCI config space info
817  * @pe: EEH PE
818  *
819  * This routine performs a recursive walk to the children
820  * of this device as well.
821  */
822 void eeh_pe_restore_bars(struct eeh_pe *pe)
823 {
824 	/*
825 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
826 	 * will take that.
827 	 */
828 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
829 }
830 
831 /**
832  * eeh_pe_loc_get - Retrieve location code binding to the given PE
833  * @pe: EEH PE
834  *
835  * Retrieve the location code of the given PE. If the primary PE bus
836  * is root bus, we will grab location code from PHB device tree node
837  * or root port. Otherwise, the upstream bridge's device tree node
838  * of the primary PE bus will be checked for the location code.
839  */
840 const char *eeh_pe_loc_get(struct eeh_pe *pe)
841 {
842 	struct pci_bus *bus = eeh_pe_bus_get(pe);
843 	struct device_node *dn = pci_bus_to_OF_node(bus);
844 	const char *loc = NULL;
845 
846 	if (!dn)
847 		goto out;
848 
849 	/* PHB PE or root PE ? */
850 	if (pci_is_root_bus(bus)) {
851 		loc = of_get_property(dn, "ibm,loc-code", NULL);
852 		if (!loc)
853 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
854 		if (loc)
855 			goto out;
856 
857 		/* Check the root port */
858 		dn = dn->child;
859 		if (!dn)
860 			goto out;
861 	}
862 
863 	loc = of_get_property(dn, "ibm,loc-code", NULL);
864 	if (!loc)
865 		loc = of_get_property(dn, "ibm,slot-location-code", NULL);
866 
867 out:
868 	return loc ? loc : "N/A";
869 }
870 
871 /**
872  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
873  * @pe: EEH PE
874  *
875  * Retrieve the PCI bus according to the given PE. Basically,
876  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
877  * primary PCI bus will be retrieved. The parent bus will be
878  * returned for BUS PE. However, we don't have associated PCI
879  * bus for DEVICE PE.
880  */
881 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
882 {
883 	struct pci_bus *bus = NULL;
884 	struct eeh_dev *edev;
885 	struct pci_dev *pdev;
886 
887 	if (pe->type & EEH_PE_PHB) {
888 		bus = pe->phb->bus;
889 	} else if (pe->type & EEH_PE_BUS ||
890 		   pe->type & EEH_PE_DEVICE) {
891 		if (pe->bus) {
892 			bus = pe->bus;
893 			goto out;
894 		}
895 
896 		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
897 		pdev = eeh_dev_to_pci_dev(edev);
898 		if (pdev)
899 			bus = pdev->bus;
900 	}
901 
902 out:
903 	return bus;
904 }
905