1 /* 2 * The file intends to implement PE based on the information from 3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 4 * All the PEs should be organized as hierarchy tree. The first level 5 * of the tree will be associated to existing PHBs since the particular 6 * PE is only meaningful in one PHB domain. 7 * 8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/gfp.h> 28 #include <linux/init.h> 29 #include <linux/kernel.h> 30 #include <linux/pci.h> 31 #include <linux/string.h> 32 33 #include <asm/pci-bridge.h> 34 #include <asm/ppc-pci.h> 35 36 static LIST_HEAD(eeh_phb_pe); 37 38 /** 39 * eeh_pe_alloc - Allocate PE 40 * @phb: PCI controller 41 * @type: PE type 42 * 43 * Allocate PE instance dynamically. 44 */ 45 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 46 { 47 struct eeh_pe *pe; 48 49 /* Allocate PHB PE */ 50 pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL); 51 if (!pe) return NULL; 52 53 /* Initialize PHB PE */ 54 pe->type = type; 55 pe->phb = phb; 56 INIT_LIST_HEAD(&pe->child_list); 57 INIT_LIST_HEAD(&pe->child); 58 INIT_LIST_HEAD(&pe->edevs); 59 60 return pe; 61 } 62 63 /** 64 * eeh_phb_pe_create - Create PHB PE 65 * @phb: PCI controller 66 * 67 * The function should be called while the PHB is detected during 68 * system boot or PCI hotplug in order to create PHB PE. 69 */ 70 int eeh_phb_pe_create(struct pci_controller *phb) 71 { 72 struct eeh_pe *pe; 73 74 /* Allocate PHB PE */ 75 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 76 if (!pe) { 77 pr_err("%s: out of memory!\n", __func__); 78 return -ENOMEM; 79 } 80 81 /* Put it into the list */ 82 list_add_tail(&pe->child, &eeh_phb_pe); 83 84 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); 85 86 return 0; 87 } 88 89 /** 90 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 91 * @phb: PCI controller 92 * 93 * The overall PEs form hierarchy tree. The first layer of the 94 * hierarchy tree is composed of PHB PEs. The function is used 95 * to retrieve the corresponding PHB PE according to the given PHB. 96 */ 97 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 98 { 99 struct eeh_pe *pe; 100 101 list_for_each_entry(pe, &eeh_phb_pe, child) { 102 /* 103 * Actually, we needn't check the type since 104 * the PE for PHB has been determined when that 105 * was created. 106 */ 107 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 108 return pe; 109 } 110 111 return NULL; 112 } 113 114 /** 115 * eeh_pe_next - Retrieve the next PE in the tree 116 * @pe: current PE 117 * @root: root PE 118 * 119 * The function is used to retrieve the next PE in the 120 * hierarchy PE tree. 121 */ 122 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, 123 struct eeh_pe *root) 124 { 125 struct list_head *next = pe->child_list.next; 126 127 if (next == &pe->child_list) { 128 while (1) { 129 if (pe == root) 130 return NULL; 131 next = pe->child.next; 132 if (next != &pe->parent->child_list) 133 break; 134 pe = pe->parent; 135 } 136 } 137 138 return list_entry(next, struct eeh_pe, child); 139 } 140 141 /** 142 * eeh_pe_traverse - Traverse PEs in the specified PHB 143 * @root: root PE 144 * @fn: callback 145 * @flag: extra parameter to callback 146 * 147 * The function is used to traverse the specified PE and its 148 * child PEs. The traversing is to be terminated once the 149 * callback returns something other than NULL, or no more PEs 150 * to be traversed. 151 */ 152 void *eeh_pe_traverse(struct eeh_pe *root, 153 eeh_traverse_func fn, void *flag) 154 { 155 struct eeh_pe *pe; 156 void *ret; 157 158 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 159 ret = fn(pe, flag); 160 if (ret) return ret; 161 } 162 163 return NULL; 164 } 165 166 /** 167 * eeh_pe_dev_traverse - Traverse the devices from the PE 168 * @root: EEH PE 169 * @fn: function callback 170 * @flag: extra parameter to callback 171 * 172 * The function is used to traverse the devices of the specified 173 * PE and its child PEs. 174 */ 175 void *eeh_pe_dev_traverse(struct eeh_pe *root, 176 eeh_traverse_func fn, void *flag) 177 { 178 struct eeh_pe *pe; 179 struct eeh_dev *edev, *tmp; 180 void *ret; 181 182 if (!root) { 183 pr_warning("%s: Invalid PE %p\n", __func__, root); 184 return NULL; 185 } 186 187 /* Traverse root PE */ 188 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 189 eeh_pe_for_each_dev(pe, edev, tmp) { 190 ret = fn(edev, flag); 191 if (ret) 192 return ret; 193 } 194 } 195 196 return NULL; 197 } 198 199 /** 200 * __eeh_pe_get - Check the PE address 201 * @data: EEH PE 202 * @flag: EEH device 203 * 204 * For one particular PE, it can be identified by PE address 205 * or tranditional BDF address. BDF address is composed of 206 * Bus/Device/Function number. The extra data referred by flag 207 * indicates which type of address should be used. 208 */ 209 static void *__eeh_pe_get(void *data, void *flag) 210 { 211 struct eeh_pe *pe = (struct eeh_pe *)data; 212 struct eeh_dev *edev = (struct eeh_dev *)flag; 213 214 /* Unexpected PHB PE */ 215 if (pe->type & EEH_PE_PHB) 216 return NULL; 217 218 /* We prefer PE address */ 219 if (edev->pe_config_addr && 220 (edev->pe_config_addr == pe->addr)) 221 return pe; 222 223 /* Try BDF address */ 224 if (edev->config_addr && 225 (edev->config_addr == pe->config_addr)) 226 return pe; 227 228 return NULL; 229 } 230 231 /** 232 * eeh_pe_get - Search PE based on the given address 233 * @edev: EEH device 234 * 235 * Search the corresponding PE based on the specified address which 236 * is included in the eeh device. The function is used to check if 237 * the associated PE has been created against the PE address. It's 238 * notable that the PE address has 2 format: traditional PE address 239 * which is composed of PCI bus/device/function number, or unified 240 * PE address. 241 */ 242 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) 243 { 244 struct eeh_pe *root = eeh_phb_pe_get(edev->phb); 245 struct eeh_pe *pe; 246 247 pe = eeh_pe_traverse(root, __eeh_pe_get, edev); 248 249 return pe; 250 } 251 252 /** 253 * eeh_pe_get_parent - Retrieve the parent PE 254 * @edev: EEH device 255 * 256 * The whole PEs existing in the system are organized as hierarchy 257 * tree. The function is used to retrieve the parent PE according 258 * to the parent EEH device. 259 */ 260 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) 261 { 262 struct device_node *dn; 263 struct eeh_dev *parent; 264 265 /* 266 * It might have the case for the indirect parent 267 * EEH device already having associated PE, but 268 * the direct parent EEH device doesn't have yet. 269 */ 270 dn = edev->dn->parent; 271 while (dn) { 272 /* We're poking out of PCI territory */ 273 if (!PCI_DN(dn)) return NULL; 274 275 parent = of_node_to_eeh_dev(dn); 276 /* We're poking out of PCI territory */ 277 if (!parent) return NULL; 278 279 if (parent->pe) 280 return parent->pe; 281 282 dn = dn->parent; 283 } 284 285 return NULL; 286 } 287 288 /** 289 * eeh_add_to_parent_pe - Add EEH device to parent PE 290 * @edev: EEH device 291 * 292 * Add EEH device to the parent PE. If the parent PE already 293 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, 294 * we have to create new PE to hold the EEH device and the new 295 * PE will be linked to its parent PE as well. 296 */ 297 int eeh_add_to_parent_pe(struct eeh_dev *edev) 298 { 299 struct eeh_pe *pe, *parent; 300 301 /* 302 * Search the PE has been existing or not according 303 * to the PE address. If that has been existing, the 304 * PE should be composed of PCI bus and its subordinate 305 * components. 306 */ 307 pe = eeh_pe_get(edev); 308 if (pe && !(pe->type & EEH_PE_INVALID)) { 309 if (!edev->pe_config_addr) { 310 pr_err("%s: PE with addr 0x%x already exists\n", 311 __func__, edev->config_addr); 312 return -EEXIST; 313 } 314 315 /* Mark the PE as type of PCI bus */ 316 pe->type = EEH_PE_BUS; 317 edev->pe = pe; 318 319 /* Put the edev to PE */ 320 list_add_tail(&edev->list, &pe->edevs); 321 pr_debug("EEH: Add %s to Bus PE#%x\n", 322 edev->dn->full_name, pe->addr); 323 324 return 0; 325 } else if (pe && (pe->type & EEH_PE_INVALID)) { 326 list_add_tail(&edev->list, &pe->edevs); 327 edev->pe = pe; 328 /* 329 * We're running to here because of PCI hotplug caused by 330 * EEH recovery. We need clear EEH_PE_INVALID until the top. 331 */ 332 parent = pe; 333 while (parent) { 334 if (!(parent->type & EEH_PE_INVALID)) 335 break; 336 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP); 337 parent = parent->parent; 338 } 339 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 340 edev->dn->full_name, pe->addr, pe->parent->addr); 341 342 return 0; 343 } 344 345 /* Create a new EEH PE */ 346 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); 347 if (!pe) { 348 pr_err("%s: out of memory!\n", __func__); 349 return -ENOMEM; 350 } 351 pe->addr = edev->pe_config_addr; 352 pe->config_addr = edev->config_addr; 353 354 /* 355 * While doing PE reset, we probably hot-reset the 356 * upstream bridge. However, the PCI devices including 357 * the associated EEH devices might be removed when EEH 358 * core is doing recovery. So that won't safe to retrieve 359 * the bridge through downstream EEH device. We have to 360 * trace the parent PCI bus, then the upstream bridge. 361 */ 362 if (eeh_probe_mode_dev()) 363 pe->bus = eeh_dev_to_pci_dev(edev)->bus; 364 365 /* 366 * Put the new EEH PE into hierarchy tree. If the parent 367 * can't be found, the newly created PE will be attached 368 * to PHB directly. Otherwise, we have to associate the 369 * PE with its parent. 370 */ 371 parent = eeh_pe_get_parent(edev); 372 if (!parent) { 373 parent = eeh_phb_pe_get(edev->phb); 374 if (!parent) { 375 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 376 __func__, edev->phb->global_number); 377 edev->pe = NULL; 378 kfree(pe); 379 return -EEXIST; 380 } 381 } 382 pe->parent = parent; 383 384 /* 385 * Put the newly created PE into the child list and 386 * link the EEH device accordingly. 387 */ 388 list_add_tail(&pe->child, &parent->child_list); 389 list_add_tail(&edev->list, &pe->edevs); 390 edev->pe = pe; 391 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 392 edev->dn->full_name, pe->addr, pe->parent->addr); 393 394 return 0; 395 } 396 397 /** 398 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE 399 * @edev: EEH device 400 * 401 * The PE hierarchy tree might be changed when doing PCI hotplug. 402 * Also, the PCI devices or buses could be removed from the system 403 * during EEH recovery. So we have to call the function remove the 404 * corresponding PE accordingly if necessary. 405 */ 406 int eeh_rmv_from_parent_pe(struct eeh_dev *edev) 407 { 408 struct eeh_pe *pe, *parent, *child; 409 int cnt; 410 411 if (!edev->pe) { 412 pr_debug("%s: No PE found for EEH device %s\n", 413 __func__, edev->dn->full_name); 414 return -EEXIST; 415 } 416 417 /* Remove the EEH device */ 418 pe = edev->pe; 419 edev->pe = NULL; 420 list_del(&edev->list); 421 422 /* 423 * Check if the parent PE includes any EEH devices. 424 * If not, we should delete that. Also, we should 425 * delete the parent PE if it doesn't have associated 426 * child PEs and EEH devices. 427 */ 428 while (1) { 429 parent = pe->parent; 430 if (pe->type & EEH_PE_PHB) 431 break; 432 433 if (!(pe->state & EEH_PE_KEEP)) { 434 if (list_empty(&pe->edevs) && 435 list_empty(&pe->child_list)) { 436 list_del(&pe->child); 437 kfree(pe); 438 } else { 439 break; 440 } 441 } else { 442 if (list_empty(&pe->edevs)) { 443 cnt = 0; 444 list_for_each_entry(child, &pe->child_list, child) { 445 if (!(child->type & EEH_PE_INVALID)) { 446 cnt++; 447 break; 448 } 449 } 450 451 if (!cnt) 452 pe->type |= EEH_PE_INVALID; 453 else 454 break; 455 } 456 } 457 458 pe = parent; 459 } 460 461 return 0; 462 } 463 464 /** 465 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 466 * @pe: EEH PE 467 * 468 * We have time stamp for each PE to trace its time of getting 469 * frozen in last hour. The function should be called to update 470 * the time stamp on first error of the specific PE. On the other 471 * handle, we needn't account for errors happened in last hour. 472 */ 473 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 474 { 475 struct timeval tstamp; 476 477 if (!pe) return; 478 479 if (pe->freeze_count <= 0) { 480 pe->freeze_count = 0; 481 do_gettimeofday(&pe->tstamp); 482 } else { 483 do_gettimeofday(&tstamp); 484 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) { 485 pe->tstamp = tstamp; 486 pe->freeze_count = 0; 487 } 488 } 489 } 490 491 /** 492 * __eeh_pe_state_mark - Mark the state for the PE 493 * @data: EEH PE 494 * @flag: state 495 * 496 * The function is used to mark the indicated state for the given 497 * PE. Also, the associated PCI devices will be put into IO frozen 498 * state as well. 499 */ 500 static void *__eeh_pe_state_mark(void *data, void *flag) 501 { 502 struct eeh_pe *pe = (struct eeh_pe *)data; 503 int state = *((int *)flag); 504 struct eeh_dev *edev, *tmp; 505 struct pci_dev *pdev; 506 507 /* 508 * Mark the PE with the indicated state. Also, 509 * the associated PCI device will be put into 510 * I/O frozen state to avoid I/O accesses from 511 * the PCI device driver. 512 */ 513 pe->state |= state; 514 eeh_pe_for_each_dev(pe, edev, tmp) { 515 pdev = eeh_dev_to_pci_dev(edev); 516 if (pdev) 517 pdev->error_state = pci_channel_io_frozen; 518 } 519 520 return NULL; 521 } 522 523 /** 524 * eeh_pe_state_mark - Mark specified state for PE and its associated device 525 * @pe: EEH PE 526 * 527 * EEH error affects the current PE and its child PEs. The function 528 * is used to mark appropriate state for the affected PEs and the 529 * associated devices. 530 */ 531 void eeh_pe_state_mark(struct eeh_pe *pe, int state) 532 { 533 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 534 } 535 536 /** 537 * __eeh_pe_state_clear - Clear state for the PE 538 * @data: EEH PE 539 * @flag: state 540 * 541 * The function is used to clear the indicated state from the 542 * given PE. Besides, we also clear the check count of the PE 543 * as well. 544 */ 545 static void *__eeh_pe_state_clear(void *data, void *flag) 546 { 547 struct eeh_pe *pe = (struct eeh_pe *)data; 548 int state = *((int *)flag); 549 550 pe->state &= ~state; 551 pe->check_count = 0; 552 553 return NULL; 554 } 555 556 /** 557 * eeh_pe_state_clear - Clear state for the PE and its children 558 * @pe: PE 559 * @state: state to be cleared 560 * 561 * When the PE and its children has been recovered from error, 562 * we need clear the error state for that. The function is used 563 * for the purpose. 564 */ 565 void eeh_pe_state_clear(struct eeh_pe *pe, int state) 566 { 567 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 568 } 569 570 /* 571 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 572 * buses assigned explicitly by firmware, and we probably have 573 * lost that after reset. So we have to delay the check until 574 * the PCI-CFG registers have been restored for the parent 575 * bridge. 576 * 577 * Don't use normal PCI-CFG accessors, which probably has been 578 * blocked on normal path during the stage. So we need utilize 579 * eeh operations, which is always permitted. 580 */ 581 static void eeh_bridge_check_link(struct eeh_dev *edev, 582 struct device_node *dn) 583 { 584 int cap; 585 uint32_t val; 586 int timeout = 0; 587 588 /* 589 * We only check root port and downstream ports of 590 * PCIe switches 591 */ 592 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 593 return; 594 595 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n", 596 __func__, edev->phb->global_number, 597 edev->config_addr >> 8, 598 PCI_SLOT(edev->config_addr & 0xFF), 599 PCI_FUNC(edev->config_addr & 0xFF)); 600 601 /* Check slot status */ 602 cap = edev->pcie_cap; 603 eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val); 604 if (!(val & PCI_EXP_SLTSTA_PDS)) { 605 pr_debug(" No card in the slot (0x%04x) !\n", val); 606 return; 607 } 608 609 /* Check power status if we have the capability */ 610 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val); 611 if (val & PCI_EXP_SLTCAP_PCP) { 612 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val); 613 if (val & PCI_EXP_SLTCTL_PCC) { 614 pr_debug(" In power-off state, power it on ...\n"); 615 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 616 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 617 eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val); 618 msleep(2 * 1000); 619 } 620 } 621 622 /* Enable link */ 623 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val); 624 val &= ~PCI_EXP_LNKCTL_LD; 625 eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val); 626 627 /* Check link */ 628 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val); 629 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 630 pr_debug(" No link reporting capability (0x%08x) \n", val); 631 msleep(1000); 632 return; 633 } 634 635 /* Wait the link is up until timeout (5s) */ 636 timeout = 0; 637 while (timeout < 5000) { 638 msleep(20); 639 timeout += 20; 640 641 eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val); 642 if (val & PCI_EXP_LNKSTA_DLLLA) 643 break; 644 } 645 646 if (val & PCI_EXP_LNKSTA_DLLLA) 647 pr_debug(" Link up (%s)\n", 648 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 649 else 650 pr_debug(" Link not ready (0x%04x)\n", val); 651 } 652 653 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 654 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 655 656 static void eeh_restore_bridge_bars(struct eeh_dev *edev, 657 struct device_node *dn) 658 { 659 int i; 660 661 /* 662 * Device BARs: 0x10 - 0x18 663 * Bus numbers and windows: 0x18 - 0x30 664 */ 665 for (i = 4; i < 13; i++) 666 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 667 /* Rom: 0x38 */ 668 eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]); 669 670 /* Cache line & Latency timer: 0xC 0xD */ 671 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 672 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 673 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 674 SAVED_BYTE(PCI_LATENCY_TIMER)); 675 /* Max latency, min grant, interrupt ping and line: 0x3C */ 676 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 677 678 /* PCI Command: 0x4 */ 679 eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]); 680 681 /* Check the PCIe link is ready */ 682 eeh_bridge_check_link(edev, dn); 683 } 684 685 static void eeh_restore_device_bars(struct eeh_dev *edev, 686 struct device_node *dn) 687 { 688 int i; 689 u32 cmd; 690 691 for (i = 4; i < 10; i++) 692 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 693 /* 12 == Expansion ROM Address */ 694 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); 695 696 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 697 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 698 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 699 SAVED_BYTE(PCI_LATENCY_TIMER)); 700 701 /* max latency, min grant, interrupt pin and line */ 702 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 703 704 /* 705 * Restore PERR & SERR bits, some devices require it, 706 * don't touch the other command bits 707 */ 708 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); 709 if (edev->config_space[1] & PCI_COMMAND_PARITY) 710 cmd |= PCI_COMMAND_PARITY; 711 else 712 cmd &= ~PCI_COMMAND_PARITY; 713 if (edev->config_space[1] & PCI_COMMAND_SERR) 714 cmd |= PCI_COMMAND_SERR; 715 else 716 cmd &= ~PCI_COMMAND_SERR; 717 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); 718 } 719 720 /** 721 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 722 * @data: EEH device 723 * @flag: Unused 724 * 725 * Loads the PCI configuration space base address registers, 726 * the expansion ROM base address, the latency timer, and etc. 727 * from the saved values in the device node. 728 */ 729 static void *eeh_restore_one_device_bars(void *data, void *flag) 730 { 731 struct eeh_dev *edev = (struct eeh_dev *)data; 732 struct device_node *dn = eeh_dev_to_of_node(edev); 733 734 /* Do special restore for bridges */ 735 if (edev->mode & EEH_DEV_BRIDGE) 736 eeh_restore_bridge_bars(edev, dn); 737 else 738 eeh_restore_device_bars(edev, dn); 739 740 return NULL; 741 } 742 743 /** 744 * eeh_pe_restore_bars - Restore the PCI config space info 745 * @pe: EEH PE 746 * 747 * This routine performs a recursive walk to the children 748 * of this device as well. 749 */ 750 void eeh_pe_restore_bars(struct eeh_pe *pe) 751 { 752 /* 753 * We needn't take the EEH lock since eeh_pe_dev_traverse() 754 * will take that. 755 */ 756 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 757 } 758 759 /** 760 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 761 * @pe: EEH PE 762 * 763 * Retrieve the PCI bus according to the given PE. Basically, 764 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 765 * primary PCI bus will be retrieved. The parent bus will be 766 * returned for BUS PE. However, we don't have associated PCI 767 * bus for DEVICE PE. 768 */ 769 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 770 { 771 struct pci_bus *bus = NULL; 772 struct eeh_dev *edev; 773 struct pci_dev *pdev; 774 775 if (pe->type & EEH_PE_PHB) { 776 bus = pe->phb->bus; 777 } else if (pe->type & EEH_PE_BUS || 778 pe->type & EEH_PE_DEVICE) { 779 if (pe->bus) { 780 bus = pe->bus; 781 goto out; 782 } 783 784 edev = list_first_entry(&pe->edevs, struct eeh_dev, list); 785 pdev = eeh_dev_to_pci_dev(edev); 786 if (pdev) 787 bus = pdev->bus; 788 } 789 790 out: 791 return bus; 792 } 793