xref: /openbmc/linux/arch/powerpc/kernel/eeh_pe.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * The file intends to implement PE based on the information from
4  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
5  * All the PEs should be organized as hierarchy tree. The first level
6  * of the tree will be associated to existing PHBs since the particular
7  * PE is only meaningful in one PHB domain.
8  *
9  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10  */
11 
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/gfp.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
18 
19 #include <asm/pci-bridge.h>
20 #include <asm/ppc-pci.h>
21 
22 static int eeh_pe_aux_size = 0;
23 static LIST_HEAD(eeh_phb_pe);
24 
25 /**
26  * eeh_set_pe_aux_size - Set PE auxillary data size
27  * @size: PE auxillary data size
28  *
29  * Set PE auxillary data size
30  */
31 void eeh_set_pe_aux_size(int size)
32 {
33 	if (size < 0)
34 		return;
35 
36 	eeh_pe_aux_size = size;
37 }
38 
39 /**
40  * eeh_pe_alloc - Allocate PE
41  * @phb: PCI controller
42  * @type: PE type
43  *
44  * Allocate PE instance dynamically.
45  */
46 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
47 {
48 	struct eeh_pe *pe;
49 	size_t alloc_size;
50 
51 	alloc_size = sizeof(struct eeh_pe);
52 	if (eeh_pe_aux_size) {
53 		alloc_size = ALIGN(alloc_size, cache_line_size());
54 		alloc_size += eeh_pe_aux_size;
55 	}
56 
57 	/* Allocate PHB PE */
58 	pe = kzalloc(alloc_size, GFP_KERNEL);
59 	if (!pe) return NULL;
60 
61 	/* Initialize PHB PE */
62 	pe->type = type;
63 	pe->phb = phb;
64 	INIT_LIST_HEAD(&pe->child_list);
65 	INIT_LIST_HEAD(&pe->edevs);
66 
67 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
68 				      cache_line_size());
69 	return pe;
70 }
71 
72 /**
73  * eeh_phb_pe_create - Create PHB PE
74  * @phb: PCI controller
75  *
76  * The function should be called while the PHB is detected during
77  * system boot or PCI hotplug in order to create PHB PE.
78  */
79 int eeh_phb_pe_create(struct pci_controller *phb)
80 {
81 	struct eeh_pe *pe;
82 
83 	/* Allocate PHB PE */
84 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
85 	if (!pe) {
86 		pr_err("%s: out of memory!\n", __func__);
87 		return -ENOMEM;
88 	}
89 
90 	/* Put it into the list */
91 	list_add_tail(&pe->child, &eeh_phb_pe);
92 
93 	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
94 
95 	return 0;
96 }
97 
98 /**
99  * eeh_wait_state - Wait for PE state
100  * @pe: EEH PE
101  * @max_wait: maximal period in millisecond
102  *
103  * Wait for the state of associated PE. It might take some time
104  * to retrieve the PE's state.
105  */
106 int eeh_wait_state(struct eeh_pe *pe, int max_wait)
107 {
108 	int ret;
109 	int mwait;
110 
111 	/*
112 	 * According to PAPR, the state of PE might be temporarily
113 	 * unavailable. Under the circumstance, we have to wait
114 	 * for indicated time determined by firmware. The maximal
115 	 * wait time is 5 minutes, which is acquired from the original
116 	 * EEH implementation. Also, the original implementation
117 	 * also defined the minimal wait time as 1 second.
118 	 */
119 #define EEH_STATE_MIN_WAIT_TIME	(1000)
120 #define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
121 
122 	while (1) {
123 		ret = eeh_ops->get_state(pe, &mwait);
124 
125 		if (ret != EEH_STATE_UNAVAILABLE)
126 			return ret;
127 
128 		if (max_wait <= 0) {
129 			pr_warn("%s: Timeout when getting PE's state (%d)\n",
130 				__func__, max_wait);
131 			return EEH_STATE_NOT_SUPPORT;
132 		}
133 
134 		if (mwait < EEH_STATE_MIN_WAIT_TIME) {
135 			pr_warn("%s: Firmware returned bad wait value %d\n",
136 				__func__, mwait);
137 			mwait = EEH_STATE_MIN_WAIT_TIME;
138 		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
139 			pr_warn("%s: Firmware returned too long wait value %d\n",
140 				__func__, mwait);
141 			mwait = EEH_STATE_MAX_WAIT_TIME;
142 		}
143 
144 		msleep(min(mwait, max_wait));
145 		max_wait -= mwait;
146 	}
147 }
148 
149 /**
150  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
151  * @phb: PCI controller
152  *
153  * The overall PEs form hierarchy tree. The first layer of the
154  * hierarchy tree is composed of PHB PEs. The function is used
155  * to retrieve the corresponding PHB PE according to the given PHB.
156  */
157 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
158 {
159 	struct eeh_pe *pe;
160 
161 	list_for_each_entry(pe, &eeh_phb_pe, child) {
162 		/*
163 		 * Actually, we needn't check the type since
164 		 * the PE for PHB has been determined when that
165 		 * was created.
166 		 */
167 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
168 			return pe;
169 	}
170 
171 	return NULL;
172 }
173 
174 /**
175  * eeh_pe_next - Retrieve the next PE in the tree
176  * @pe: current PE
177  * @root: root PE
178  *
179  * The function is used to retrieve the next PE in the
180  * hierarchy PE tree.
181  */
182 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
183 {
184 	struct list_head *next = pe->child_list.next;
185 
186 	if (next == &pe->child_list) {
187 		while (1) {
188 			if (pe == root)
189 				return NULL;
190 			next = pe->child.next;
191 			if (next != &pe->parent->child_list)
192 				break;
193 			pe = pe->parent;
194 		}
195 	}
196 
197 	return list_entry(next, struct eeh_pe, child);
198 }
199 
200 /**
201  * eeh_pe_traverse - Traverse PEs in the specified PHB
202  * @root: root PE
203  * @fn: callback
204  * @flag: extra parameter to callback
205  *
206  * The function is used to traverse the specified PE and its
207  * child PEs. The traversing is to be terminated once the
208  * callback returns something other than NULL, or no more PEs
209  * to be traversed.
210  */
211 void *eeh_pe_traverse(struct eeh_pe *root,
212 		      eeh_pe_traverse_func fn, void *flag)
213 {
214 	struct eeh_pe *pe;
215 	void *ret;
216 
217 	eeh_for_each_pe(root, pe) {
218 		ret = fn(pe, flag);
219 		if (ret) return ret;
220 	}
221 
222 	return NULL;
223 }
224 
225 /**
226  * eeh_pe_dev_traverse - Traverse the devices from the PE
227  * @root: EEH PE
228  * @fn: function callback
229  * @flag: extra parameter to callback
230  *
231  * The function is used to traverse the devices of the specified
232  * PE and its child PEs.
233  */
234 void eeh_pe_dev_traverse(struct eeh_pe *root,
235 			  eeh_edev_traverse_func fn, void *flag)
236 {
237 	struct eeh_pe *pe;
238 	struct eeh_dev *edev, *tmp;
239 
240 	if (!root) {
241 		pr_warn("%s: Invalid PE %p\n",
242 			__func__, root);
243 		return;
244 	}
245 
246 	/* Traverse root PE */
247 	eeh_for_each_pe(root, pe)
248 		eeh_pe_for_each_dev(pe, edev, tmp)
249 			fn(edev, flag);
250 }
251 
252 /**
253  * __eeh_pe_get - Check the PE address
254  *
255  * For one particular PE, it can be identified by PE address
256  * or tranditional BDF address. BDF address is composed of
257  * Bus/Device/Function number. The extra data referred by flag
258  * indicates which type of address should be used.
259  */
260 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
261 {
262 	int *target_pe = flag;
263 
264 	/* PHB PEs are special and should be ignored */
265 	if (pe->type & EEH_PE_PHB)
266 		return NULL;
267 
268 	if (*target_pe == pe->addr)
269 		return pe;
270 
271 	return NULL;
272 }
273 
274 /**
275  * eeh_pe_get - Search PE based on the given address
276  * @phb: PCI controller
277  * @pe_no: PE number
278  *
279  * Search the corresponding PE based on the specified address which
280  * is included in the eeh device. The function is used to check if
281  * the associated PE has been created against the PE address. It's
282  * notable that the PE address has 2 format: traditional PE address
283  * which is composed of PCI bus/device/function number, or unified
284  * PE address.
285  */
286 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
287 {
288 	struct eeh_pe *root = eeh_phb_pe_get(phb);
289 
290 	return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
291 }
292 
293 /**
294  * eeh_pe_tree_insert - Add EEH device to parent PE
295  * @edev: EEH device
296  * @new_pe_parent: PE to create additional PEs under
297  *
298  * Add EEH device to the PE in edev->pe_config_addr. If a PE already
299  * exists with that address then @edev is added to that PE. Otherwise
300  * a new PE is created and inserted into the PE tree as a child of
301  * @new_pe_parent.
302  *
303  * If @new_pe_parent is NULL then the new PE will be inserted under
304  * directly under the the PHB.
305  */
306 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
307 {
308 	struct pci_controller *hose = edev->controller;
309 	struct eeh_pe *pe, *parent;
310 
311 	/*
312 	 * Search the PE has been existing or not according
313 	 * to the PE address. If that has been existing, the
314 	 * PE should be composed of PCI bus and its subordinate
315 	 * components.
316 	 */
317 	pe = eeh_pe_get(hose, edev->pe_config_addr);
318 	if (pe) {
319 		if (pe->type & EEH_PE_INVALID) {
320 			list_add_tail(&edev->entry, &pe->edevs);
321 			edev->pe = pe;
322 			/*
323 			 * We're running to here because of PCI hotplug caused by
324 			 * EEH recovery. We need clear EEH_PE_INVALID until the top.
325 			 */
326 			parent = pe;
327 			while (parent) {
328 				if (!(parent->type & EEH_PE_INVALID))
329 					break;
330 				parent->type &= ~EEH_PE_INVALID;
331 				parent = parent->parent;
332 			}
333 
334 			eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
335 				     pe->parent->addr);
336 		} else {
337 			/* Mark the PE as type of PCI bus */
338 			pe->type = EEH_PE_BUS;
339 			edev->pe = pe;
340 
341 			/* Put the edev to PE */
342 			list_add_tail(&edev->entry, &pe->edevs);
343 			eeh_edev_dbg(edev, "Added to bus PE\n");
344 		}
345 		return 0;
346 	}
347 
348 	/* Create a new EEH PE */
349 	if (edev->physfn)
350 		pe = eeh_pe_alloc(hose, EEH_PE_VF);
351 	else
352 		pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
353 	if (!pe) {
354 		pr_err("%s: out of memory!\n", __func__);
355 		return -ENOMEM;
356 	}
357 
358 	pe->addr = edev->pe_config_addr;
359 
360 	/*
361 	 * Put the new EEH PE into hierarchy tree. If the parent
362 	 * can't be found, the newly created PE will be attached
363 	 * to PHB directly. Otherwise, we have to associate the
364 	 * PE with its parent.
365 	 */
366 	if (!new_pe_parent) {
367 		new_pe_parent = eeh_phb_pe_get(hose);
368 		if (!new_pe_parent) {
369 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
370 				__func__, hose->global_number);
371 			edev->pe = NULL;
372 			kfree(pe);
373 			return -EEXIST;
374 		}
375 	}
376 
377 	/* link new PE into the tree */
378 	pe->parent = new_pe_parent;
379 	list_add_tail(&pe->child, &new_pe_parent->child_list);
380 
381 	/*
382 	 * Put the newly created PE into the child list and
383 	 * link the EEH device accordingly.
384 	 */
385 	list_add_tail(&edev->entry, &pe->edevs);
386 	edev->pe = pe;
387 	eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
388 		     new_pe_parent->addr);
389 
390 	return 0;
391 }
392 
393 /**
394  * eeh_pe_tree_remove - Remove one EEH device from the associated PE
395  * @edev: EEH device
396  *
397  * The PE hierarchy tree might be changed when doing PCI hotplug.
398  * Also, the PCI devices or buses could be removed from the system
399  * during EEH recovery. So we have to call the function remove the
400  * corresponding PE accordingly if necessary.
401  */
402 int eeh_pe_tree_remove(struct eeh_dev *edev)
403 {
404 	struct eeh_pe *pe, *parent, *child;
405 	bool keep, recover;
406 	int cnt;
407 
408 	pe = eeh_dev_to_pe(edev);
409 	if (!pe) {
410 		eeh_edev_dbg(edev, "No PE found for device.\n");
411 		return -EEXIST;
412 	}
413 
414 	/* Remove the EEH device */
415 	edev->pe = NULL;
416 	list_del(&edev->entry);
417 
418 	/*
419 	 * Check if the parent PE includes any EEH devices.
420 	 * If not, we should delete that. Also, we should
421 	 * delete the parent PE if it doesn't have associated
422 	 * child PEs and EEH devices.
423 	 */
424 	while (1) {
425 		parent = pe->parent;
426 
427 		/* PHB PEs should never be removed */
428 		if (pe->type & EEH_PE_PHB)
429 			break;
430 
431 		/*
432 		 * XXX: KEEP is set while resetting a PE. I don't think it's
433 		 * ever set without RECOVERING also being set. I could
434 		 * be wrong though so catch that with a WARN.
435 		 */
436 		keep = !!(pe->state & EEH_PE_KEEP);
437 		recover = !!(pe->state & EEH_PE_RECOVERING);
438 		WARN_ON(keep && !recover);
439 
440 		if (!keep && !recover) {
441 			if (list_empty(&pe->edevs) &&
442 			    list_empty(&pe->child_list)) {
443 				list_del(&pe->child);
444 				kfree(pe);
445 			} else {
446 				break;
447 			}
448 		} else {
449 			/*
450 			 * Mark the PE as invalid. At the end of the recovery
451 			 * process any invalid PEs will be garbage collected.
452 			 *
453 			 * We need to delay the free()ing of them since we can
454 			 * remove edev's while traversing the PE tree which
455 			 * might trigger the removal of a PE and we can't
456 			 * deal with that (yet).
457 			 */
458 			if (list_empty(&pe->edevs)) {
459 				cnt = 0;
460 				list_for_each_entry(child, &pe->child_list, child) {
461 					if (!(child->type & EEH_PE_INVALID)) {
462 						cnt++;
463 						break;
464 					}
465 				}
466 
467 				if (!cnt)
468 					pe->type |= EEH_PE_INVALID;
469 				else
470 					break;
471 			}
472 		}
473 
474 		pe = parent;
475 	}
476 
477 	return 0;
478 }
479 
480 /**
481  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
482  * @pe: EEH PE
483  *
484  * We have time stamp for each PE to trace its time of getting
485  * frozen in last hour. The function should be called to update
486  * the time stamp on first error of the specific PE. On the other
487  * handle, we needn't account for errors happened in last hour.
488  */
489 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
490 {
491 	time64_t tstamp;
492 
493 	if (!pe) return;
494 
495 	if (pe->freeze_count <= 0) {
496 		pe->freeze_count = 0;
497 		pe->tstamp = ktime_get_seconds();
498 	} else {
499 		tstamp = ktime_get_seconds();
500 		if (tstamp - pe->tstamp > 3600) {
501 			pe->tstamp = tstamp;
502 			pe->freeze_count = 0;
503 		}
504 	}
505 }
506 
507 /**
508  * eeh_pe_state_mark - Mark specified state for PE and its associated device
509  * @pe: EEH PE
510  *
511  * EEH error affects the current PE and its child PEs. The function
512  * is used to mark appropriate state for the affected PEs and the
513  * associated devices.
514  */
515 void eeh_pe_state_mark(struct eeh_pe *root, int state)
516 {
517 	struct eeh_pe *pe;
518 
519 	eeh_for_each_pe(root, pe)
520 		if (!(pe->state & EEH_PE_REMOVED))
521 			pe->state |= state;
522 }
523 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
524 
525 /**
526  * eeh_pe_mark_isolated
527  * @pe: EEH PE
528  *
529  * Record that a PE has been isolated by marking the PE and it's children as
530  * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
531  * as pci_channel_io_frozen.
532  */
533 void eeh_pe_mark_isolated(struct eeh_pe *root)
534 {
535 	struct eeh_pe *pe;
536 	struct eeh_dev *edev;
537 	struct pci_dev *pdev;
538 
539 	eeh_pe_state_mark(root, EEH_PE_ISOLATED);
540 	eeh_for_each_pe(root, pe) {
541 		list_for_each_entry(edev, &pe->edevs, entry) {
542 			pdev = eeh_dev_to_pci_dev(edev);
543 			if (pdev)
544 				pdev->error_state = pci_channel_io_frozen;
545 		}
546 		/* Block PCI config access if required */
547 		if (pe->state & EEH_PE_CFG_RESTRICTED)
548 			pe->state |= EEH_PE_CFG_BLOCKED;
549 	}
550 }
551 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
552 
553 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
554 {
555 	int mode = *((int *)flag);
556 
557 	edev->mode |= mode;
558 }
559 
560 /**
561  * eeh_pe_dev_state_mark - Mark state for all device under the PE
562  * @pe: EEH PE
563  *
564  * Mark specific state for all child devices of the PE.
565  */
566 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
567 {
568 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
569 }
570 
571 /**
572  * eeh_pe_state_clear - Clear state for the PE
573  * @data: EEH PE
574  * @state: state
575  * @include_passed: include passed-through devices?
576  *
577  * The function is used to clear the indicated state from the
578  * given PE. Besides, we also clear the check count of the PE
579  * as well.
580  */
581 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
582 {
583 	struct eeh_pe *pe;
584 	struct eeh_dev *edev, *tmp;
585 	struct pci_dev *pdev;
586 
587 	eeh_for_each_pe(root, pe) {
588 		/* Keep the state of permanently removed PE intact */
589 		if (pe->state & EEH_PE_REMOVED)
590 			continue;
591 
592 		if (!include_passed && eeh_pe_passed(pe))
593 			continue;
594 
595 		pe->state &= ~state;
596 
597 		/*
598 		 * Special treatment on clearing isolated state. Clear
599 		 * check count since last isolation and put all affected
600 		 * devices to normal state.
601 		 */
602 		if (!(state & EEH_PE_ISOLATED))
603 			continue;
604 
605 		pe->check_count = 0;
606 		eeh_pe_for_each_dev(pe, edev, tmp) {
607 			pdev = eeh_dev_to_pci_dev(edev);
608 			if (!pdev)
609 				continue;
610 
611 			pdev->error_state = pci_channel_io_normal;
612 		}
613 
614 		/* Unblock PCI config access if required */
615 		if (pe->state & EEH_PE_CFG_RESTRICTED)
616 			pe->state &= ~EEH_PE_CFG_BLOCKED;
617 	}
618 }
619 
620 /*
621  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
622  * buses assigned explicitly by firmware, and we probably have
623  * lost that after reset. So we have to delay the check until
624  * the PCI-CFG registers have been restored for the parent
625  * bridge.
626  *
627  * Don't use normal PCI-CFG accessors, which probably has been
628  * blocked on normal path during the stage. So we need utilize
629  * eeh operations, which is always permitted.
630  */
631 static void eeh_bridge_check_link(struct eeh_dev *edev)
632 {
633 	int cap;
634 	uint32_t val;
635 	int timeout = 0;
636 
637 	/*
638 	 * We only check root port and downstream ports of
639 	 * PCIe switches
640 	 */
641 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
642 		return;
643 
644 	eeh_edev_dbg(edev, "Checking PCIe link...\n");
645 
646 	/* Check slot status */
647 	cap = edev->pcie_cap;
648 	eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
649 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
650 		eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
651 		return;
652 	}
653 
654 	/* Check power status if we have the capability */
655 	eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
656 	if (val & PCI_EXP_SLTCAP_PCP) {
657 		eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
658 		if (val & PCI_EXP_SLTCTL_PCC) {
659 			eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
660 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
661 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
662 			eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
663 			msleep(2 * 1000);
664 		}
665 	}
666 
667 	/* Enable link */
668 	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
669 	val &= ~PCI_EXP_LNKCTL_LD;
670 	eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
671 
672 	/* Check link */
673 	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
674 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
675 		eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
676 		msleep(1000);
677 		return;
678 	}
679 
680 	/* Wait the link is up until timeout (5s) */
681 	timeout = 0;
682 	while (timeout < 5000) {
683 		msleep(20);
684 		timeout += 20;
685 
686 		eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687 		if (val & PCI_EXP_LNKSTA_DLLLA)
688 			break;
689 	}
690 
691 	if (val & PCI_EXP_LNKSTA_DLLLA)
692 		eeh_edev_dbg(edev, "Link up (%s)\n",
693 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694 	else
695 		eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696 }
697 
698 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
699 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700 
701 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
702 {
703 	int i;
704 
705 	/*
706 	 * Device BARs: 0x10 - 0x18
707 	 * Bus numbers and windows: 0x18 - 0x30
708 	 */
709 	for (i = 4; i < 13; i++)
710 		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711 	/* Rom: 0x38 */
712 	eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713 
714 	/* Cache line & Latency timer: 0xC 0xD */
715 	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717 	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718 		SAVED_BYTE(PCI_LATENCY_TIMER));
719 	/* Max latency, min grant, interrupt ping and line: 0x3C */
720 	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721 
722 	/* PCI Command: 0x4 */
723 	eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724 			      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725 
726 	/* Check the PCIe link is ready */
727 	eeh_bridge_check_link(edev);
728 }
729 
730 static void eeh_restore_device_bars(struct eeh_dev *edev)
731 {
732 	int i;
733 	u32 cmd;
734 
735 	for (i = 4; i < 10; i++)
736 		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737 	/* 12 == Expansion ROM Address */
738 	eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739 
740 	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742 	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743 		SAVED_BYTE(PCI_LATENCY_TIMER));
744 
745 	/* max latency, min grant, interrupt pin and line */
746 	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747 
748 	/*
749 	 * Restore PERR & SERR bits, some devices require it,
750 	 * don't touch the other command bits
751 	 */
752 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
754 		cmd |= PCI_COMMAND_PARITY;
755 	else
756 		cmd &= ~PCI_COMMAND_PARITY;
757 	if (edev->config_space[1] & PCI_COMMAND_SERR)
758 		cmd |= PCI_COMMAND_SERR;
759 	else
760 		cmd &= ~PCI_COMMAND_SERR;
761 	eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762 }
763 
764 /**
765  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766  * @data: EEH device
767  * @flag: Unused
768  *
769  * Loads the PCI configuration space base address registers,
770  * the expansion ROM base address, the latency timer, and etc.
771  * from the saved values in the device node.
772  */
773 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774 {
775 	/* Do special restore for bridges */
776 	if (edev->mode & EEH_DEV_BRIDGE)
777 		eeh_restore_bridge_bars(edev);
778 	else
779 		eeh_restore_device_bars(edev);
780 
781 	if (eeh_ops->restore_config)
782 		eeh_ops->restore_config(edev);
783 }
784 
785 /**
786  * eeh_pe_restore_bars - Restore the PCI config space info
787  * @pe: EEH PE
788  *
789  * This routine performs a recursive walk to the children
790  * of this device as well.
791  */
792 void eeh_pe_restore_bars(struct eeh_pe *pe)
793 {
794 	/*
795 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796 	 * will take that.
797 	 */
798 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799 }
800 
801 /**
802  * eeh_pe_loc_get - Retrieve location code binding to the given PE
803  * @pe: EEH PE
804  *
805  * Retrieve the location code of the given PE. If the primary PE bus
806  * is root bus, we will grab location code from PHB device tree node
807  * or root port. Otherwise, the upstream bridge's device tree node
808  * of the primary PE bus will be checked for the location code.
809  */
810 const char *eeh_pe_loc_get(struct eeh_pe *pe)
811 {
812 	struct pci_bus *bus = eeh_pe_bus_get(pe);
813 	struct device_node *dn;
814 	const char *loc = NULL;
815 
816 	while (bus) {
817 		dn = pci_bus_to_OF_node(bus);
818 		if (!dn) {
819 			bus = bus->parent;
820 			continue;
821 		}
822 
823 		if (pci_is_root_bus(bus))
824 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825 		else
826 			loc = of_get_property(dn, "ibm,slot-location-code",
827 					      NULL);
828 
829 		if (loc)
830 			return loc;
831 
832 		bus = bus->parent;
833 	}
834 
835 	return "N/A";
836 }
837 
838 /**
839  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840  * @pe: EEH PE
841  *
842  * Retrieve the PCI bus according to the given PE. Basically,
843  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844  * primary PCI bus will be retrieved. The parent bus will be
845  * returned for BUS PE. However, we don't have associated PCI
846  * bus for DEVICE PE.
847  */
848 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849 {
850 	struct eeh_dev *edev;
851 	struct pci_dev *pdev;
852 
853 	if (pe->type & EEH_PE_PHB)
854 		return pe->phb->bus;
855 
856 	/* The primary bus might be cached during probe time */
857 	if (pe->state & EEH_PE_PRI_BUS)
858 		return pe->bus;
859 
860 	/* Retrieve the parent PCI bus of first (top) PCI device */
861 	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862 	pdev = eeh_dev_to_pci_dev(edev);
863 	if (pdev)
864 		return pdev->bus;
865 
866 	return NULL;
867 }
868