1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * The file intends to implement PE based on the information from 4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 5 * All the PEs should be organized as hierarchy tree. The first level 6 * of the tree will be associated to existing PHBs since the particular 7 * PE is only meaningful in one PHB domain. 8 * 9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 10 */ 11 12 #include <linux/delay.h> 13 #include <linux/export.h> 14 #include <linux/gfp.h> 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/string.h> 18 19 #include <asm/pci-bridge.h> 20 #include <asm/ppc-pci.h> 21 22 static int eeh_pe_aux_size = 0; 23 static LIST_HEAD(eeh_phb_pe); 24 25 /** 26 * eeh_set_pe_aux_size - Set PE auxillary data size 27 * @size: PE auxillary data size 28 * 29 * Set PE auxillary data size 30 */ 31 void eeh_set_pe_aux_size(int size) 32 { 33 if (size < 0) 34 return; 35 36 eeh_pe_aux_size = size; 37 } 38 39 /** 40 * eeh_pe_alloc - Allocate PE 41 * @phb: PCI controller 42 * @type: PE type 43 * 44 * Allocate PE instance dynamically. 45 */ 46 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 47 { 48 struct eeh_pe *pe; 49 size_t alloc_size; 50 51 alloc_size = sizeof(struct eeh_pe); 52 if (eeh_pe_aux_size) { 53 alloc_size = ALIGN(alloc_size, cache_line_size()); 54 alloc_size += eeh_pe_aux_size; 55 } 56 57 /* Allocate PHB PE */ 58 pe = kzalloc(alloc_size, GFP_KERNEL); 59 if (!pe) return NULL; 60 61 /* Initialize PHB PE */ 62 pe->type = type; 63 pe->phb = phb; 64 INIT_LIST_HEAD(&pe->child_list); 65 INIT_LIST_HEAD(&pe->edevs); 66 67 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 68 cache_line_size()); 69 return pe; 70 } 71 72 /** 73 * eeh_phb_pe_create - Create PHB PE 74 * @phb: PCI controller 75 * 76 * The function should be called while the PHB is detected during 77 * system boot or PCI hotplug in order to create PHB PE. 78 */ 79 int eeh_phb_pe_create(struct pci_controller *phb) 80 { 81 struct eeh_pe *pe; 82 83 /* Allocate PHB PE */ 84 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 85 if (!pe) { 86 pr_err("%s: out of memory!\n", __func__); 87 return -ENOMEM; 88 } 89 90 /* Put it into the list */ 91 list_add_tail(&pe->child, &eeh_phb_pe); 92 93 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); 94 95 return 0; 96 } 97 98 /** 99 * eeh_wait_state - Wait for PE state 100 * @pe: EEH PE 101 * @max_wait: maximal period in millisecond 102 * 103 * Wait for the state of associated PE. It might take some time 104 * to retrieve the PE's state. 105 */ 106 int eeh_wait_state(struct eeh_pe *pe, int max_wait) 107 { 108 int ret; 109 int mwait; 110 111 /* 112 * According to PAPR, the state of PE might be temporarily 113 * unavailable. Under the circumstance, we have to wait 114 * for indicated time determined by firmware. The maximal 115 * wait time is 5 minutes, which is acquired from the original 116 * EEH implementation. Also, the original implementation 117 * also defined the minimal wait time as 1 second. 118 */ 119 #define EEH_STATE_MIN_WAIT_TIME (1000) 120 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) 121 122 while (1) { 123 ret = eeh_ops->get_state(pe, &mwait); 124 125 if (ret != EEH_STATE_UNAVAILABLE) 126 return ret; 127 128 if (max_wait <= 0) { 129 pr_warn("%s: Timeout when getting PE's state (%d)\n", 130 __func__, max_wait); 131 return EEH_STATE_NOT_SUPPORT; 132 } 133 134 if (mwait < EEH_STATE_MIN_WAIT_TIME) { 135 pr_warn("%s: Firmware returned bad wait value %d\n", 136 __func__, mwait); 137 mwait = EEH_STATE_MIN_WAIT_TIME; 138 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { 139 pr_warn("%s: Firmware returned too long wait value %d\n", 140 __func__, mwait); 141 mwait = EEH_STATE_MAX_WAIT_TIME; 142 } 143 144 msleep(min(mwait, max_wait)); 145 max_wait -= mwait; 146 } 147 } 148 149 /** 150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 151 * @phb: PCI controller 152 * 153 * The overall PEs form hierarchy tree. The first layer of the 154 * hierarchy tree is composed of PHB PEs. The function is used 155 * to retrieve the corresponding PHB PE according to the given PHB. 156 */ 157 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 158 { 159 struct eeh_pe *pe; 160 161 list_for_each_entry(pe, &eeh_phb_pe, child) { 162 /* 163 * Actually, we needn't check the type since 164 * the PE for PHB has been determined when that 165 * was created. 166 */ 167 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 168 return pe; 169 } 170 171 return NULL; 172 } 173 174 /** 175 * eeh_pe_next - Retrieve the next PE in the tree 176 * @pe: current PE 177 * @root: root PE 178 * 179 * The function is used to retrieve the next PE in the 180 * hierarchy PE tree. 181 */ 182 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) 183 { 184 struct list_head *next = pe->child_list.next; 185 186 if (next == &pe->child_list) { 187 while (1) { 188 if (pe == root) 189 return NULL; 190 next = pe->child.next; 191 if (next != &pe->parent->child_list) 192 break; 193 pe = pe->parent; 194 } 195 } 196 197 return list_entry(next, struct eeh_pe, child); 198 } 199 200 /** 201 * eeh_pe_traverse - Traverse PEs in the specified PHB 202 * @root: root PE 203 * @fn: callback 204 * @flag: extra parameter to callback 205 * 206 * The function is used to traverse the specified PE and its 207 * child PEs. The traversing is to be terminated once the 208 * callback returns something other than NULL, or no more PEs 209 * to be traversed. 210 */ 211 void *eeh_pe_traverse(struct eeh_pe *root, 212 eeh_pe_traverse_func fn, void *flag) 213 { 214 struct eeh_pe *pe; 215 void *ret; 216 217 eeh_for_each_pe(root, pe) { 218 ret = fn(pe, flag); 219 if (ret) return ret; 220 } 221 222 return NULL; 223 } 224 225 /** 226 * eeh_pe_dev_traverse - Traverse the devices from the PE 227 * @root: EEH PE 228 * @fn: function callback 229 * @flag: extra parameter to callback 230 * 231 * The function is used to traverse the devices of the specified 232 * PE and its child PEs. 233 */ 234 void eeh_pe_dev_traverse(struct eeh_pe *root, 235 eeh_edev_traverse_func fn, void *flag) 236 { 237 struct eeh_pe *pe; 238 struct eeh_dev *edev, *tmp; 239 240 if (!root) { 241 pr_warn("%s: Invalid PE %p\n", 242 __func__, root); 243 return; 244 } 245 246 /* Traverse root PE */ 247 eeh_for_each_pe(root, pe) 248 eeh_pe_for_each_dev(pe, edev, tmp) 249 fn(edev, flag); 250 } 251 252 /** 253 * __eeh_pe_get - Check the PE address 254 * 255 * For one particular PE, it can be identified by PE address 256 * or tranditional BDF address. BDF address is composed of 257 * Bus/Device/Function number. The extra data referred by flag 258 * indicates which type of address should be used. 259 */ 260 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) 261 { 262 int *target_pe = flag; 263 264 /* PHB PEs are special and should be ignored */ 265 if (pe->type & EEH_PE_PHB) 266 return NULL; 267 268 if (*target_pe == pe->addr) 269 return pe; 270 271 return NULL; 272 } 273 274 /** 275 * eeh_pe_get - Search PE based on the given address 276 * @phb: PCI controller 277 * @pe_no: PE number 278 * 279 * Search the corresponding PE based on the specified address which 280 * is included in the eeh device. The function is used to check if 281 * the associated PE has been created against the PE address. It's 282 * notable that the PE address has 2 format: traditional PE address 283 * which is composed of PCI bus/device/function number, or unified 284 * PE address. 285 */ 286 struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no) 287 { 288 struct eeh_pe *root = eeh_phb_pe_get(phb); 289 290 return eeh_pe_traverse(root, __eeh_pe_get, &pe_no); 291 } 292 293 /** 294 * eeh_pe_tree_insert - Add EEH device to parent PE 295 * @edev: EEH device 296 * @new_pe_parent: PE to create additional PEs under 297 * 298 * Add EEH device to the PE in edev->pe_config_addr. If a PE already 299 * exists with that address then @edev is added to that PE. Otherwise 300 * a new PE is created and inserted into the PE tree as a child of 301 * @new_pe_parent. 302 * 303 * If @new_pe_parent is NULL then the new PE will be inserted under 304 * directly under the the PHB. 305 */ 306 int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent) 307 { 308 struct pci_controller *hose = edev->controller; 309 struct eeh_pe *pe, *parent; 310 311 /* 312 * Search the PE has been existing or not according 313 * to the PE address. If that has been existing, the 314 * PE should be composed of PCI bus and its subordinate 315 * components. 316 */ 317 pe = eeh_pe_get(hose, edev->pe_config_addr); 318 if (pe) { 319 if (pe->type & EEH_PE_INVALID) { 320 list_add_tail(&edev->entry, &pe->edevs); 321 edev->pe = pe; 322 /* 323 * We're running to here because of PCI hotplug caused by 324 * EEH recovery. We need clear EEH_PE_INVALID until the top. 325 */ 326 parent = pe; 327 while (parent) { 328 if (!(parent->type & EEH_PE_INVALID)) 329 break; 330 parent->type &= ~EEH_PE_INVALID; 331 parent = parent->parent; 332 } 333 334 eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n", 335 pe->parent->addr); 336 } else { 337 /* Mark the PE as type of PCI bus */ 338 pe->type = EEH_PE_BUS; 339 edev->pe = pe; 340 341 /* Put the edev to PE */ 342 list_add_tail(&edev->entry, &pe->edevs); 343 eeh_edev_dbg(edev, "Added to bus PE\n"); 344 } 345 return 0; 346 } 347 348 /* Create a new EEH PE */ 349 if (edev->physfn) 350 pe = eeh_pe_alloc(hose, EEH_PE_VF); 351 else 352 pe = eeh_pe_alloc(hose, EEH_PE_DEVICE); 353 if (!pe) { 354 pr_err("%s: out of memory!\n", __func__); 355 return -ENOMEM; 356 } 357 358 pe->addr = edev->pe_config_addr; 359 360 /* 361 * Put the new EEH PE into hierarchy tree. If the parent 362 * can't be found, the newly created PE will be attached 363 * to PHB directly. Otherwise, we have to associate the 364 * PE with its parent. 365 */ 366 if (!new_pe_parent) { 367 new_pe_parent = eeh_phb_pe_get(hose); 368 if (!new_pe_parent) { 369 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 370 __func__, hose->global_number); 371 edev->pe = NULL; 372 kfree(pe); 373 return -EEXIST; 374 } 375 } 376 377 /* link new PE into the tree */ 378 pe->parent = new_pe_parent; 379 list_add_tail(&pe->child, &new_pe_parent->child_list); 380 381 /* 382 * Put the newly created PE into the child list and 383 * link the EEH device accordingly. 384 */ 385 list_add_tail(&edev->entry, &pe->edevs); 386 edev->pe = pe; 387 eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n", 388 new_pe_parent->addr); 389 390 return 0; 391 } 392 393 /** 394 * eeh_pe_tree_remove - Remove one EEH device from the associated PE 395 * @edev: EEH device 396 * 397 * The PE hierarchy tree might be changed when doing PCI hotplug. 398 * Also, the PCI devices or buses could be removed from the system 399 * during EEH recovery. So we have to call the function remove the 400 * corresponding PE accordingly if necessary. 401 */ 402 int eeh_pe_tree_remove(struct eeh_dev *edev) 403 { 404 struct eeh_pe *pe, *parent, *child; 405 bool keep, recover; 406 int cnt; 407 408 pe = eeh_dev_to_pe(edev); 409 if (!pe) { 410 eeh_edev_dbg(edev, "No PE found for device.\n"); 411 return -EEXIST; 412 } 413 414 /* Remove the EEH device */ 415 edev->pe = NULL; 416 list_del(&edev->entry); 417 418 /* 419 * Check if the parent PE includes any EEH devices. 420 * If not, we should delete that. Also, we should 421 * delete the parent PE if it doesn't have associated 422 * child PEs and EEH devices. 423 */ 424 while (1) { 425 parent = pe->parent; 426 427 /* PHB PEs should never be removed */ 428 if (pe->type & EEH_PE_PHB) 429 break; 430 431 /* 432 * XXX: KEEP is set while resetting a PE. I don't think it's 433 * ever set without RECOVERING also being set. I could 434 * be wrong though so catch that with a WARN. 435 */ 436 keep = !!(pe->state & EEH_PE_KEEP); 437 recover = !!(pe->state & EEH_PE_RECOVERING); 438 WARN_ON(keep && !recover); 439 440 if (!keep && !recover) { 441 if (list_empty(&pe->edevs) && 442 list_empty(&pe->child_list)) { 443 list_del(&pe->child); 444 kfree(pe); 445 } else { 446 break; 447 } 448 } else { 449 /* 450 * Mark the PE as invalid. At the end of the recovery 451 * process any invalid PEs will be garbage collected. 452 * 453 * We need to delay the free()ing of them since we can 454 * remove edev's while traversing the PE tree which 455 * might trigger the removal of a PE and we can't 456 * deal with that (yet). 457 */ 458 if (list_empty(&pe->edevs)) { 459 cnt = 0; 460 list_for_each_entry(child, &pe->child_list, child) { 461 if (!(child->type & EEH_PE_INVALID)) { 462 cnt++; 463 break; 464 } 465 } 466 467 if (!cnt) 468 pe->type |= EEH_PE_INVALID; 469 else 470 break; 471 } 472 } 473 474 pe = parent; 475 } 476 477 return 0; 478 } 479 480 /** 481 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 482 * @pe: EEH PE 483 * 484 * We have time stamp for each PE to trace its time of getting 485 * frozen in last hour. The function should be called to update 486 * the time stamp on first error of the specific PE. On the other 487 * handle, we needn't account for errors happened in last hour. 488 */ 489 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 490 { 491 time64_t tstamp; 492 493 if (!pe) return; 494 495 if (pe->freeze_count <= 0) { 496 pe->freeze_count = 0; 497 pe->tstamp = ktime_get_seconds(); 498 } else { 499 tstamp = ktime_get_seconds(); 500 if (tstamp - pe->tstamp > 3600) { 501 pe->tstamp = tstamp; 502 pe->freeze_count = 0; 503 } 504 } 505 } 506 507 /** 508 * eeh_pe_state_mark - Mark specified state for PE and its associated device 509 * @pe: EEH PE 510 * 511 * EEH error affects the current PE and its child PEs. The function 512 * is used to mark appropriate state for the affected PEs and the 513 * associated devices. 514 */ 515 void eeh_pe_state_mark(struct eeh_pe *root, int state) 516 { 517 struct eeh_pe *pe; 518 519 eeh_for_each_pe(root, pe) 520 if (!(pe->state & EEH_PE_REMOVED)) 521 pe->state |= state; 522 } 523 EXPORT_SYMBOL_GPL(eeh_pe_state_mark); 524 525 /** 526 * eeh_pe_mark_isolated 527 * @pe: EEH PE 528 * 529 * Record that a PE has been isolated by marking the PE and it's children as 530 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices 531 * as pci_channel_io_frozen. 532 */ 533 void eeh_pe_mark_isolated(struct eeh_pe *root) 534 { 535 struct eeh_pe *pe; 536 struct eeh_dev *edev; 537 struct pci_dev *pdev; 538 539 eeh_pe_state_mark(root, EEH_PE_ISOLATED); 540 eeh_for_each_pe(root, pe) { 541 list_for_each_entry(edev, &pe->edevs, entry) { 542 pdev = eeh_dev_to_pci_dev(edev); 543 if (pdev) 544 pdev->error_state = pci_channel_io_frozen; 545 } 546 /* Block PCI config access if required */ 547 if (pe->state & EEH_PE_CFG_RESTRICTED) 548 pe->state |= EEH_PE_CFG_BLOCKED; 549 } 550 } 551 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); 552 553 static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) 554 { 555 int mode = *((int *)flag); 556 557 edev->mode |= mode; 558 } 559 560 /** 561 * eeh_pe_dev_state_mark - Mark state for all device under the PE 562 * @pe: EEH PE 563 * 564 * Mark specific state for all child devices of the PE. 565 */ 566 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 567 { 568 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 569 } 570 571 /** 572 * eeh_pe_state_clear - Clear state for the PE 573 * @data: EEH PE 574 * @state: state 575 * @include_passed: include passed-through devices? 576 * 577 * The function is used to clear the indicated state from the 578 * given PE. Besides, we also clear the check count of the PE 579 * as well. 580 */ 581 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) 582 { 583 struct eeh_pe *pe; 584 struct eeh_dev *edev, *tmp; 585 struct pci_dev *pdev; 586 587 eeh_for_each_pe(root, pe) { 588 /* Keep the state of permanently removed PE intact */ 589 if (pe->state & EEH_PE_REMOVED) 590 continue; 591 592 if (!include_passed && eeh_pe_passed(pe)) 593 continue; 594 595 pe->state &= ~state; 596 597 /* 598 * Special treatment on clearing isolated state. Clear 599 * check count since last isolation and put all affected 600 * devices to normal state. 601 */ 602 if (!(state & EEH_PE_ISOLATED)) 603 continue; 604 605 pe->check_count = 0; 606 eeh_pe_for_each_dev(pe, edev, tmp) { 607 pdev = eeh_dev_to_pci_dev(edev); 608 if (!pdev) 609 continue; 610 611 pdev->error_state = pci_channel_io_normal; 612 } 613 614 /* Unblock PCI config access if required */ 615 if (pe->state & EEH_PE_CFG_RESTRICTED) 616 pe->state &= ~EEH_PE_CFG_BLOCKED; 617 } 618 } 619 620 /* 621 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 622 * buses assigned explicitly by firmware, and we probably have 623 * lost that after reset. So we have to delay the check until 624 * the PCI-CFG registers have been restored for the parent 625 * bridge. 626 * 627 * Don't use normal PCI-CFG accessors, which probably has been 628 * blocked on normal path during the stage. So we need utilize 629 * eeh operations, which is always permitted. 630 */ 631 static void eeh_bridge_check_link(struct eeh_dev *edev) 632 { 633 int cap; 634 uint32_t val; 635 int timeout = 0; 636 637 /* 638 * We only check root port and downstream ports of 639 * PCIe switches 640 */ 641 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 642 return; 643 644 eeh_edev_dbg(edev, "Checking PCIe link...\n"); 645 646 /* Check slot status */ 647 cap = edev->pcie_cap; 648 eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val); 649 if (!(val & PCI_EXP_SLTSTA_PDS)) { 650 eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); 651 return; 652 } 653 654 /* Check power status if we have the capability */ 655 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val); 656 if (val & PCI_EXP_SLTCAP_PCP) { 657 eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val); 658 if (val & PCI_EXP_SLTCTL_PCC) { 659 eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); 660 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 661 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 662 eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val); 663 msleep(2 * 1000); 664 } 665 } 666 667 /* Enable link */ 668 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val); 669 val &= ~PCI_EXP_LNKCTL_LD; 670 eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val); 671 672 /* Check link */ 673 eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val); 674 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 675 eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val); 676 msleep(1000); 677 return; 678 } 679 680 /* Wait the link is up until timeout (5s) */ 681 timeout = 0; 682 while (timeout < 5000) { 683 msleep(20); 684 timeout += 20; 685 686 eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val); 687 if (val & PCI_EXP_LNKSTA_DLLLA) 688 break; 689 } 690 691 if (val & PCI_EXP_LNKSTA_DLLLA) 692 eeh_edev_dbg(edev, "Link up (%s)\n", 693 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 694 else 695 eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); 696 } 697 698 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 699 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 700 701 static void eeh_restore_bridge_bars(struct eeh_dev *edev) 702 { 703 int i; 704 705 /* 706 * Device BARs: 0x10 - 0x18 707 * Bus numbers and windows: 0x18 - 0x30 708 */ 709 for (i = 4; i < 13; i++) 710 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); 711 /* Rom: 0x38 */ 712 eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]); 713 714 /* Cache line & Latency timer: 0xC 0xD */ 715 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, 716 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 717 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, 718 SAVED_BYTE(PCI_LATENCY_TIMER)); 719 /* Max latency, min grant, interrupt ping and line: 0x3C */ 720 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); 721 722 /* PCI Command: 0x4 */ 723 eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] | 724 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); 725 726 /* Check the PCIe link is ready */ 727 eeh_bridge_check_link(edev); 728 } 729 730 static void eeh_restore_device_bars(struct eeh_dev *edev) 731 { 732 int i; 733 u32 cmd; 734 735 for (i = 4; i < 10; i++) 736 eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); 737 /* 12 == Expansion ROM Address */ 738 eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]); 739 740 eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, 741 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 742 eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, 743 SAVED_BYTE(PCI_LATENCY_TIMER)); 744 745 /* max latency, min grant, interrupt pin and line */ 746 eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); 747 748 /* 749 * Restore PERR & SERR bits, some devices require it, 750 * don't touch the other command bits 751 */ 752 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd); 753 if (edev->config_space[1] & PCI_COMMAND_PARITY) 754 cmd |= PCI_COMMAND_PARITY; 755 else 756 cmd &= ~PCI_COMMAND_PARITY; 757 if (edev->config_space[1] & PCI_COMMAND_SERR) 758 cmd |= PCI_COMMAND_SERR; 759 else 760 cmd &= ~PCI_COMMAND_SERR; 761 eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd); 762 } 763 764 /** 765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 766 * @data: EEH device 767 * @flag: Unused 768 * 769 * Loads the PCI configuration space base address registers, 770 * the expansion ROM base address, the latency timer, and etc. 771 * from the saved values in the device node. 772 */ 773 static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) 774 { 775 /* Do special restore for bridges */ 776 if (edev->mode & EEH_DEV_BRIDGE) 777 eeh_restore_bridge_bars(edev); 778 else 779 eeh_restore_device_bars(edev); 780 781 if (eeh_ops->restore_config) 782 eeh_ops->restore_config(edev); 783 } 784 785 /** 786 * eeh_pe_restore_bars - Restore the PCI config space info 787 * @pe: EEH PE 788 * 789 * This routine performs a recursive walk to the children 790 * of this device as well. 791 */ 792 void eeh_pe_restore_bars(struct eeh_pe *pe) 793 { 794 /* 795 * We needn't take the EEH lock since eeh_pe_dev_traverse() 796 * will take that. 797 */ 798 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 799 } 800 801 /** 802 * eeh_pe_loc_get - Retrieve location code binding to the given PE 803 * @pe: EEH PE 804 * 805 * Retrieve the location code of the given PE. If the primary PE bus 806 * is root bus, we will grab location code from PHB device tree node 807 * or root port. Otherwise, the upstream bridge's device tree node 808 * of the primary PE bus will be checked for the location code. 809 */ 810 const char *eeh_pe_loc_get(struct eeh_pe *pe) 811 { 812 struct pci_bus *bus = eeh_pe_bus_get(pe); 813 struct device_node *dn; 814 const char *loc = NULL; 815 816 while (bus) { 817 dn = pci_bus_to_OF_node(bus); 818 if (!dn) { 819 bus = bus->parent; 820 continue; 821 } 822 823 if (pci_is_root_bus(bus)) 824 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 825 else 826 loc = of_get_property(dn, "ibm,slot-location-code", 827 NULL); 828 829 if (loc) 830 return loc; 831 832 bus = bus->parent; 833 } 834 835 return "N/A"; 836 } 837 838 /** 839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 840 * @pe: EEH PE 841 * 842 * Retrieve the PCI bus according to the given PE. Basically, 843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 844 * primary PCI bus will be retrieved. The parent bus will be 845 * returned for BUS PE. However, we don't have associated PCI 846 * bus for DEVICE PE. 847 */ 848 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 849 { 850 struct eeh_dev *edev; 851 struct pci_dev *pdev; 852 853 if (pe->type & EEH_PE_PHB) 854 return pe->phb->bus; 855 856 /* The primary bus might be cached during probe time */ 857 if (pe->state & EEH_PE_PRI_BUS) 858 return pe->bus; 859 860 /* Retrieve the parent PCI bus of first (top) PCI device */ 861 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); 862 pdev = eeh_dev_to_pci_dev(edev); 863 if (pdev) 864 return pdev->bus; 865 866 return NULL; 867 } 868