xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision f519f0be)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/iommu.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/reboot.h>
33 #include <linux/seq_file.h>
34 #include <linux/spinlock.h>
35 #include <linux/export.h>
36 #include <linux/of.h>
37 
38 #include <linux/atomic.h>
39 #include <asm/debugfs.h>
40 #include <asm/eeh.h>
41 #include <asm/eeh_event.h>
42 #include <asm/io.h>
43 #include <asm/iommu.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47 #include <asm/pte-walk.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 u32 eeh_max_freezes = 5;
113 
114 /*
115  * Controls whether a recovery event should be scheduled when an
116  * isolated device is discovered. This is only really useful for
117  * debugging problems with the EEH core.
118  */
119 bool eeh_debugfs_no_recover;
120 
121 /* Platform dependent EEH operations */
122 struct eeh_ops *eeh_ops = NULL;
123 
124 /* Lock to avoid races due to multiple reports of an error */
125 DEFINE_RAW_SPINLOCK(confirm_error_lock);
126 EXPORT_SYMBOL_GPL(confirm_error_lock);
127 
128 /* Lock to protect passed flags */
129 static DEFINE_MUTEX(eeh_dev_mutex);
130 
131 /* Buffer for reporting pci register dumps. Its here in BSS, and
132  * not dynamically alloced, so that it ends up in RMO where RTAS
133  * can access it.
134  */
135 #define EEH_PCI_REGS_LOG_LEN 8192
136 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
137 
138 /*
139  * The struct is used to maintain the EEH global statistic
140  * information. Besides, the EEH global statistics will be
141  * exported to user space through procfs
142  */
143 struct eeh_stats {
144 	u64 no_device;		/* PCI device not found		*/
145 	u64 no_dn;		/* OF node not found		*/
146 	u64 no_cfg_addr;	/* Config address not found	*/
147 	u64 ignored_check;	/* EEH check skipped		*/
148 	u64 total_mmio_ffs;	/* Total EEH checks		*/
149 	u64 false_positives;	/* Unnecessary EEH checks	*/
150 	u64 slot_resets;	/* PE reset			*/
151 };
152 
153 static struct eeh_stats eeh_stats;
154 
155 static int __init eeh_setup(char *str)
156 {
157 	if (!strcmp(str, "off"))
158 		eeh_add_flag(EEH_FORCE_DISABLED);
159 	else if (!strcmp(str, "early_log"))
160 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
161 
162 	return 1;
163 }
164 __setup("eeh=", eeh_setup);
165 
166 /*
167  * This routine captures assorted PCI configuration space data
168  * for the indicated PCI device, and puts them into a buffer
169  * for RTAS error logging.
170  */
171 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
172 {
173 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
174 	u32 cfg;
175 	int cap, i;
176 	int n = 0, l = 0;
177 	char buffer[128];
178 
179 	if (!pdn) {
180 		pr_warn("EEH: Note: No error log for absent device.\n");
181 		return 0;
182 	}
183 
184 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
185 		       pdn->phb->global_number, pdn->busno,
186 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
187 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
188 		pdn->phb->global_number, pdn->busno,
189 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
190 
191 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
192 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
193 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
194 
195 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
196 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
197 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
198 
199 	/* Gather bridge-specific registers */
200 	if (edev->mode & EEH_DEV_BRIDGE) {
201 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
202 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
203 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
204 
205 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
206 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
207 		pr_warn("EEH: Bridge control: %04x\n", cfg);
208 	}
209 
210 	/* Dump out the PCI-X command and status regs */
211 	cap = edev->pcix_cap;
212 	if (cap) {
213 		eeh_ops->read_config(pdn, cap, 4, &cfg);
214 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
215 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
216 
217 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
218 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
219 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
220 	}
221 
222 	/* If PCI-E capable, dump PCI-E cap 10 */
223 	cap = edev->pcie_cap;
224 	if (cap) {
225 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
226 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
227 
228 		for (i=0; i<=8; i++) {
229 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
230 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
231 
232 			if ((i % 4) == 0) {
233 				if (i != 0)
234 					pr_warn("%s\n", buffer);
235 
236 				l = scnprintf(buffer, sizeof(buffer),
237 					      "EEH: PCI-E %02x: %08x ",
238 					      4*i, cfg);
239 			} else {
240 				l += scnprintf(buffer+l, sizeof(buffer)-l,
241 					       "%08x ", cfg);
242 			}
243 
244 		}
245 
246 		pr_warn("%s\n", buffer);
247 	}
248 
249 	/* If AER capable, dump it */
250 	cap = edev->aer_cap;
251 	if (cap) {
252 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
253 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
254 
255 		for (i=0; i<=13; i++) {
256 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
257 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
258 
259 			if ((i % 4) == 0) {
260 				if (i != 0)
261 					pr_warn("%s\n", buffer);
262 
263 				l = scnprintf(buffer, sizeof(buffer),
264 					      "EEH: PCI-E AER %02x: %08x ",
265 					      4*i, cfg);
266 			} else {
267 				l += scnprintf(buffer+l, sizeof(buffer)-l,
268 					       "%08x ", cfg);
269 			}
270 		}
271 
272 		pr_warn("%s\n", buffer);
273 	}
274 
275 	return n;
276 }
277 
278 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
279 {
280 	struct eeh_dev *edev, *tmp;
281 	size_t *plen = flag;
282 
283 	eeh_pe_for_each_dev(pe, edev, tmp)
284 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
285 					  EEH_PCI_REGS_LOG_LEN - *plen);
286 
287 	return NULL;
288 }
289 
290 /**
291  * eeh_slot_error_detail - Generate combined log including driver log and error log
292  * @pe: EEH PE
293  * @severity: temporary or permanent error log
294  *
295  * This routine should be called to generate the combined log, which
296  * is comprised of driver log and error log. The driver log is figured
297  * out from the config space of the corresponding PCI device, while
298  * the error log is fetched through platform dependent function call.
299  */
300 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
301 {
302 	size_t loglen = 0;
303 
304 	/*
305 	 * When the PHB is fenced or dead, it's pointless to collect
306 	 * the data from PCI config space because it should return
307 	 * 0xFF's. For ER, we still retrieve the data from the PCI
308 	 * config space.
309 	 *
310 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
311 	 * 0xFF's is always returned from PCI config space.
312 	 *
313 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
314 	 * removed. Prior to that, the drivers for devices included in
315 	 * the PE will be closed. The drivers rely on working IO path
316 	 * to bring the devices to quiet state. Otherwise, PCI traffic
317 	 * from those devices after they are removed is like to cause
318 	 * another unexpected EEH error.
319 	 */
320 	if (!(pe->type & EEH_PE_PHB)) {
321 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
322 		    severity == EEH_LOG_PERM)
323 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
324 
325 		/*
326 		 * The config space of some PCI devices can't be accessed
327 		 * when their PEs are in frozen state. Otherwise, fenced
328 		 * PHB might be seen. Those PEs are identified with flag
329 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
330 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
331 		 *
332 		 * Restoring BARs possibly triggers PCI config access in
333 		 * (OPAL) firmware and then causes fenced PHB. If the
334 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
335 		 * pointless to restore BARs and dump config space.
336 		 */
337 		eeh_ops->configure_bridge(pe);
338 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
339 			eeh_pe_restore_bars(pe);
340 
341 			pci_regs_buf[0] = 0;
342 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
343 		}
344 	}
345 
346 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
347 }
348 
349 /**
350  * eeh_token_to_phys - Convert EEH address token to phys address
351  * @token: I/O token, should be address in the form 0xA....
352  *
353  * This routine should be called to convert virtual I/O address
354  * to physical one.
355  */
356 static inline unsigned long eeh_token_to_phys(unsigned long token)
357 {
358 	pte_t *ptep;
359 	unsigned long pa;
360 	int hugepage_shift;
361 
362 	/*
363 	 * We won't find hugepages here(this is iomem). Hence we are not
364 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
365 	 * page table free, because of init_mm.
366 	 */
367 	ptep = find_init_mm_pte(token, &hugepage_shift);
368 	if (!ptep)
369 		return token;
370 	WARN_ON(hugepage_shift);
371 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
372 
373 	return pa | (token & (PAGE_SIZE-1));
374 }
375 
376 /*
377  * On PowerNV platform, we might already have fenced PHB there.
378  * For that case, it's meaningless to recover frozen PE. Intead,
379  * We have to handle fenced PHB firstly.
380  */
381 static int eeh_phb_check_failure(struct eeh_pe *pe)
382 {
383 	struct eeh_pe *phb_pe;
384 	unsigned long flags;
385 	int ret;
386 
387 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
388 		return -EPERM;
389 
390 	/* Find the PHB PE */
391 	phb_pe = eeh_phb_pe_get(pe->phb);
392 	if (!phb_pe) {
393 		pr_warn("%s Can't find PE for PHB#%x\n",
394 			__func__, pe->phb->global_number);
395 		return -EEXIST;
396 	}
397 
398 	/* If the PHB has been in problematic state */
399 	eeh_serialize_lock(&flags);
400 	if (phb_pe->state & EEH_PE_ISOLATED) {
401 		ret = 0;
402 		goto out;
403 	}
404 
405 	/* Check PHB state */
406 	ret = eeh_ops->get_state(phb_pe, NULL);
407 	if ((ret < 0) ||
408 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
409 		ret = 0;
410 		goto out;
411 	}
412 
413 	/* Isolate the PHB and send event */
414 	eeh_pe_mark_isolated(phb_pe);
415 	eeh_serialize_unlock(flags);
416 
417 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
418 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 	dump_stack();
420 	eeh_send_failure_event(phb_pe);
421 
422 	return 1;
423 out:
424 	eeh_serialize_unlock(flags);
425 	return ret;
426 }
427 
428 /**
429  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
430  * @edev: eeh device
431  *
432  * Check for an EEH failure for the given device node.  Call this
433  * routine if the result of a read was all 0xff's and you want to
434  * find out if this is due to an EEH slot freeze.  This routine
435  * will query firmware for the EEH status.
436  *
437  * Returns 0 if there has not been an EEH error; otherwise returns
438  * a non-zero value and queues up a slot isolation event notification.
439  *
440  * It is safe to call this routine in an interrupt context.
441  */
442 int eeh_dev_check_failure(struct eeh_dev *edev)
443 {
444 	int ret;
445 	unsigned long flags;
446 	struct device_node *dn;
447 	struct pci_dev *dev;
448 	struct eeh_pe *pe, *parent_pe, *phb_pe;
449 	int rc = 0;
450 	const char *location = NULL;
451 
452 	eeh_stats.total_mmio_ffs++;
453 
454 	if (!eeh_enabled())
455 		return 0;
456 
457 	if (!edev) {
458 		eeh_stats.no_dn++;
459 		return 0;
460 	}
461 	dev = eeh_dev_to_pci_dev(edev);
462 	pe = eeh_dev_to_pe(edev);
463 
464 	/* Access to IO BARs might get this far and still not want checking. */
465 	if (!pe) {
466 		eeh_stats.ignored_check++;
467 		pr_debug("EEH: Ignored check for %s\n",
468 			eeh_pci_name(dev));
469 		return 0;
470 	}
471 
472 	if (!pe->addr && !pe->config_addr) {
473 		eeh_stats.no_cfg_addr++;
474 		return 0;
475 	}
476 
477 	/*
478 	 * On PowerNV platform, we might already have fenced PHB
479 	 * there and we need take care of that firstly.
480 	 */
481 	ret = eeh_phb_check_failure(pe);
482 	if (ret > 0)
483 		return ret;
484 
485 	/*
486 	 * If the PE isn't owned by us, we shouldn't check the
487 	 * state. Instead, let the owner handle it if the PE has
488 	 * been frozen.
489 	 */
490 	if (eeh_pe_passed(pe))
491 		return 0;
492 
493 	/* If we already have a pending isolation event for this
494 	 * slot, we know it's bad already, we don't need to check.
495 	 * Do this checking under a lock; as multiple PCI devices
496 	 * in one slot might report errors simultaneously, and we
497 	 * only want one error recovery routine running.
498 	 */
499 	eeh_serialize_lock(&flags);
500 	rc = 1;
501 	if (pe->state & EEH_PE_ISOLATED) {
502 		pe->check_count++;
503 		if (pe->check_count % EEH_MAX_FAILS == 0) {
504 			dn = pci_device_to_OF_node(dev);
505 			if (dn)
506 				location = of_get_property(dn, "ibm,loc-code",
507 						NULL);
508 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
509 				"location=%s driver=%s pci addr=%s\n",
510 				pe->check_count,
511 				location ? location : "unknown",
512 				eeh_driver_name(dev), eeh_pci_name(dev));
513 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
514 				eeh_driver_name(dev));
515 			dump_stack();
516 		}
517 		goto dn_unlock;
518 	}
519 
520 	/*
521 	 * Now test for an EEH failure.  This is VERY expensive.
522 	 * Note that the eeh_config_addr may be a parent device
523 	 * in the case of a device behind a bridge, or it may be
524 	 * function zero of a multi-function device.
525 	 * In any case they must share a common PHB.
526 	 */
527 	ret = eeh_ops->get_state(pe, NULL);
528 
529 	/* Note that config-io to empty slots may fail;
530 	 * they are empty when they don't have children.
531 	 * We will punt with the following conditions: Failure to get
532 	 * PE's state, EEH not support and Permanently unavailable
533 	 * state, PE is in good state.
534 	 */
535 	if ((ret < 0) ||
536 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
537 		eeh_stats.false_positives++;
538 		pe->false_positives++;
539 		rc = 0;
540 		goto dn_unlock;
541 	}
542 
543 	/*
544 	 * It should be corner case that the parent PE has been
545 	 * put into frozen state as well. We should take care
546 	 * that at first.
547 	 */
548 	parent_pe = pe->parent;
549 	while (parent_pe) {
550 		/* Hit the ceiling ? */
551 		if (parent_pe->type & EEH_PE_PHB)
552 			break;
553 
554 		/* Frozen parent PE ? */
555 		ret = eeh_ops->get_state(parent_pe, NULL);
556 		if (ret > 0 && !eeh_state_active(ret)) {
557 			pe = parent_pe;
558 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
559 			       pe->phb->global_number, pe->addr,
560 			       pe->phb->global_number, parent_pe->addr);
561 		}
562 
563 		/* Next parent level */
564 		parent_pe = parent_pe->parent;
565 	}
566 
567 	eeh_stats.slot_resets++;
568 
569 	/* Avoid repeated reports of this failure, including problems
570 	 * with other functions on this device, and functions under
571 	 * bridges.
572 	 */
573 	eeh_pe_mark_isolated(pe);
574 	eeh_serialize_unlock(flags);
575 
576 	/* Most EEH events are due to device driver bugs.  Having
577 	 * a stack trace will help the device-driver authors figure
578 	 * out what happened.  So print that out.
579 	 */
580 	phb_pe = eeh_phb_pe_get(pe->phb);
581 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
582 	       pe->phb->global_number, pe->addr);
583 	pr_err("EEH: PE location: %s, PHB location: %s\n",
584 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
585 	dump_stack();
586 
587 	eeh_send_failure_event(pe);
588 
589 	return 1;
590 
591 dn_unlock:
592 	eeh_serialize_unlock(flags);
593 	return rc;
594 }
595 
596 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
597 
598 /**
599  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
600  * @token: I/O address
601  *
602  * Check for an EEH failure at the given I/O address. Call this
603  * routine if the result of a read was all 0xff's and you want to
604  * find out if this is due to an EEH slot freeze event. This routine
605  * will query firmware for the EEH status.
606  *
607  * Note this routine is safe to call in an interrupt context.
608  */
609 int eeh_check_failure(const volatile void __iomem *token)
610 {
611 	unsigned long addr;
612 	struct eeh_dev *edev;
613 
614 	/* Finding the phys addr + pci device; this is pretty quick. */
615 	addr = eeh_token_to_phys((unsigned long __force) token);
616 	edev = eeh_addr_cache_get_dev(addr);
617 	if (!edev) {
618 		eeh_stats.no_device++;
619 		return 0;
620 	}
621 
622 	return eeh_dev_check_failure(edev);
623 }
624 EXPORT_SYMBOL(eeh_check_failure);
625 
626 
627 /**
628  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
629  * @pe: EEH PE
630  *
631  * This routine should be called to reenable frozen MMIO or DMA
632  * so that it would work correctly again. It's useful while doing
633  * recovery or log collection on the indicated device.
634  */
635 int eeh_pci_enable(struct eeh_pe *pe, int function)
636 {
637 	int active_flag, rc;
638 
639 	/*
640 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
641 	 * Also, it's pointless to enable them on unfrozen PE. So
642 	 * we have to check before enabling IO or DMA.
643 	 */
644 	switch (function) {
645 	case EEH_OPT_THAW_MMIO:
646 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
647 		break;
648 	case EEH_OPT_THAW_DMA:
649 		active_flag = EEH_STATE_DMA_ACTIVE;
650 		break;
651 	case EEH_OPT_DISABLE:
652 	case EEH_OPT_ENABLE:
653 	case EEH_OPT_FREEZE_PE:
654 		active_flag = 0;
655 		break;
656 	default:
657 		pr_warn("%s: Invalid function %d\n",
658 			__func__, function);
659 		return -EINVAL;
660 	}
661 
662 	/*
663 	 * Check if IO or DMA has been enabled before
664 	 * enabling them.
665 	 */
666 	if (active_flag) {
667 		rc = eeh_ops->get_state(pe, NULL);
668 		if (rc < 0)
669 			return rc;
670 
671 		/* Needn't enable it at all */
672 		if (rc == EEH_STATE_NOT_SUPPORT)
673 			return 0;
674 
675 		/* It's already enabled */
676 		if (rc & active_flag)
677 			return 0;
678 	}
679 
680 
681 	/* Issue the request */
682 	rc = eeh_ops->set_option(pe, function);
683 	if (rc)
684 		pr_warn("%s: Unexpected state change %d on "
685 			"PHB#%x-PE#%x, err=%d\n",
686 			__func__, function, pe->phb->global_number,
687 			pe->addr, rc);
688 
689 	/* Check if the request is finished successfully */
690 	if (active_flag) {
691 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
692 		if (rc < 0)
693 			return rc;
694 
695 		if (rc & active_flag)
696 			return 0;
697 
698 		return -EIO;
699 	}
700 
701 	return rc;
702 }
703 
704 static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
705 					    void *userdata)
706 {
707 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
708 	struct pci_dev *dev = userdata;
709 
710 	/*
711 	 * The caller should have disabled and saved the
712 	 * state for the specified device
713 	 */
714 	if (!pdev || pdev == dev)
715 		return NULL;
716 
717 	/* Ensure we have D0 power state */
718 	pci_set_power_state(pdev, PCI_D0);
719 
720 	/* Save device state */
721 	pci_save_state(pdev);
722 
723 	/*
724 	 * Disable device to avoid any DMA traffic and
725 	 * interrupt from the device
726 	 */
727 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
728 
729 	return NULL;
730 }
731 
732 static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
733 {
734 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
735 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
736 	struct pci_dev *dev = userdata;
737 
738 	if (!pdev)
739 		return NULL;
740 
741 	/* Apply customization from firmware */
742 	if (pdn && eeh_ops->restore_config)
743 		eeh_ops->restore_config(pdn);
744 
745 	/* The caller should restore state for the specified device */
746 	if (pdev != dev)
747 		pci_restore_state(pdev);
748 
749 	return NULL;
750 }
751 
752 int eeh_restore_vf_config(struct pci_dn *pdn)
753 {
754 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
755 	u32 devctl, cmd, cap2, aer_capctl;
756 	int old_mps;
757 
758 	if (edev->pcie_cap) {
759 		/* Restore MPS */
760 		old_mps = (ffs(pdn->mps) - 8) << 5;
761 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
762 				     2, &devctl);
763 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
764 		devctl |= old_mps;
765 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
766 				      2, devctl);
767 
768 		/* Disable Completion Timeout if possible */
769 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
770 				     4, &cap2);
771 		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
772 			eeh_ops->read_config(pdn,
773 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
774 					     4, &cap2);
775 			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
776 			eeh_ops->write_config(pdn,
777 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
778 					      4, cap2);
779 		}
780 	}
781 
782 	/* Enable SERR and parity checking */
783 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
784 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
785 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
786 
787 	/* Enable report various errors */
788 	if (edev->pcie_cap) {
789 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
790 				     2, &devctl);
791 		devctl &= ~PCI_EXP_DEVCTL_CERE;
792 		devctl |= (PCI_EXP_DEVCTL_NFERE |
793 			   PCI_EXP_DEVCTL_FERE |
794 			   PCI_EXP_DEVCTL_URRE);
795 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
796 				      2, devctl);
797 	}
798 
799 	/* Enable ECRC generation and check */
800 	if (edev->pcie_cap && edev->aer_cap) {
801 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
802 				     4, &aer_capctl);
803 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
804 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
805 				      4, aer_capctl);
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * pcibios_set_pcie_reset_state - Set PCI-E reset state
813  * @dev: pci device struct
814  * @state: reset state to enter
815  *
816  * Return value:
817  * 	0 if success
818  */
819 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
820 {
821 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
822 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
823 
824 	if (!pe) {
825 		pr_err("%s: No PE found on PCI device %s\n",
826 			__func__, pci_name(dev));
827 		return -EINVAL;
828 	}
829 
830 	switch (state) {
831 	case pcie_deassert_reset:
832 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
833 		eeh_unfreeze_pe(pe);
834 		if (!(pe->type & EEH_PE_VF))
835 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
836 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
837 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
838 		break;
839 	case pcie_hot_reset:
840 		eeh_pe_mark_isolated(pe);
841 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
842 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
843 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
844 		if (!(pe->type & EEH_PE_VF))
845 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
846 		eeh_ops->reset(pe, EEH_RESET_HOT);
847 		break;
848 	case pcie_warm_reset:
849 		eeh_pe_mark_isolated(pe);
850 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
851 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
852 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
853 		if (!(pe->type & EEH_PE_VF))
854 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
855 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
856 		break;
857 	default:
858 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
859 		return -EINVAL;
860 	};
861 
862 	return 0;
863 }
864 
865 /**
866  * eeh_set_pe_freset - Check the required reset for the indicated device
867  * @data: EEH device
868  * @flag: return value
869  *
870  * Each device might have its preferred reset type: fundamental or
871  * hot reset. The routine is used to collected the information for
872  * the indicated device and its children so that the bunch of the
873  * devices could be reset properly.
874  */
875 static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
876 {
877 	struct pci_dev *dev;
878 	unsigned int *freset = (unsigned int *)flag;
879 
880 	dev = eeh_dev_to_pci_dev(edev);
881 	if (dev)
882 		*freset |= dev->needs_freset;
883 
884 	return NULL;
885 }
886 
887 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
888 {
889 	struct eeh_pe *pe;
890 	int state;
891 
892 	eeh_for_each_pe(root, pe) {
893 		if (eeh_pe_passed(pe)) {
894 			state = eeh_ops->get_state(pe, NULL);
895 			if (state &
896 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
897 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
898 					pe->phb->global_number, pe->addr);
899 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
900 			}
901 		}
902 	}
903 }
904 
905 /**
906  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
907  * @pe: EEH PE
908  *
909  * This function executes a full reset procedure on a PE, including setting
910  * the appropriate flags, performing a fundamental or hot reset, and then
911  * deactivating the reset status.  It is designed to be used within the EEH
912  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
913  * only performs a single operation at a time.
914  *
915  * This function will attempt to reset a PE three times before failing.
916  */
917 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
918 {
919 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
920 	int type = EEH_RESET_HOT;
921 	unsigned int freset = 0;
922 	int i, state = 0, ret;
923 
924 	/*
925 	 * Determine the type of reset to perform - hot or fundamental.
926 	 * Hot reset is the default operation, unless any device under the
927 	 * PE requires a fundamental reset.
928 	 */
929 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
930 
931 	if (freset)
932 		type = EEH_RESET_FUNDAMENTAL;
933 
934 	/* Mark the PE as in reset state and block config space accesses */
935 	eeh_pe_state_mark(pe, reset_state);
936 
937 	/* Make three attempts at resetting the bus */
938 	for (i = 0; i < 3; i++) {
939 		ret = eeh_pe_reset(pe, type, include_passed);
940 		if (!ret)
941 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
942 					   include_passed);
943 		if (ret) {
944 			ret = -EIO;
945 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
946 				state, pe->phb->global_number, pe->addr, i + 1);
947 			continue;
948 		}
949 		if (i)
950 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
951 				pe->phb->global_number, pe->addr, i + 1);
952 
953 		/* Wait until the PE is in a functioning state */
954 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
955 		if (state < 0) {
956 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
957 				pe->phb->global_number, pe->addr);
958 			ret = -ENOTRECOVERABLE;
959 			break;
960 		}
961 		if (eeh_state_active(state))
962 			break;
963 		else
964 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
965 				pe->phb->global_number, pe->addr, state, i + 1);
966 	}
967 
968 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
969 	 * (potentially) passed through to a guest, re-freeze them:
970 	 */
971 	if (!include_passed)
972 		eeh_pe_refreeze_passed(pe);
973 
974 	eeh_pe_state_clear(pe, reset_state, true);
975 	return ret;
976 }
977 
978 /**
979  * eeh_save_bars - Save device bars
980  * @edev: PCI device associated EEH device
981  *
982  * Save the values of the device bars. Unlike the restore
983  * routine, this routine is *not* recursive. This is because
984  * PCI devices are added individually; but, for the restore,
985  * an entire slot is reset at a time.
986  */
987 void eeh_save_bars(struct eeh_dev *edev)
988 {
989 	struct pci_dn *pdn;
990 	int i;
991 
992 	pdn = eeh_dev_to_pdn(edev);
993 	if (!pdn)
994 		return;
995 
996 	for (i = 0; i < 16; i++)
997 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
998 
999 	/*
1000 	 * For PCI bridges including root port, we need enable bus
1001 	 * master explicitly. Otherwise, it can't fetch IODA table
1002 	 * entries correctly. So we cache the bit in advance so that
1003 	 * we can restore it after reset, either PHB range or PE range.
1004 	 */
1005 	if (edev->mode & EEH_DEV_BRIDGE)
1006 		edev->config_space[1] |= PCI_COMMAND_MASTER;
1007 }
1008 
1009 /**
1010  * eeh_ops_register - Register platform dependent EEH operations
1011  * @ops: platform dependent EEH operations
1012  *
1013  * Register the platform dependent EEH operation callback
1014  * functions. The platform should call this function before
1015  * any other EEH operations.
1016  */
1017 int __init eeh_ops_register(struct eeh_ops *ops)
1018 {
1019 	if (!ops->name) {
1020 		pr_warn("%s: Invalid EEH ops name for %p\n",
1021 			__func__, ops);
1022 		return -EINVAL;
1023 	}
1024 
1025 	if (eeh_ops && eeh_ops != ops) {
1026 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1027 			__func__, eeh_ops->name, ops->name);
1028 		return -EEXIST;
1029 	}
1030 
1031 	eeh_ops = ops;
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * eeh_ops_unregister - Unreigster platform dependent EEH operations
1038  * @name: name of EEH platform operations
1039  *
1040  * Unregister the platform dependent EEH operation callback
1041  * functions.
1042  */
1043 int __exit eeh_ops_unregister(const char *name)
1044 {
1045 	if (!name || !strlen(name)) {
1046 		pr_warn("%s: Invalid EEH ops name\n",
1047 			__func__);
1048 		return -EINVAL;
1049 	}
1050 
1051 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1052 		eeh_ops = NULL;
1053 		return 0;
1054 	}
1055 
1056 	return -EEXIST;
1057 }
1058 
1059 static int eeh_reboot_notifier(struct notifier_block *nb,
1060 			       unsigned long action, void *unused)
1061 {
1062 	eeh_clear_flag(EEH_ENABLED);
1063 	return NOTIFY_DONE;
1064 }
1065 
1066 static struct notifier_block eeh_reboot_nb = {
1067 	.notifier_call = eeh_reboot_notifier,
1068 };
1069 
1070 void eeh_probe_devices(void)
1071 {
1072 	struct pci_controller *hose, *tmp;
1073 	struct pci_dn *pdn;
1074 
1075 	/* Enable EEH for all adapters */
1076 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1077 		pdn = hose->pci_data;
1078 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1079 	}
1080 	if (eeh_enabled())
1081 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1082 	else
1083 		pr_info("EEH: No capable adapters found\n");
1084 
1085 }
1086 
1087 /**
1088  * eeh_init - EEH initialization
1089  *
1090  * Initialize EEH by trying to enable it for all of the adapters in the system.
1091  * As a side effect we can determine here if eeh is supported at all.
1092  * Note that we leave EEH on so failed config cycles won't cause a machine
1093  * check.  If a user turns off EEH for a particular adapter they are really
1094  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1095  * grant access to a slot if EEH isn't enabled, and so we always enable
1096  * EEH for all slots/all devices.
1097  *
1098  * The eeh-force-off option disables EEH checking globally, for all slots.
1099  * Even if force-off is set, the EEH hardware is still enabled, so that
1100  * newer systems can boot.
1101  */
1102 static int eeh_init(void)
1103 {
1104 	struct pci_controller *hose, *tmp;
1105 	int ret = 0;
1106 
1107 	/* Register reboot notifier */
1108 	ret = register_reboot_notifier(&eeh_reboot_nb);
1109 	if (ret) {
1110 		pr_warn("%s: Failed to register notifier (%d)\n",
1111 			__func__, ret);
1112 		return ret;
1113 	}
1114 
1115 	/* call platform initialization function */
1116 	if (!eeh_ops) {
1117 		pr_warn("%s: Platform EEH operation not found\n",
1118 			__func__);
1119 		return -EEXIST;
1120 	} else if ((ret = eeh_ops->init()))
1121 		return ret;
1122 
1123 	/* Initialize PHB PEs */
1124 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1125 		eeh_dev_phb_init_dynamic(hose);
1126 
1127 	/* Initialize EEH event */
1128 	return eeh_event_init();
1129 }
1130 
1131 core_initcall_sync(eeh_init);
1132 
1133 /**
1134  * eeh_add_device_early - Enable EEH for the indicated device node
1135  * @pdn: PCI device node for which to set up EEH
1136  *
1137  * This routine must be used to perform EEH initialization for PCI
1138  * devices that were added after system boot (e.g. hotplug, dlpar).
1139  * This routine must be called before any i/o is performed to the
1140  * adapter (inluding any config-space i/o).
1141  * Whether this actually enables EEH or not for this device depends
1142  * on the CEC architecture, type of the device, on earlier boot
1143  * command-line arguments & etc.
1144  */
1145 void eeh_add_device_early(struct pci_dn *pdn)
1146 {
1147 	struct pci_controller *phb = pdn ? pdn->phb : NULL;
1148 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1149 
1150 	if (!edev)
1151 		return;
1152 
1153 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1154 		return;
1155 
1156 	/* USB Bus children of PCI devices will not have BUID's */
1157 	if (NULL == phb ||
1158 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1159 		return;
1160 
1161 	eeh_ops->probe(pdn, NULL);
1162 }
1163 
1164 /**
1165  * eeh_add_device_tree_early - Enable EEH for the indicated device
1166  * @pdn: PCI device node
1167  *
1168  * This routine must be used to perform EEH initialization for the
1169  * indicated PCI device that was added after system boot (e.g.
1170  * hotplug, dlpar).
1171  */
1172 void eeh_add_device_tree_early(struct pci_dn *pdn)
1173 {
1174 	struct pci_dn *n;
1175 
1176 	if (!pdn)
1177 		return;
1178 
1179 	list_for_each_entry(n, &pdn->child_list, list)
1180 		eeh_add_device_tree_early(n);
1181 	eeh_add_device_early(pdn);
1182 }
1183 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1184 
1185 /**
1186  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1187  * @dev: pci device for which to set up EEH
1188  *
1189  * This routine must be used to complete EEH initialization for PCI
1190  * devices that were added after system boot (e.g. hotplug, dlpar).
1191  */
1192 void eeh_add_device_late(struct pci_dev *dev)
1193 {
1194 	struct pci_dn *pdn;
1195 	struct eeh_dev *edev;
1196 
1197 	if (!dev || !eeh_enabled())
1198 		return;
1199 
1200 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1201 
1202 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1203 	edev = pdn_to_eeh_dev(pdn);
1204 	if (edev->pdev == dev) {
1205 		pr_debug("EEH: Already referenced !\n");
1206 		return;
1207 	}
1208 
1209 	/*
1210 	 * The EEH cache might not be removed correctly because of
1211 	 * unbalanced kref to the device during unplug time, which
1212 	 * relies on pcibios_release_device(). So we have to remove
1213 	 * that here explicitly.
1214 	 */
1215 	if (edev->pdev) {
1216 		eeh_rmv_from_parent_pe(edev);
1217 		eeh_addr_cache_rmv_dev(edev->pdev);
1218 		eeh_sysfs_remove_device(edev->pdev);
1219 		edev->mode &= ~EEH_DEV_SYSFS;
1220 
1221 		/*
1222 		 * We definitely should have the PCI device removed
1223 		 * though it wasn't correctly. So we needn't call
1224 		 * into error handler afterwards.
1225 		 */
1226 		edev->mode |= EEH_DEV_NO_HANDLER;
1227 
1228 		edev->pdev = NULL;
1229 		dev->dev.archdata.edev = NULL;
1230 	}
1231 
1232 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1233 		eeh_ops->probe(pdn, NULL);
1234 
1235 	edev->pdev = dev;
1236 	dev->dev.archdata.edev = edev;
1237 
1238 	eeh_addr_cache_insert_dev(dev);
1239 }
1240 
1241 /**
1242  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1243  * @bus: PCI bus
1244  *
1245  * This routine must be used to perform EEH initialization for PCI
1246  * devices which are attached to the indicated PCI bus. The PCI bus
1247  * is added after system boot through hotplug or dlpar.
1248  */
1249 void eeh_add_device_tree_late(struct pci_bus *bus)
1250 {
1251 	struct pci_dev *dev;
1252 
1253 	list_for_each_entry(dev, &bus->devices, bus_list) {
1254 		eeh_add_device_late(dev);
1255 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1256 			struct pci_bus *subbus = dev->subordinate;
1257 			if (subbus)
1258 				eeh_add_device_tree_late(subbus);
1259 		}
1260 	}
1261 }
1262 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1263 
1264 /**
1265  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1266  * @bus: PCI bus
1267  *
1268  * This routine must be used to add EEH sysfs files for PCI
1269  * devices which are attached to the indicated PCI bus. The PCI bus
1270  * is added after system boot through hotplug or dlpar.
1271  */
1272 void eeh_add_sysfs_files(struct pci_bus *bus)
1273 {
1274 	struct pci_dev *dev;
1275 
1276 	list_for_each_entry(dev, &bus->devices, bus_list) {
1277 		eeh_sysfs_add_device(dev);
1278 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1279 			struct pci_bus *subbus = dev->subordinate;
1280 			if (subbus)
1281 				eeh_add_sysfs_files(subbus);
1282 		}
1283 	}
1284 }
1285 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1286 
1287 /**
1288  * eeh_remove_device - Undo EEH setup for the indicated pci device
1289  * @dev: pci device to be removed
1290  *
1291  * This routine should be called when a device is removed from
1292  * a running system (e.g. by hotplug or dlpar).  It unregisters
1293  * the PCI device from the EEH subsystem.  I/O errors affecting
1294  * this device will no longer be detected after this call; thus,
1295  * i/o errors affecting this slot may leave this device unusable.
1296  */
1297 void eeh_remove_device(struct pci_dev *dev)
1298 {
1299 	struct eeh_dev *edev;
1300 
1301 	if (!dev || !eeh_enabled())
1302 		return;
1303 	edev = pci_dev_to_eeh_dev(dev);
1304 
1305 	/* Unregister the device with the EEH/PCI address search system */
1306 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1307 
1308 	if (!edev || !edev->pdev || !edev->pe) {
1309 		pr_debug("EEH: Not referenced !\n");
1310 		return;
1311 	}
1312 
1313 	/*
1314 	 * During the hotplug for EEH error recovery, we need the EEH
1315 	 * device attached to the parent PE in order for BAR restore
1316 	 * a bit later. So we keep it for BAR restore and remove it
1317 	 * from the parent PE during the BAR resotre.
1318 	 */
1319 	edev->pdev = NULL;
1320 
1321 	/*
1322 	 * The flag "in_error" is used to trace EEH devices for VFs
1323 	 * in error state or not. It's set in eeh_report_error(). If
1324 	 * it's not set, eeh_report_{reset,resume}() won't be called
1325 	 * for the VF EEH device.
1326 	 */
1327 	edev->in_error = false;
1328 	dev->dev.archdata.edev = NULL;
1329 	if (!(edev->pe->state & EEH_PE_KEEP))
1330 		eeh_rmv_from_parent_pe(edev);
1331 	else
1332 		edev->mode |= EEH_DEV_DISCONNECTED;
1333 
1334 	/*
1335 	 * We're removing from the PCI subsystem, that means
1336 	 * the PCI device driver can't support EEH or not
1337 	 * well. So we rely on hotplug completely to do recovery
1338 	 * for the specific PCI device.
1339 	 */
1340 	edev->mode |= EEH_DEV_NO_HANDLER;
1341 
1342 	eeh_addr_cache_rmv_dev(dev);
1343 	eeh_sysfs_remove_device(dev);
1344 	edev->mode &= ~EEH_DEV_SYSFS;
1345 }
1346 
1347 int eeh_unfreeze_pe(struct eeh_pe *pe)
1348 {
1349 	int ret;
1350 
1351 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1352 	if (ret) {
1353 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1354 			__func__, ret, pe->phb->global_number, pe->addr);
1355 		return ret;
1356 	}
1357 
1358 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1359 	if (ret) {
1360 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1361 			__func__, ret, pe->phb->global_number, pe->addr);
1362 		return ret;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 
1369 static struct pci_device_id eeh_reset_ids[] = {
1370 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1371 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1372 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1373 	{ 0 }
1374 };
1375 
1376 static int eeh_pe_change_owner(struct eeh_pe *pe)
1377 {
1378 	struct eeh_dev *edev, *tmp;
1379 	struct pci_dev *pdev;
1380 	struct pci_device_id *id;
1381 	int ret;
1382 
1383 	/* Check PE state */
1384 	ret = eeh_ops->get_state(pe, NULL);
1385 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1386 		return 0;
1387 
1388 	/* Unfrozen PE, nothing to do */
1389 	if (eeh_state_active(ret))
1390 		return 0;
1391 
1392 	/* Frozen PE, check if it needs PE level reset */
1393 	eeh_pe_for_each_dev(pe, edev, tmp) {
1394 		pdev = eeh_dev_to_pci_dev(edev);
1395 		if (!pdev)
1396 			continue;
1397 
1398 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1399 			if (id->vendor != PCI_ANY_ID &&
1400 			    id->vendor != pdev->vendor)
1401 				continue;
1402 			if (id->device != PCI_ANY_ID &&
1403 			    id->device != pdev->device)
1404 				continue;
1405 			if (id->subvendor != PCI_ANY_ID &&
1406 			    id->subvendor != pdev->subsystem_vendor)
1407 				continue;
1408 			if (id->subdevice != PCI_ANY_ID &&
1409 			    id->subdevice != pdev->subsystem_device)
1410 				continue;
1411 
1412 			return eeh_pe_reset_and_recover(pe);
1413 		}
1414 	}
1415 
1416 	ret = eeh_unfreeze_pe(pe);
1417 	if (!ret)
1418 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1419 	return ret;
1420 }
1421 
1422 /**
1423  * eeh_dev_open - Increase count of pass through devices for PE
1424  * @pdev: PCI device
1425  *
1426  * Increase count of passed through devices for the indicated
1427  * PE. In the result, the EEH errors detected on the PE won't be
1428  * reported. The PE owner will be responsible for detection
1429  * and recovery.
1430  */
1431 int eeh_dev_open(struct pci_dev *pdev)
1432 {
1433 	struct eeh_dev *edev;
1434 	int ret = -ENODEV;
1435 
1436 	mutex_lock(&eeh_dev_mutex);
1437 
1438 	/* No PCI device ? */
1439 	if (!pdev)
1440 		goto out;
1441 
1442 	/* No EEH device or PE ? */
1443 	edev = pci_dev_to_eeh_dev(pdev);
1444 	if (!edev || !edev->pe)
1445 		goto out;
1446 
1447 	/*
1448 	 * The PE might have been put into frozen state, but we
1449 	 * didn't detect that yet. The passed through PCI devices
1450 	 * in frozen PE won't work properly. Clear the frozen state
1451 	 * in advance.
1452 	 */
1453 	ret = eeh_pe_change_owner(edev->pe);
1454 	if (ret)
1455 		goto out;
1456 
1457 	/* Increase PE's pass through count */
1458 	atomic_inc(&edev->pe->pass_dev_cnt);
1459 	mutex_unlock(&eeh_dev_mutex);
1460 
1461 	return 0;
1462 out:
1463 	mutex_unlock(&eeh_dev_mutex);
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(eeh_dev_open);
1467 
1468 /**
1469  * eeh_dev_release - Decrease count of pass through devices for PE
1470  * @pdev: PCI device
1471  *
1472  * Decrease count of pass through devices for the indicated PE. If
1473  * there is no passed through device in PE, the EEH errors detected
1474  * on the PE will be reported and handled as usual.
1475  */
1476 void eeh_dev_release(struct pci_dev *pdev)
1477 {
1478 	struct eeh_dev *edev;
1479 
1480 	mutex_lock(&eeh_dev_mutex);
1481 
1482 	/* No PCI device ? */
1483 	if (!pdev)
1484 		goto out;
1485 
1486 	/* No EEH device ? */
1487 	edev = pci_dev_to_eeh_dev(pdev);
1488 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1489 		goto out;
1490 
1491 	/* Decrease PE's pass through count */
1492 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1493 	eeh_pe_change_owner(edev->pe);
1494 out:
1495 	mutex_unlock(&eeh_dev_mutex);
1496 }
1497 EXPORT_SYMBOL(eeh_dev_release);
1498 
1499 #ifdef CONFIG_IOMMU_API
1500 
1501 static int dev_has_iommu_table(struct device *dev, void *data)
1502 {
1503 	struct pci_dev *pdev = to_pci_dev(dev);
1504 	struct pci_dev **ppdev = data;
1505 
1506 	if (!dev)
1507 		return 0;
1508 
1509 	if (device_iommu_mapped(dev)) {
1510 		*ppdev = pdev;
1511 		return 1;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /**
1518  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1519  * @group: IOMMU group
1520  *
1521  * The routine is called to convert IOMMU group to EEH PE.
1522  */
1523 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1524 {
1525 	struct pci_dev *pdev = NULL;
1526 	struct eeh_dev *edev;
1527 	int ret;
1528 
1529 	/* No IOMMU group ? */
1530 	if (!group)
1531 		return NULL;
1532 
1533 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1534 	if (!ret || !pdev)
1535 		return NULL;
1536 
1537 	/* No EEH device or PE ? */
1538 	edev = pci_dev_to_eeh_dev(pdev);
1539 	if (!edev || !edev->pe)
1540 		return NULL;
1541 
1542 	return edev->pe;
1543 }
1544 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1545 
1546 #endif /* CONFIG_IOMMU_API */
1547 
1548 /**
1549  * eeh_pe_set_option - Set options for the indicated PE
1550  * @pe: EEH PE
1551  * @option: requested option
1552  *
1553  * The routine is called to enable or disable EEH functionality
1554  * on the indicated PE, to enable IO or DMA for the frozen PE.
1555  */
1556 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1557 {
1558 	int ret = 0;
1559 
1560 	/* Invalid PE ? */
1561 	if (!pe)
1562 		return -ENODEV;
1563 
1564 	/*
1565 	 * EEH functionality could possibly be disabled, just
1566 	 * return error for the case. And the EEH functinality
1567 	 * isn't expected to be disabled on one specific PE.
1568 	 */
1569 	switch (option) {
1570 	case EEH_OPT_ENABLE:
1571 		if (eeh_enabled()) {
1572 			ret = eeh_pe_change_owner(pe);
1573 			break;
1574 		}
1575 		ret = -EIO;
1576 		break;
1577 	case EEH_OPT_DISABLE:
1578 		break;
1579 	case EEH_OPT_THAW_MMIO:
1580 	case EEH_OPT_THAW_DMA:
1581 	case EEH_OPT_FREEZE_PE:
1582 		if (!eeh_ops || !eeh_ops->set_option) {
1583 			ret = -ENOENT;
1584 			break;
1585 		}
1586 
1587 		ret = eeh_pci_enable(pe, option);
1588 		break;
1589 	default:
1590 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1591 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1592 		ret = -EINVAL;
1593 	}
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1598 
1599 /**
1600  * eeh_pe_get_state - Retrieve PE's state
1601  * @pe: EEH PE
1602  *
1603  * Retrieve the PE's state, which includes 3 aspects: enabled
1604  * DMA, enabled IO and asserted reset.
1605  */
1606 int eeh_pe_get_state(struct eeh_pe *pe)
1607 {
1608 	int result, ret = 0;
1609 	bool rst_active, dma_en, mmio_en;
1610 
1611 	/* Existing PE ? */
1612 	if (!pe)
1613 		return -ENODEV;
1614 
1615 	if (!eeh_ops || !eeh_ops->get_state)
1616 		return -ENOENT;
1617 
1618 	/*
1619 	 * If the parent PE is owned by the host kernel and is undergoing
1620 	 * error recovery, we should return the PE state as temporarily
1621 	 * unavailable so that the error recovery on the guest is suspended
1622 	 * until the recovery completes on the host.
1623 	 */
1624 	if (pe->parent &&
1625 	    !(pe->state & EEH_PE_REMOVED) &&
1626 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1627 		return EEH_PE_STATE_UNAVAIL;
1628 
1629 	result = eeh_ops->get_state(pe, NULL);
1630 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1631 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1632 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1633 
1634 	if (rst_active)
1635 		ret = EEH_PE_STATE_RESET;
1636 	else if (dma_en && mmio_en)
1637 		ret = EEH_PE_STATE_NORMAL;
1638 	else if (!dma_en && !mmio_en)
1639 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1640 	else if (!dma_en && mmio_en)
1641 		ret = EEH_PE_STATE_STOPPED_DMA;
1642 	else
1643 		ret = EEH_PE_STATE_UNAVAIL;
1644 
1645 	return ret;
1646 }
1647 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1648 
1649 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1650 {
1651 	struct eeh_dev *edev, *tmp;
1652 	struct pci_dev *pdev;
1653 	int ret = 0;
1654 
1655 	eeh_pe_restore_bars(pe);
1656 
1657 	/*
1658 	 * Reenable PCI devices as the devices passed
1659 	 * through are always enabled before the reset.
1660 	 */
1661 	eeh_pe_for_each_dev(pe, edev, tmp) {
1662 		pdev = eeh_dev_to_pci_dev(edev);
1663 		if (!pdev)
1664 			continue;
1665 
1666 		ret = pci_reenable_device(pdev);
1667 		if (ret) {
1668 			pr_warn("%s: Failure %d reenabling %s\n",
1669 				__func__, ret, pci_name(pdev));
1670 			return ret;
1671 		}
1672 	}
1673 
1674 	/* The PE is still in frozen state */
1675 	if (include_passed || !eeh_pe_passed(pe)) {
1676 		ret = eeh_unfreeze_pe(pe);
1677 	} else
1678 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1679 			pe->phb->global_number, pe->addr);
1680 	if (!ret)
1681 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1682 	return ret;
1683 }
1684 
1685 
1686 /**
1687  * eeh_pe_reset - Issue PE reset according to specified type
1688  * @pe: EEH PE
1689  * @option: reset type
1690  *
1691  * The routine is called to reset the specified PE with the
1692  * indicated type, either fundamental reset or hot reset.
1693  * PE reset is the most important part for error recovery.
1694  */
1695 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1696 {
1697 	int ret = 0;
1698 
1699 	/* Invalid PE ? */
1700 	if (!pe)
1701 		return -ENODEV;
1702 
1703 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1704 		return -ENOENT;
1705 
1706 	switch (option) {
1707 	case EEH_RESET_DEACTIVATE:
1708 		ret = eeh_ops->reset(pe, option);
1709 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1710 		if (ret)
1711 			break;
1712 
1713 		ret = eeh_pe_reenable_devices(pe, include_passed);
1714 		break;
1715 	case EEH_RESET_HOT:
1716 	case EEH_RESET_FUNDAMENTAL:
1717 		/*
1718 		 * Proactively freeze the PE to drop all MMIO access
1719 		 * during reset, which should be banned as it's always
1720 		 * cause recursive EEH error.
1721 		 */
1722 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1723 
1724 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1725 		ret = eeh_ops->reset(pe, option);
1726 		break;
1727 	default:
1728 		pr_debug("%s: Unsupported option %d\n",
1729 			__func__, option);
1730 		ret = -EINVAL;
1731 	}
1732 
1733 	return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1736 
1737 /**
1738  * eeh_pe_configure - Configure PCI bridges after PE reset
1739  * @pe: EEH PE
1740  *
1741  * The routine is called to restore the PCI config space for
1742  * those PCI devices, especially PCI bridges affected by PE
1743  * reset issued previously.
1744  */
1745 int eeh_pe_configure(struct eeh_pe *pe)
1746 {
1747 	int ret = 0;
1748 
1749 	/* Invalid PE ? */
1750 	if (!pe)
1751 		return -ENODEV;
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1756 
1757 /**
1758  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1759  * @pe: the indicated PE
1760  * @type: error type
1761  * @function: error function
1762  * @addr: address
1763  * @mask: address mask
1764  *
1765  * The routine is called to inject the specified PCI error, which
1766  * is determined by @type and @function, to the indicated PE for
1767  * testing purpose.
1768  */
1769 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1770 		      unsigned long addr, unsigned long mask)
1771 {
1772 	/* Invalid PE ? */
1773 	if (!pe)
1774 		return -ENODEV;
1775 
1776 	/* Unsupported operation ? */
1777 	if (!eeh_ops || !eeh_ops->err_inject)
1778 		return -ENOENT;
1779 
1780 	/* Check on PCI error type */
1781 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1782 		return -EINVAL;
1783 
1784 	/* Check on PCI error function */
1785 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1786 		return -EINVAL;
1787 
1788 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1789 }
1790 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1791 
1792 static int proc_eeh_show(struct seq_file *m, void *v)
1793 {
1794 	if (!eeh_enabled()) {
1795 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1796 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1797 	} else {
1798 		seq_printf(m, "EEH Subsystem is enabled\n");
1799 		seq_printf(m,
1800 				"no device=%llu\n"
1801 				"no device node=%llu\n"
1802 				"no config address=%llu\n"
1803 				"check not wanted=%llu\n"
1804 				"eeh_total_mmio_ffs=%llu\n"
1805 				"eeh_false_positives=%llu\n"
1806 				"eeh_slot_resets=%llu\n",
1807 				eeh_stats.no_device,
1808 				eeh_stats.no_dn,
1809 				eeh_stats.no_cfg_addr,
1810 				eeh_stats.ignored_check,
1811 				eeh_stats.total_mmio_ffs,
1812 				eeh_stats.false_positives,
1813 				eeh_stats.slot_resets);
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 #ifdef CONFIG_DEBUG_FS
1820 static int eeh_enable_dbgfs_set(void *data, u64 val)
1821 {
1822 	if (val)
1823 		eeh_clear_flag(EEH_FORCE_DISABLED);
1824 	else
1825 		eeh_add_flag(EEH_FORCE_DISABLED);
1826 
1827 	return 0;
1828 }
1829 
1830 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1831 {
1832 	if (eeh_enabled())
1833 		*val = 0x1ul;
1834 	else
1835 		*val = 0x0ul;
1836 	return 0;
1837 }
1838 
1839 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1840 			 eeh_enable_dbgfs_set, "0x%llx\n");
1841 
1842 static ssize_t eeh_force_recover_write(struct file *filp,
1843 				const char __user *user_buf,
1844 				size_t count, loff_t *ppos)
1845 {
1846 	struct pci_controller *hose;
1847 	uint32_t phbid, pe_no;
1848 	struct eeh_pe *pe;
1849 	char buf[20];
1850 	int ret;
1851 
1852 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1853 	if (!ret)
1854 		return -EFAULT;
1855 
1856 	/*
1857 	 * When PE is NULL the event is a "special" event. Rather than
1858 	 * recovering a specific PE it forces the EEH core to scan for failed
1859 	 * PHBs and recovers each. This needs to be done before any device
1860 	 * recoveries can occur.
1861 	 */
1862 	if (!strncmp(buf, "hwcheck", 7)) {
1863 		__eeh_send_failure_event(NULL);
1864 		return count;
1865 	}
1866 
1867 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1868 	if (ret != 2)
1869 		return -EINVAL;
1870 
1871 	hose = pci_find_controller_for_domain(phbid);
1872 	if (!hose)
1873 		return -ENODEV;
1874 
1875 	/* Retrieve PE */
1876 	pe = eeh_pe_get(hose, pe_no, 0);
1877 	if (!pe)
1878 		return -ENODEV;
1879 
1880 	/*
1881 	 * We don't do any state checking here since the detection
1882 	 * process is async to the recovery process. The recovery
1883 	 * thread *should* not break even if we schedule a recovery
1884 	 * from an odd state (e.g. PE removed, or recovery of a
1885 	 * non-isolated PE)
1886 	 */
1887 	__eeh_send_failure_event(pe);
1888 
1889 	return ret < 0 ? ret : count;
1890 }
1891 
1892 static const struct file_operations eeh_force_recover_fops = {
1893 	.open	= simple_open,
1894 	.llseek	= no_llseek,
1895 	.write	= eeh_force_recover_write,
1896 };
1897 #endif
1898 
1899 static int __init eeh_init_proc(void)
1900 {
1901 	if (machine_is(pseries) || machine_is(powernv)) {
1902 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1903 #ifdef CONFIG_DEBUG_FS
1904 		debugfs_create_file_unsafe("eeh_enable", 0600,
1905 					   powerpc_debugfs_root, NULL,
1906 					   &eeh_enable_dbgfs_ops);
1907 		debugfs_create_u32("eeh_max_freezes", 0600,
1908 				powerpc_debugfs_root, &eeh_max_freezes);
1909 		debugfs_create_bool("eeh_disable_recovery", 0600,
1910 				powerpc_debugfs_root,
1911 				&eeh_debugfs_no_recover);
1912 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1913 				powerpc_debugfs_root, NULL,
1914 				&eeh_force_recover_fops);
1915 		eeh_cache_debugfs_init();
1916 #endif
1917 	}
1918 
1919 	return 0;
1920 }
1921 __initcall(eeh_init_proc);
1922