xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 void eeh_show_enabled(void)
154 {
155 	if (eeh_has_flag(EEH_FORCE_DISABLED))
156 		pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 	else if (eeh_has_flag(EEH_ENABLED))
158 		pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 	else
160 		pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162 
163 /*
164  * This routine captures assorted PCI configuration space data
165  * for the indicated PCI device, and puts them into a buffer
166  * for RTAS error logging.
167  */
168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 	u32 cfg;
171 	int cap, i;
172 	int n = 0, l = 0;
173 	char buffer[128];
174 
175 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 			edev->pe->phb->global_number, edev->bdfn >> 8,
177 			PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 		edev->pe->phb->global_number, edev->bdfn >> 8,
180 		PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181 
182 	eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185 
186 	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189 
190 	/* Gather bridge-specific registers */
191 	if (edev->mode & EEH_DEV_BRIDGE) {
192 		eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195 
196 		eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 		pr_warn("EEH: Bridge control: %04x\n", cfg);
199 	}
200 
201 	/* Dump out the PCI-X command and status regs */
202 	cap = edev->pcix_cap;
203 	if (cap) {
204 		eeh_ops->read_config(edev, cap, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207 
208 		eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 	}
212 
213 	/* If PCI-E capable, dump PCI-E cap 10 */
214 	cap = edev->pcie_cap;
215 	if (cap) {
216 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
218 
219 		for (i=0; i<=8; i++) {
220 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 
223 			if ((i % 4) == 0) {
224 				if (i != 0)
225 					pr_warn("%s\n", buffer);
226 
227 				l = scnprintf(buffer, sizeof(buffer),
228 					      "EEH: PCI-E %02x: %08x ",
229 					      4*i, cfg);
230 			} else {
231 				l += scnprintf(buffer+l, sizeof(buffer)-l,
232 					       "%08x ", cfg);
233 			}
234 
235 		}
236 
237 		pr_warn("%s\n", buffer);
238 	}
239 
240 	/* If AER capable, dump it */
241 	cap = edev->aer_cap;
242 	if (cap) {
243 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
245 
246 		for (i=0; i<=13; i++) {
247 			eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249 
250 			if ((i % 4) == 0) {
251 				if (i != 0)
252 					pr_warn("%s\n", buffer);
253 
254 				l = scnprintf(buffer, sizeof(buffer),
255 					      "EEH: PCI-E AER %02x: %08x ",
256 					      4*i, cfg);
257 			} else {
258 				l += scnprintf(buffer+l, sizeof(buffer)-l,
259 					       "%08x ", cfg);
260 			}
261 		}
262 
263 		pr_warn("%s\n", buffer);
264 	}
265 
266 	return n;
267 }
268 
269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 	struct eeh_dev *edev, *tmp;
272 	size_t *plen = flag;
273 
274 	eeh_pe_for_each_dev(pe, edev, tmp)
275 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 					  EEH_PCI_REGS_LOG_LEN - *plen);
277 
278 	return NULL;
279 }
280 
281 /**
282  * eeh_slot_error_detail - Generate combined log including driver log and error log
283  * @pe: EEH PE
284  * @severity: temporary or permanent error log
285  *
286  * This routine should be called to generate the combined log, which
287  * is comprised of driver log and error log. The driver log is figured
288  * out from the config space of the corresponding PCI device, while
289  * the error log is fetched through platform dependent function call.
290  */
291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 	size_t loglen = 0;
294 
295 	/*
296 	 * When the PHB is fenced or dead, it's pointless to collect
297 	 * the data from PCI config space because it should return
298 	 * 0xFF's. For ER, we still retrieve the data from the PCI
299 	 * config space.
300 	 *
301 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 	 * 0xFF's is always returned from PCI config space.
303 	 *
304 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 	 * removed. Prior to that, the drivers for devices included in
306 	 * the PE will be closed. The drivers rely on working IO path
307 	 * to bring the devices to quiet state. Otherwise, PCI traffic
308 	 * from those devices after they are removed is like to cause
309 	 * another unexpected EEH error.
310 	 */
311 	if (!(pe->type & EEH_PE_PHB)) {
312 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 		    severity == EEH_LOG_PERM)
314 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315 
316 		/*
317 		 * The config space of some PCI devices can't be accessed
318 		 * when their PEs are in frozen state. Otherwise, fenced
319 		 * PHB might be seen. Those PEs are identified with flag
320 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 		 *
323 		 * Restoring BARs possibly triggers PCI config access in
324 		 * (OPAL) firmware and then causes fenced PHB. If the
325 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 		 * pointless to restore BARs and dump config space.
327 		 */
328 		eeh_ops->configure_bridge(pe);
329 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 			eeh_pe_restore_bars(pe);
331 
332 			pci_regs_buf[0] = 0;
333 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 		}
335 	}
336 
337 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339 
340 /**
341  * eeh_token_to_phys - Convert EEH address token to phys address
342  * @token: I/O token, should be address in the form 0xA....
343  *
344  * This routine should be called to convert virtual I/O address
345  * to physical one.
346  */
347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 	pte_t *ptep;
350 	unsigned long pa;
351 	int hugepage_shift;
352 
353 	/*
354 	 * We won't find hugepages here(this is iomem). Hence we are not
355 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
356 	 * page table free, because of init_mm.
357 	 */
358 	ptep = find_init_mm_pte(token, &hugepage_shift);
359 	if (!ptep)
360 		return token;
361 
362 	pa = pte_pfn(*ptep);
363 
364 	/* On radix we can do hugepage mappings for io, so handle that */
365 	if (hugepage_shift) {
366 		pa <<= hugepage_shift;
367 		pa |= token & ((1ul << hugepage_shift) - 1);
368 	} else {
369 		pa <<= PAGE_SHIFT;
370 		pa |= token & (PAGE_SIZE - 1);
371 	}
372 
373 	return pa;
374 }
375 
376 /*
377  * On PowerNV platform, we might already have fenced PHB there.
378  * For that case, it's meaningless to recover frozen PE. Intead,
379  * We have to handle fenced PHB firstly.
380  */
381 static int eeh_phb_check_failure(struct eeh_pe *pe)
382 {
383 	struct eeh_pe *phb_pe;
384 	unsigned long flags;
385 	int ret;
386 
387 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
388 		return -EPERM;
389 
390 	/* Find the PHB PE */
391 	phb_pe = eeh_phb_pe_get(pe->phb);
392 	if (!phb_pe) {
393 		pr_warn("%s Can't find PE for PHB#%x\n",
394 			__func__, pe->phb->global_number);
395 		return -EEXIST;
396 	}
397 
398 	/* If the PHB has been in problematic state */
399 	eeh_serialize_lock(&flags);
400 	if (phb_pe->state & EEH_PE_ISOLATED) {
401 		ret = 0;
402 		goto out;
403 	}
404 
405 	/* Check PHB state */
406 	ret = eeh_ops->get_state(phb_pe, NULL);
407 	if ((ret < 0) ||
408 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
409 		ret = 0;
410 		goto out;
411 	}
412 
413 	/* Isolate the PHB and send event */
414 	eeh_pe_mark_isolated(phb_pe);
415 	eeh_serialize_unlock(flags);
416 
417 	pr_debug("EEH: PHB#%x failure detected, location: %s\n",
418 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
419 	eeh_send_failure_event(phb_pe);
420 	return 1;
421 out:
422 	eeh_serialize_unlock(flags);
423 	return ret;
424 }
425 
426 /**
427  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
428  * @edev: eeh device
429  *
430  * Check for an EEH failure for the given device node.  Call this
431  * routine if the result of a read was all 0xff's and you want to
432  * find out if this is due to an EEH slot freeze.  This routine
433  * will query firmware for the EEH status.
434  *
435  * Returns 0 if there has not been an EEH error; otherwise returns
436  * a non-zero value and queues up a slot isolation event notification.
437  *
438  * It is safe to call this routine in an interrupt context.
439  */
440 int eeh_dev_check_failure(struct eeh_dev *edev)
441 {
442 	int ret;
443 	unsigned long flags;
444 	struct device_node *dn;
445 	struct pci_dev *dev;
446 	struct eeh_pe *pe, *parent_pe;
447 	int rc = 0;
448 	const char *location = NULL;
449 
450 	eeh_stats.total_mmio_ffs++;
451 
452 	if (!eeh_enabled())
453 		return 0;
454 
455 	if (!edev) {
456 		eeh_stats.no_dn++;
457 		return 0;
458 	}
459 	dev = eeh_dev_to_pci_dev(edev);
460 	pe = eeh_dev_to_pe(edev);
461 
462 	/* Access to IO BARs might get this far and still not want checking. */
463 	if (!pe) {
464 		eeh_stats.ignored_check++;
465 		eeh_edev_dbg(edev, "Ignored check\n");
466 		return 0;
467 	}
468 
469 	if (!pe->addr) {
470 		eeh_stats.no_cfg_addr++;
471 		return 0;
472 	}
473 
474 	/*
475 	 * On PowerNV platform, we might already have fenced PHB
476 	 * there and we need take care of that firstly.
477 	 */
478 	ret = eeh_phb_check_failure(pe);
479 	if (ret > 0)
480 		return ret;
481 
482 	/*
483 	 * If the PE isn't owned by us, we shouldn't check the
484 	 * state. Instead, let the owner handle it if the PE has
485 	 * been frozen.
486 	 */
487 	if (eeh_pe_passed(pe))
488 		return 0;
489 
490 	/* If we already have a pending isolation event for this
491 	 * slot, we know it's bad already, we don't need to check.
492 	 * Do this checking under a lock; as multiple PCI devices
493 	 * in one slot might report errors simultaneously, and we
494 	 * only want one error recovery routine running.
495 	 */
496 	eeh_serialize_lock(&flags);
497 	rc = 1;
498 	if (pe->state & EEH_PE_ISOLATED) {
499 		pe->check_count++;
500 		if (pe->check_count == EEH_MAX_FAILS) {
501 			dn = pci_device_to_OF_node(dev);
502 			if (dn)
503 				location = of_get_property(dn, "ibm,loc-code",
504 						NULL);
505 			eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
506 				pe->check_count,
507 				location ? location : "unknown",
508 				eeh_driver_name(dev));
509 			eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
510 				eeh_driver_name(dev));
511 			dump_stack();
512 		}
513 		goto dn_unlock;
514 	}
515 
516 	/*
517 	 * Now test for an EEH failure.  This is VERY expensive.
518 	 * Note that the eeh_config_addr may be a parent device
519 	 * in the case of a device behind a bridge, or it may be
520 	 * function zero of a multi-function device.
521 	 * In any case they must share a common PHB.
522 	 */
523 	ret = eeh_ops->get_state(pe, NULL);
524 
525 	/* Note that config-io to empty slots may fail;
526 	 * they are empty when they don't have children.
527 	 * We will punt with the following conditions: Failure to get
528 	 * PE's state, EEH not support and Permanently unavailable
529 	 * state, PE is in good state.
530 	 */
531 	if ((ret < 0) ||
532 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
533 		eeh_stats.false_positives++;
534 		pe->false_positives++;
535 		rc = 0;
536 		goto dn_unlock;
537 	}
538 
539 	/*
540 	 * It should be corner case that the parent PE has been
541 	 * put into frozen state as well. We should take care
542 	 * that at first.
543 	 */
544 	parent_pe = pe->parent;
545 	while (parent_pe) {
546 		/* Hit the ceiling ? */
547 		if (parent_pe->type & EEH_PE_PHB)
548 			break;
549 
550 		/* Frozen parent PE ? */
551 		ret = eeh_ops->get_state(parent_pe, NULL);
552 		if (ret > 0 && !eeh_state_active(ret)) {
553 			pe = parent_pe;
554 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
555 			       pe->phb->global_number, pe->addr,
556 			       pe->phb->global_number, parent_pe->addr);
557 		}
558 
559 		/* Next parent level */
560 		parent_pe = parent_pe->parent;
561 	}
562 
563 	eeh_stats.slot_resets++;
564 
565 	/* Avoid repeated reports of this failure, including problems
566 	 * with other functions on this device, and functions under
567 	 * bridges.
568 	 */
569 	eeh_pe_mark_isolated(pe);
570 	eeh_serialize_unlock(flags);
571 
572 	/* Most EEH events are due to device driver bugs.  Having
573 	 * a stack trace will help the device-driver authors figure
574 	 * out what happened.  So print that out.
575 	 */
576 	pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
577 		__func__, pe->phb->global_number, pe->addr);
578 	eeh_send_failure_event(pe);
579 
580 	return 1;
581 
582 dn_unlock:
583 	eeh_serialize_unlock(flags);
584 	return rc;
585 }
586 
587 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
588 
589 /**
590  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
591  * @token: I/O address
592  *
593  * Check for an EEH failure at the given I/O address. Call this
594  * routine if the result of a read was all 0xff's and you want to
595  * find out if this is due to an EEH slot freeze event. This routine
596  * will query firmware for the EEH status.
597  *
598  * Note this routine is safe to call in an interrupt context.
599  */
600 int eeh_check_failure(const volatile void __iomem *token)
601 {
602 	unsigned long addr;
603 	struct eeh_dev *edev;
604 
605 	/* Finding the phys addr + pci device; this is pretty quick. */
606 	addr = eeh_token_to_phys((unsigned long __force) token);
607 	edev = eeh_addr_cache_get_dev(addr);
608 	if (!edev) {
609 		eeh_stats.no_device++;
610 		return 0;
611 	}
612 
613 	return eeh_dev_check_failure(edev);
614 }
615 EXPORT_SYMBOL(eeh_check_failure);
616 
617 
618 /**
619  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
620  * @pe: EEH PE
621  *
622  * This routine should be called to reenable frozen MMIO or DMA
623  * so that it would work correctly again. It's useful while doing
624  * recovery or log collection on the indicated device.
625  */
626 int eeh_pci_enable(struct eeh_pe *pe, int function)
627 {
628 	int active_flag, rc;
629 
630 	/*
631 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
632 	 * Also, it's pointless to enable them on unfrozen PE. So
633 	 * we have to check before enabling IO or DMA.
634 	 */
635 	switch (function) {
636 	case EEH_OPT_THAW_MMIO:
637 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
638 		break;
639 	case EEH_OPT_THAW_DMA:
640 		active_flag = EEH_STATE_DMA_ACTIVE;
641 		break;
642 	case EEH_OPT_DISABLE:
643 	case EEH_OPT_ENABLE:
644 	case EEH_OPT_FREEZE_PE:
645 		active_flag = 0;
646 		break;
647 	default:
648 		pr_warn("%s: Invalid function %d\n",
649 			__func__, function);
650 		return -EINVAL;
651 	}
652 
653 	/*
654 	 * Check if IO or DMA has been enabled before
655 	 * enabling them.
656 	 */
657 	if (active_flag) {
658 		rc = eeh_ops->get_state(pe, NULL);
659 		if (rc < 0)
660 			return rc;
661 
662 		/* Needn't enable it at all */
663 		if (rc == EEH_STATE_NOT_SUPPORT)
664 			return 0;
665 
666 		/* It's already enabled */
667 		if (rc & active_flag)
668 			return 0;
669 	}
670 
671 
672 	/* Issue the request */
673 	rc = eeh_ops->set_option(pe, function);
674 	if (rc)
675 		pr_warn("%s: Unexpected state change %d on "
676 			"PHB#%x-PE#%x, err=%d\n",
677 			__func__, function, pe->phb->global_number,
678 			pe->addr, rc);
679 
680 	/* Check if the request is finished successfully */
681 	if (active_flag) {
682 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
683 		if (rc < 0)
684 			return rc;
685 
686 		if (rc & active_flag)
687 			return 0;
688 
689 		return -EIO;
690 	}
691 
692 	return rc;
693 }
694 
695 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
696 					    void *userdata)
697 {
698 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
699 	struct pci_dev *dev = userdata;
700 
701 	/*
702 	 * The caller should have disabled and saved the
703 	 * state for the specified device
704 	 */
705 	if (!pdev || pdev == dev)
706 		return;
707 
708 	/* Ensure we have D0 power state */
709 	pci_set_power_state(pdev, PCI_D0);
710 
711 	/* Save device state */
712 	pci_save_state(pdev);
713 
714 	/*
715 	 * Disable device to avoid any DMA traffic and
716 	 * interrupt from the device
717 	 */
718 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
719 }
720 
721 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
722 {
723 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 	struct pci_dev *dev = userdata;
725 
726 	if (!pdev)
727 		return;
728 
729 	/* Apply customization from firmware */
730 	if (eeh_ops->restore_config)
731 		eeh_ops->restore_config(edev);
732 
733 	/* The caller should restore state for the specified device */
734 	if (pdev != dev)
735 		pci_restore_state(pdev);
736 }
737 
738 /**
739  * pcibios_set_pcie_reset_state - Set PCI-E reset state
740  * @dev: pci device struct
741  * @state: reset state to enter
742  *
743  * Return value:
744  * 	0 if success
745  */
746 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
747 {
748 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
749 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
750 
751 	if (!pe) {
752 		pr_err("%s: No PE found on PCI device %s\n",
753 			__func__, pci_name(dev));
754 		return -EINVAL;
755 	}
756 
757 	switch (state) {
758 	case pcie_deassert_reset:
759 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
760 		eeh_unfreeze_pe(pe);
761 		if (!(pe->type & EEH_PE_VF))
762 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
763 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
764 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
765 		break;
766 	case pcie_hot_reset:
767 		eeh_pe_mark_isolated(pe);
768 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
769 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
770 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
771 		if (!(pe->type & EEH_PE_VF))
772 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
773 		eeh_ops->reset(pe, EEH_RESET_HOT);
774 		break;
775 	case pcie_warm_reset:
776 		eeh_pe_mark_isolated(pe);
777 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
778 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
779 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
780 		if (!(pe->type & EEH_PE_VF))
781 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
782 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
783 		break;
784 	default:
785 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
786 		return -EINVAL;
787 	};
788 
789 	return 0;
790 }
791 
792 /**
793  * eeh_set_pe_freset - Check the required reset for the indicated device
794  * @data: EEH device
795  * @flag: return value
796  *
797  * Each device might have its preferred reset type: fundamental or
798  * hot reset. The routine is used to collected the information for
799  * the indicated device and its children so that the bunch of the
800  * devices could be reset properly.
801  */
802 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
803 {
804 	struct pci_dev *dev;
805 	unsigned int *freset = (unsigned int *)flag;
806 
807 	dev = eeh_dev_to_pci_dev(edev);
808 	if (dev)
809 		*freset |= dev->needs_freset;
810 }
811 
812 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
813 {
814 	struct eeh_pe *pe;
815 	int state;
816 
817 	eeh_for_each_pe(root, pe) {
818 		if (eeh_pe_passed(pe)) {
819 			state = eeh_ops->get_state(pe, NULL);
820 			if (state &
821 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
822 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
823 					pe->phb->global_number, pe->addr);
824 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
825 			}
826 		}
827 	}
828 }
829 
830 /**
831  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
832  * @pe: EEH PE
833  *
834  * This function executes a full reset procedure on a PE, including setting
835  * the appropriate flags, performing a fundamental or hot reset, and then
836  * deactivating the reset status.  It is designed to be used within the EEH
837  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
838  * only performs a single operation at a time.
839  *
840  * This function will attempt to reset a PE three times before failing.
841  */
842 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
843 {
844 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
845 	int type = EEH_RESET_HOT;
846 	unsigned int freset = 0;
847 	int i, state = 0, ret;
848 
849 	/*
850 	 * Determine the type of reset to perform - hot or fundamental.
851 	 * Hot reset is the default operation, unless any device under the
852 	 * PE requires a fundamental reset.
853 	 */
854 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
855 
856 	if (freset)
857 		type = EEH_RESET_FUNDAMENTAL;
858 
859 	/* Mark the PE as in reset state and block config space accesses */
860 	eeh_pe_state_mark(pe, reset_state);
861 
862 	/* Make three attempts at resetting the bus */
863 	for (i = 0; i < 3; i++) {
864 		ret = eeh_pe_reset(pe, type, include_passed);
865 		if (!ret)
866 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
867 					   include_passed);
868 		if (ret) {
869 			ret = -EIO;
870 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
871 				state, pe->phb->global_number, pe->addr, i + 1);
872 			continue;
873 		}
874 		if (i)
875 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
876 				pe->phb->global_number, pe->addr, i + 1);
877 
878 		/* Wait until the PE is in a functioning state */
879 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
880 		if (state < 0) {
881 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
882 				pe->phb->global_number, pe->addr);
883 			ret = -ENOTRECOVERABLE;
884 			break;
885 		}
886 		if (eeh_state_active(state))
887 			break;
888 		else
889 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
890 				pe->phb->global_number, pe->addr, state, i + 1);
891 	}
892 
893 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
894 	 * (potentially) passed through to a guest, re-freeze them:
895 	 */
896 	if (!include_passed)
897 		eeh_pe_refreeze_passed(pe);
898 
899 	eeh_pe_state_clear(pe, reset_state, true);
900 	return ret;
901 }
902 
903 /**
904  * eeh_save_bars - Save device bars
905  * @edev: PCI device associated EEH device
906  *
907  * Save the values of the device bars. Unlike the restore
908  * routine, this routine is *not* recursive. This is because
909  * PCI devices are added individually; but, for the restore,
910  * an entire slot is reset at a time.
911  */
912 void eeh_save_bars(struct eeh_dev *edev)
913 {
914 	int i;
915 
916 	if (!edev)
917 		return;
918 
919 	for (i = 0; i < 16; i++)
920 		eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
921 
922 	/*
923 	 * For PCI bridges including root port, we need enable bus
924 	 * master explicitly. Otherwise, it can't fetch IODA table
925 	 * entries correctly. So we cache the bit in advance so that
926 	 * we can restore it after reset, either PHB range or PE range.
927 	 */
928 	if (edev->mode & EEH_DEV_BRIDGE)
929 		edev->config_space[1] |= PCI_COMMAND_MASTER;
930 }
931 
932 static int eeh_reboot_notifier(struct notifier_block *nb,
933 			       unsigned long action, void *unused)
934 {
935 	eeh_clear_flag(EEH_ENABLED);
936 	return NOTIFY_DONE;
937 }
938 
939 static struct notifier_block eeh_reboot_nb = {
940 	.notifier_call = eeh_reboot_notifier,
941 };
942 
943 static int eeh_device_notifier(struct notifier_block *nb,
944 			       unsigned long action, void *data)
945 {
946 	struct device *dev = data;
947 
948 	switch (action) {
949 	/*
950 	 * Note: It's not possible to perform EEH device addition (i.e.
951 	 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
952 	 * the device's resources, which have not yet been set up.
953 	 */
954 	case BUS_NOTIFY_DEL_DEVICE:
955 		eeh_remove_device(to_pci_dev(dev));
956 		break;
957 	default:
958 		break;
959 	}
960 	return NOTIFY_DONE;
961 }
962 
963 static struct notifier_block eeh_device_nb = {
964 	.notifier_call = eeh_device_notifier,
965 };
966 
967 /**
968  * eeh_init - System wide EEH initialization
969  *
970  * It's the platform's job to call this from an arch_initcall().
971  */
972 int eeh_init(struct eeh_ops *ops)
973 {
974 	struct pci_controller *hose, *tmp;
975 	int ret = 0;
976 
977 	/* the platform should only initialise EEH once */
978 	if (WARN_ON(eeh_ops))
979 		return -EEXIST;
980 	if (WARN_ON(!ops))
981 		return -ENOENT;
982 	eeh_ops = ops;
983 
984 	/* Register reboot notifier */
985 	ret = register_reboot_notifier(&eeh_reboot_nb);
986 	if (ret) {
987 		pr_warn("%s: Failed to register reboot notifier (%d)\n",
988 			__func__, ret);
989 		return ret;
990 	}
991 
992 	ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
993 	if (ret) {
994 		pr_warn("%s: Failed to register bus notifier (%d)\n",
995 			__func__, ret);
996 		return ret;
997 	}
998 
999 	/* Initialize PHB PEs */
1000 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1001 		eeh_phb_pe_create(hose);
1002 
1003 	eeh_addr_cache_init();
1004 
1005 	/* Initialize EEH event */
1006 	return eeh_event_init();
1007 }
1008 
1009 /**
1010  * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1011  * @dev: pci device for which to set up EEH
1012  *
1013  * This routine must be used to complete EEH initialization for PCI
1014  * devices that were added after system boot (e.g. hotplug, dlpar).
1015  */
1016 void eeh_probe_device(struct pci_dev *dev)
1017 {
1018 	struct eeh_dev *edev;
1019 
1020 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1021 
1022 	/*
1023 	 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1024 	 * already called for this device.
1025 	 */
1026 	if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1027 		pci_dbg(dev, "Already bound to an eeh_dev!\n");
1028 		return;
1029 	}
1030 
1031 	edev = eeh_ops->probe(dev);
1032 	if (!edev) {
1033 		pr_debug("EEH: Adding device failed\n");
1034 		return;
1035 	}
1036 
1037 	/*
1038 	 * FIXME: We rely on pcibios_release_device() to remove the
1039 	 * existing EEH state. The release function is only called if
1040 	 * the pci_dev's refcount drops to zero so if something is
1041 	 * keeping a ref to a device (e.g. a filesystem) we need to
1042 	 * remove the old EEH state.
1043 	 *
1044 	 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1045 	 */
1046 	if (edev->pdev && edev->pdev != dev) {
1047 		eeh_pe_tree_remove(edev);
1048 		eeh_addr_cache_rmv_dev(edev->pdev);
1049 		eeh_sysfs_remove_device(edev->pdev);
1050 
1051 		/*
1052 		 * We definitely should have the PCI device removed
1053 		 * though it wasn't correctly. So we needn't call
1054 		 * into error handler afterwards.
1055 		 */
1056 		edev->mode |= EEH_DEV_NO_HANDLER;
1057 	}
1058 
1059 	/* bind the pdev and the edev together */
1060 	edev->pdev = dev;
1061 	dev->dev.archdata.edev = edev;
1062 	eeh_addr_cache_insert_dev(dev);
1063 	eeh_sysfs_add_device(dev);
1064 }
1065 
1066 /**
1067  * eeh_remove_device - Undo EEH setup for the indicated pci device
1068  * @dev: pci device to be removed
1069  *
1070  * This routine should be called when a device is removed from
1071  * a running system (e.g. by hotplug or dlpar).  It unregisters
1072  * the PCI device from the EEH subsystem.  I/O errors affecting
1073  * this device will no longer be detected after this call; thus,
1074  * i/o errors affecting this slot may leave this device unusable.
1075  */
1076 void eeh_remove_device(struct pci_dev *dev)
1077 {
1078 	struct eeh_dev *edev;
1079 
1080 	if (!dev || !eeh_enabled())
1081 		return;
1082 	edev = pci_dev_to_eeh_dev(dev);
1083 
1084 	/* Unregister the device with the EEH/PCI address search system */
1085 	dev_dbg(&dev->dev, "EEH: Removing device\n");
1086 
1087 	if (!edev || !edev->pdev || !edev->pe) {
1088 		dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * During the hotplug for EEH error recovery, we need the EEH
1094 	 * device attached to the parent PE in order for BAR restore
1095 	 * a bit later. So we keep it for BAR restore and remove it
1096 	 * from the parent PE during the BAR resotre.
1097 	 */
1098 	edev->pdev = NULL;
1099 
1100 	/*
1101 	 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1102 	 * remove the sysfs files before clearing dev.archdata.edev
1103 	 */
1104 	if (edev->mode & EEH_DEV_SYSFS)
1105 		eeh_sysfs_remove_device(dev);
1106 
1107 	/*
1108 	 * We're removing from the PCI subsystem, that means
1109 	 * the PCI device driver can't support EEH or not
1110 	 * well. So we rely on hotplug completely to do recovery
1111 	 * for the specific PCI device.
1112 	 */
1113 	edev->mode |= EEH_DEV_NO_HANDLER;
1114 
1115 	eeh_addr_cache_rmv_dev(dev);
1116 
1117 	/*
1118 	 * The flag "in_error" is used to trace EEH devices for VFs
1119 	 * in error state or not. It's set in eeh_report_error(). If
1120 	 * it's not set, eeh_report_{reset,resume}() won't be called
1121 	 * for the VF EEH device.
1122 	 */
1123 	edev->in_error = false;
1124 	dev->dev.archdata.edev = NULL;
1125 	if (!(edev->pe->state & EEH_PE_KEEP))
1126 		eeh_pe_tree_remove(edev);
1127 	else
1128 		edev->mode |= EEH_DEV_DISCONNECTED;
1129 }
1130 
1131 int eeh_unfreeze_pe(struct eeh_pe *pe)
1132 {
1133 	int ret;
1134 
1135 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1136 	if (ret) {
1137 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1138 			__func__, ret, pe->phb->global_number, pe->addr);
1139 		return ret;
1140 	}
1141 
1142 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1143 	if (ret) {
1144 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1145 			__func__, ret, pe->phb->global_number, pe->addr);
1146 		return ret;
1147 	}
1148 
1149 	return ret;
1150 }
1151 
1152 
1153 static struct pci_device_id eeh_reset_ids[] = {
1154 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1155 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1156 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1157 	{ 0 }
1158 };
1159 
1160 static int eeh_pe_change_owner(struct eeh_pe *pe)
1161 {
1162 	struct eeh_dev *edev, *tmp;
1163 	struct pci_dev *pdev;
1164 	struct pci_device_id *id;
1165 	int ret;
1166 
1167 	/* Check PE state */
1168 	ret = eeh_ops->get_state(pe, NULL);
1169 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1170 		return 0;
1171 
1172 	/* Unfrozen PE, nothing to do */
1173 	if (eeh_state_active(ret))
1174 		return 0;
1175 
1176 	/* Frozen PE, check if it needs PE level reset */
1177 	eeh_pe_for_each_dev(pe, edev, tmp) {
1178 		pdev = eeh_dev_to_pci_dev(edev);
1179 		if (!pdev)
1180 			continue;
1181 
1182 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1183 			if (id->vendor != PCI_ANY_ID &&
1184 			    id->vendor != pdev->vendor)
1185 				continue;
1186 			if (id->device != PCI_ANY_ID &&
1187 			    id->device != pdev->device)
1188 				continue;
1189 			if (id->subvendor != PCI_ANY_ID &&
1190 			    id->subvendor != pdev->subsystem_vendor)
1191 				continue;
1192 			if (id->subdevice != PCI_ANY_ID &&
1193 			    id->subdevice != pdev->subsystem_device)
1194 				continue;
1195 
1196 			return eeh_pe_reset_and_recover(pe);
1197 		}
1198 	}
1199 
1200 	ret = eeh_unfreeze_pe(pe);
1201 	if (!ret)
1202 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1203 	return ret;
1204 }
1205 
1206 /**
1207  * eeh_dev_open - Increase count of pass through devices for PE
1208  * @pdev: PCI device
1209  *
1210  * Increase count of passed through devices for the indicated
1211  * PE. In the result, the EEH errors detected on the PE won't be
1212  * reported. The PE owner will be responsible for detection
1213  * and recovery.
1214  */
1215 int eeh_dev_open(struct pci_dev *pdev)
1216 {
1217 	struct eeh_dev *edev;
1218 	int ret = -ENODEV;
1219 
1220 	mutex_lock(&eeh_dev_mutex);
1221 
1222 	/* No PCI device ? */
1223 	if (!pdev)
1224 		goto out;
1225 
1226 	/* No EEH device or PE ? */
1227 	edev = pci_dev_to_eeh_dev(pdev);
1228 	if (!edev || !edev->pe)
1229 		goto out;
1230 
1231 	/*
1232 	 * The PE might have been put into frozen state, but we
1233 	 * didn't detect that yet. The passed through PCI devices
1234 	 * in frozen PE won't work properly. Clear the frozen state
1235 	 * in advance.
1236 	 */
1237 	ret = eeh_pe_change_owner(edev->pe);
1238 	if (ret)
1239 		goto out;
1240 
1241 	/* Increase PE's pass through count */
1242 	atomic_inc(&edev->pe->pass_dev_cnt);
1243 	mutex_unlock(&eeh_dev_mutex);
1244 
1245 	return 0;
1246 out:
1247 	mutex_unlock(&eeh_dev_mutex);
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(eeh_dev_open);
1251 
1252 /**
1253  * eeh_dev_release - Decrease count of pass through devices for PE
1254  * @pdev: PCI device
1255  *
1256  * Decrease count of pass through devices for the indicated PE. If
1257  * there is no passed through device in PE, the EEH errors detected
1258  * on the PE will be reported and handled as usual.
1259  */
1260 void eeh_dev_release(struct pci_dev *pdev)
1261 {
1262 	struct eeh_dev *edev;
1263 
1264 	mutex_lock(&eeh_dev_mutex);
1265 
1266 	/* No PCI device ? */
1267 	if (!pdev)
1268 		goto out;
1269 
1270 	/* No EEH device ? */
1271 	edev = pci_dev_to_eeh_dev(pdev);
1272 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1273 		goto out;
1274 
1275 	/* Decrease PE's pass through count */
1276 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1277 	eeh_pe_change_owner(edev->pe);
1278 out:
1279 	mutex_unlock(&eeh_dev_mutex);
1280 }
1281 EXPORT_SYMBOL(eeh_dev_release);
1282 
1283 #ifdef CONFIG_IOMMU_API
1284 
1285 static int dev_has_iommu_table(struct device *dev, void *data)
1286 {
1287 	struct pci_dev *pdev = to_pci_dev(dev);
1288 	struct pci_dev **ppdev = data;
1289 
1290 	if (!dev)
1291 		return 0;
1292 
1293 	if (device_iommu_mapped(dev)) {
1294 		*ppdev = pdev;
1295 		return 1;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /**
1302  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1303  * @group: IOMMU group
1304  *
1305  * The routine is called to convert IOMMU group to EEH PE.
1306  */
1307 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1308 {
1309 	struct pci_dev *pdev = NULL;
1310 	struct eeh_dev *edev;
1311 	int ret;
1312 
1313 	/* No IOMMU group ? */
1314 	if (!group)
1315 		return NULL;
1316 
1317 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1318 	if (!ret || !pdev)
1319 		return NULL;
1320 
1321 	/* No EEH device or PE ? */
1322 	edev = pci_dev_to_eeh_dev(pdev);
1323 	if (!edev || !edev->pe)
1324 		return NULL;
1325 
1326 	return edev->pe;
1327 }
1328 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1329 
1330 #endif /* CONFIG_IOMMU_API */
1331 
1332 /**
1333  * eeh_pe_set_option - Set options for the indicated PE
1334  * @pe: EEH PE
1335  * @option: requested option
1336  *
1337  * The routine is called to enable or disable EEH functionality
1338  * on the indicated PE, to enable IO or DMA for the frozen PE.
1339  */
1340 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1341 {
1342 	int ret = 0;
1343 
1344 	/* Invalid PE ? */
1345 	if (!pe)
1346 		return -ENODEV;
1347 
1348 	/*
1349 	 * EEH functionality could possibly be disabled, just
1350 	 * return error for the case. And the EEH functinality
1351 	 * isn't expected to be disabled on one specific PE.
1352 	 */
1353 	switch (option) {
1354 	case EEH_OPT_ENABLE:
1355 		if (eeh_enabled()) {
1356 			ret = eeh_pe_change_owner(pe);
1357 			break;
1358 		}
1359 		ret = -EIO;
1360 		break;
1361 	case EEH_OPT_DISABLE:
1362 		break;
1363 	case EEH_OPT_THAW_MMIO:
1364 	case EEH_OPT_THAW_DMA:
1365 	case EEH_OPT_FREEZE_PE:
1366 		if (!eeh_ops || !eeh_ops->set_option) {
1367 			ret = -ENOENT;
1368 			break;
1369 		}
1370 
1371 		ret = eeh_pci_enable(pe, option);
1372 		break;
1373 	default:
1374 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1375 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1376 		ret = -EINVAL;
1377 	}
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1382 
1383 /**
1384  * eeh_pe_get_state - Retrieve PE's state
1385  * @pe: EEH PE
1386  *
1387  * Retrieve the PE's state, which includes 3 aspects: enabled
1388  * DMA, enabled IO and asserted reset.
1389  */
1390 int eeh_pe_get_state(struct eeh_pe *pe)
1391 {
1392 	int result, ret = 0;
1393 	bool rst_active, dma_en, mmio_en;
1394 
1395 	/* Existing PE ? */
1396 	if (!pe)
1397 		return -ENODEV;
1398 
1399 	if (!eeh_ops || !eeh_ops->get_state)
1400 		return -ENOENT;
1401 
1402 	/*
1403 	 * If the parent PE is owned by the host kernel and is undergoing
1404 	 * error recovery, we should return the PE state as temporarily
1405 	 * unavailable so that the error recovery on the guest is suspended
1406 	 * until the recovery completes on the host.
1407 	 */
1408 	if (pe->parent &&
1409 	    !(pe->state & EEH_PE_REMOVED) &&
1410 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1411 		return EEH_PE_STATE_UNAVAIL;
1412 
1413 	result = eeh_ops->get_state(pe, NULL);
1414 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1415 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1416 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1417 
1418 	if (rst_active)
1419 		ret = EEH_PE_STATE_RESET;
1420 	else if (dma_en && mmio_en)
1421 		ret = EEH_PE_STATE_NORMAL;
1422 	else if (!dma_en && !mmio_en)
1423 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1424 	else if (!dma_en && mmio_en)
1425 		ret = EEH_PE_STATE_STOPPED_DMA;
1426 	else
1427 		ret = EEH_PE_STATE_UNAVAIL;
1428 
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1432 
1433 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1434 {
1435 	struct eeh_dev *edev, *tmp;
1436 	struct pci_dev *pdev;
1437 	int ret = 0;
1438 
1439 	eeh_pe_restore_bars(pe);
1440 
1441 	/*
1442 	 * Reenable PCI devices as the devices passed
1443 	 * through are always enabled before the reset.
1444 	 */
1445 	eeh_pe_for_each_dev(pe, edev, tmp) {
1446 		pdev = eeh_dev_to_pci_dev(edev);
1447 		if (!pdev)
1448 			continue;
1449 
1450 		ret = pci_reenable_device(pdev);
1451 		if (ret) {
1452 			pr_warn("%s: Failure %d reenabling %s\n",
1453 				__func__, ret, pci_name(pdev));
1454 			return ret;
1455 		}
1456 	}
1457 
1458 	/* The PE is still in frozen state */
1459 	if (include_passed || !eeh_pe_passed(pe)) {
1460 		ret = eeh_unfreeze_pe(pe);
1461 	} else
1462 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1463 			pe->phb->global_number, pe->addr);
1464 	if (!ret)
1465 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1466 	return ret;
1467 }
1468 
1469 
1470 /**
1471  * eeh_pe_reset - Issue PE reset according to specified type
1472  * @pe: EEH PE
1473  * @option: reset type
1474  *
1475  * The routine is called to reset the specified PE with the
1476  * indicated type, either fundamental reset or hot reset.
1477  * PE reset is the most important part for error recovery.
1478  */
1479 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1480 {
1481 	int ret = 0;
1482 
1483 	/* Invalid PE ? */
1484 	if (!pe)
1485 		return -ENODEV;
1486 
1487 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1488 		return -ENOENT;
1489 
1490 	switch (option) {
1491 	case EEH_RESET_DEACTIVATE:
1492 		ret = eeh_ops->reset(pe, option);
1493 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1494 		if (ret)
1495 			break;
1496 
1497 		ret = eeh_pe_reenable_devices(pe, include_passed);
1498 		break;
1499 	case EEH_RESET_HOT:
1500 	case EEH_RESET_FUNDAMENTAL:
1501 		/*
1502 		 * Proactively freeze the PE to drop all MMIO access
1503 		 * during reset, which should be banned as it's always
1504 		 * cause recursive EEH error.
1505 		 */
1506 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1507 
1508 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1509 		ret = eeh_ops->reset(pe, option);
1510 		break;
1511 	default:
1512 		pr_debug("%s: Unsupported option %d\n",
1513 			__func__, option);
1514 		ret = -EINVAL;
1515 	}
1516 
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1520 
1521 /**
1522  * eeh_pe_configure - Configure PCI bridges after PE reset
1523  * @pe: EEH PE
1524  *
1525  * The routine is called to restore the PCI config space for
1526  * those PCI devices, especially PCI bridges affected by PE
1527  * reset issued previously.
1528  */
1529 int eeh_pe_configure(struct eeh_pe *pe)
1530 {
1531 	int ret = 0;
1532 
1533 	/* Invalid PE ? */
1534 	if (!pe)
1535 		return -ENODEV;
1536 
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1540 
1541 /**
1542  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1543  * @pe: the indicated PE
1544  * @type: error type
1545  * @function: error function
1546  * @addr: address
1547  * @mask: address mask
1548  *
1549  * The routine is called to inject the specified PCI error, which
1550  * is determined by @type and @function, to the indicated PE for
1551  * testing purpose.
1552  */
1553 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1554 		      unsigned long addr, unsigned long mask)
1555 {
1556 	/* Invalid PE ? */
1557 	if (!pe)
1558 		return -ENODEV;
1559 
1560 	/* Unsupported operation ? */
1561 	if (!eeh_ops || !eeh_ops->err_inject)
1562 		return -ENOENT;
1563 
1564 	/* Check on PCI error type */
1565 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1566 		return -EINVAL;
1567 
1568 	/* Check on PCI error function */
1569 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1570 		return -EINVAL;
1571 
1572 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1573 }
1574 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1575 
1576 static int proc_eeh_show(struct seq_file *m, void *v)
1577 {
1578 	if (!eeh_enabled()) {
1579 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1580 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1581 	} else {
1582 		seq_printf(m, "EEH Subsystem is enabled\n");
1583 		seq_printf(m,
1584 				"no device=%llu\n"
1585 				"no device node=%llu\n"
1586 				"no config address=%llu\n"
1587 				"check not wanted=%llu\n"
1588 				"eeh_total_mmio_ffs=%llu\n"
1589 				"eeh_false_positives=%llu\n"
1590 				"eeh_slot_resets=%llu\n",
1591 				eeh_stats.no_device,
1592 				eeh_stats.no_dn,
1593 				eeh_stats.no_cfg_addr,
1594 				eeh_stats.ignored_check,
1595 				eeh_stats.total_mmio_ffs,
1596 				eeh_stats.false_positives,
1597 				eeh_stats.slot_resets);
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 #ifdef CONFIG_DEBUG_FS
1604 static int eeh_enable_dbgfs_set(void *data, u64 val)
1605 {
1606 	if (val)
1607 		eeh_clear_flag(EEH_FORCE_DISABLED);
1608 	else
1609 		eeh_add_flag(EEH_FORCE_DISABLED);
1610 
1611 	return 0;
1612 }
1613 
1614 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1615 {
1616 	if (eeh_enabled())
1617 		*val = 0x1ul;
1618 	else
1619 		*val = 0x0ul;
1620 	return 0;
1621 }
1622 
1623 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1624 			 eeh_enable_dbgfs_set, "0x%llx\n");
1625 
1626 static ssize_t eeh_force_recover_write(struct file *filp,
1627 				const char __user *user_buf,
1628 				size_t count, loff_t *ppos)
1629 {
1630 	struct pci_controller *hose;
1631 	uint32_t phbid, pe_no;
1632 	struct eeh_pe *pe;
1633 	char buf[20];
1634 	int ret;
1635 
1636 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1637 	if (!ret)
1638 		return -EFAULT;
1639 
1640 	/*
1641 	 * When PE is NULL the event is a "special" event. Rather than
1642 	 * recovering a specific PE it forces the EEH core to scan for failed
1643 	 * PHBs and recovers each. This needs to be done before any device
1644 	 * recoveries can occur.
1645 	 */
1646 	if (!strncmp(buf, "hwcheck", 7)) {
1647 		__eeh_send_failure_event(NULL);
1648 		return count;
1649 	}
1650 
1651 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1652 	if (ret != 2)
1653 		return -EINVAL;
1654 
1655 	hose = pci_find_controller_for_domain(phbid);
1656 	if (!hose)
1657 		return -ENODEV;
1658 
1659 	/* Retrieve PE */
1660 	pe = eeh_pe_get(hose, pe_no);
1661 	if (!pe)
1662 		return -ENODEV;
1663 
1664 	/*
1665 	 * We don't do any state checking here since the detection
1666 	 * process is async to the recovery process. The recovery
1667 	 * thread *should* not break even if we schedule a recovery
1668 	 * from an odd state (e.g. PE removed, or recovery of a
1669 	 * non-isolated PE)
1670 	 */
1671 	__eeh_send_failure_event(pe);
1672 
1673 	return ret < 0 ? ret : count;
1674 }
1675 
1676 static const struct file_operations eeh_force_recover_fops = {
1677 	.open	= simple_open,
1678 	.llseek	= no_llseek,
1679 	.write	= eeh_force_recover_write,
1680 };
1681 
1682 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1683 				char __user *user_buf,
1684 				size_t count, loff_t *ppos)
1685 {
1686 	static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1687 
1688 	return simple_read_from_buffer(user_buf, count, ppos,
1689 				       usage, sizeof(usage) - 1);
1690 }
1691 
1692 static ssize_t eeh_dev_check_write(struct file *filp,
1693 				const char __user *user_buf,
1694 				size_t count, loff_t *ppos)
1695 {
1696 	uint32_t domain, bus, dev, fn;
1697 	struct pci_dev *pdev;
1698 	struct eeh_dev *edev;
1699 	char buf[20];
1700 	int ret;
1701 
1702 	memset(buf, 0, sizeof(buf));
1703 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1704 	if (!ret)
1705 		return -EFAULT;
1706 
1707 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1708 	if (ret != 4) {
1709 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1710 		return -EINVAL;
1711 	}
1712 
1713 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1714 	if (!pdev)
1715 		return -ENODEV;
1716 
1717 	edev = pci_dev_to_eeh_dev(pdev);
1718 	if (!edev) {
1719 		pci_err(pdev, "No eeh_dev for this device!\n");
1720 		pci_dev_put(pdev);
1721 		return -ENODEV;
1722 	}
1723 
1724 	ret = eeh_dev_check_failure(edev);
1725 	pci_info(pdev, "eeh_dev_check_failure(%04x:%02x:%02x.%01x) = %d\n",
1726 			domain, bus, dev, fn, ret);
1727 
1728 	pci_dev_put(pdev);
1729 
1730 	return count;
1731 }
1732 
1733 static const struct file_operations eeh_dev_check_fops = {
1734 	.open	= simple_open,
1735 	.llseek	= no_llseek,
1736 	.write	= eeh_dev_check_write,
1737 	.read   = eeh_debugfs_dev_usage,
1738 };
1739 
1740 static int eeh_debugfs_break_device(struct pci_dev *pdev)
1741 {
1742 	struct resource *bar = NULL;
1743 	void __iomem *mapped;
1744 	u16 old, bit;
1745 	int i, pos;
1746 
1747 	/* Do we have an MMIO BAR to disable? */
1748 	for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1749 		struct resource *r = &pdev->resource[i];
1750 
1751 		if (!r->flags || !r->start)
1752 			continue;
1753 		if (r->flags & IORESOURCE_IO)
1754 			continue;
1755 		if (r->flags & IORESOURCE_UNSET)
1756 			continue;
1757 
1758 		bar = r;
1759 		break;
1760 	}
1761 
1762 	if (!bar) {
1763 		pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1764 		return -ENXIO;
1765 	}
1766 
1767 	pci_err(pdev, "Going to break: %pR\n", bar);
1768 
1769 	if (pdev->is_virtfn) {
1770 #ifndef CONFIG_PCI_IOV
1771 		return -ENXIO;
1772 #else
1773 		/*
1774 		 * VFs don't have a per-function COMMAND register, so the best
1775 		 * we can do is clear the Memory Space Enable bit in the PF's
1776 		 * SRIOV control reg.
1777 		 *
1778 		 * Unfortunately, this requires that we have a PF (i.e doesn't
1779 		 * work for a passed-through VF) and it has the potential side
1780 		 * effect of also causing an EEH on every other VF under the
1781 		 * PF. Oh well.
1782 		 */
1783 		pdev = pdev->physfn;
1784 		if (!pdev)
1785 			return -ENXIO; /* passed through VFs have no PF */
1786 
1787 		pos  = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1788 		pos += PCI_SRIOV_CTRL;
1789 		bit  = PCI_SRIOV_CTRL_MSE;
1790 #endif /* !CONFIG_PCI_IOV */
1791 	} else {
1792 		bit = PCI_COMMAND_MEMORY;
1793 		pos = PCI_COMMAND;
1794 	}
1795 
1796 	/*
1797 	 * Process here is:
1798 	 *
1799 	 * 1. Disable Memory space.
1800 	 *
1801 	 * 2. Perform an MMIO to the device. This should result in an error
1802 	 *    (CA  / UR) being raised by the device which results in an EEH
1803 	 *    PE freeze. Using the in_8() accessor skips the eeh detection hook
1804 	 *    so the freeze hook so the EEH Detection machinery won't be
1805 	 *    triggered here. This is to match the usual behaviour of EEH
1806 	 *    where the HW will asyncronously freeze a PE and it's up to
1807 	 *    the kernel to notice and deal with it.
1808 	 *
1809 	 * 3. Turn Memory space back on. This is more important for VFs
1810 	 *    since recovery will probably fail if we don't. For normal
1811 	 *    the COMMAND register is reset as a part of re-initialising
1812 	 *    the device.
1813 	 *
1814 	 * Breaking stuff is the point so who cares if it's racy ;)
1815 	 */
1816 	pci_read_config_word(pdev, pos, &old);
1817 
1818 	mapped = ioremap(bar->start, PAGE_SIZE);
1819 	if (!mapped) {
1820 		pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1821 		return -ENXIO;
1822 	}
1823 
1824 	pci_write_config_word(pdev, pos, old & ~bit);
1825 	in_8(mapped);
1826 	pci_write_config_word(pdev, pos, old);
1827 
1828 	iounmap(mapped);
1829 
1830 	return 0;
1831 }
1832 
1833 static ssize_t eeh_dev_break_write(struct file *filp,
1834 				const char __user *user_buf,
1835 				size_t count, loff_t *ppos)
1836 {
1837 	uint32_t domain, bus, dev, fn;
1838 	struct pci_dev *pdev;
1839 	char buf[20];
1840 	int ret;
1841 
1842 	memset(buf, 0, sizeof(buf));
1843 	ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1844 	if (!ret)
1845 		return -EFAULT;
1846 
1847 	ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1848 	if (ret != 4) {
1849 		pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1850 		return -EINVAL;
1851 	}
1852 
1853 	pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1854 	if (!pdev)
1855 		return -ENODEV;
1856 
1857 	ret = eeh_debugfs_break_device(pdev);
1858 	pci_dev_put(pdev);
1859 
1860 	if (ret < 0)
1861 		return ret;
1862 
1863 	return count;
1864 }
1865 
1866 static const struct file_operations eeh_dev_break_fops = {
1867 	.open	= simple_open,
1868 	.llseek	= no_llseek,
1869 	.write	= eeh_dev_break_write,
1870 	.read   = eeh_debugfs_dev_usage,
1871 };
1872 
1873 #endif
1874 
1875 static int __init eeh_init_proc(void)
1876 {
1877 	if (machine_is(pseries) || machine_is(powernv)) {
1878 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1879 #ifdef CONFIG_DEBUG_FS
1880 		debugfs_create_file_unsafe("eeh_enable", 0600,
1881 					   powerpc_debugfs_root, NULL,
1882 					   &eeh_enable_dbgfs_ops);
1883 		debugfs_create_u32("eeh_max_freezes", 0600,
1884 				powerpc_debugfs_root, &eeh_max_freezes);
1885 		debugfs_create_bool("eeh_disable_recovery", 0600,
1886 				powerpc_debugfs_root,
1887 				&eeh_debugfs_no_recover);
1888 		debugfs_create_file_unsafe("eeh_dev_check", 0600,
1889 				powerpc_debugfs_root, NULL,
1890 				&eeh_dev_check_fops);
1891 		debugfs_create_file_unsafe("eeh_dev_break", 0600,
1892 				powerpc_debugfs_root, NULL,
1893 				&eeh_dev_break_fops);
1894 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1895 				powerpc_debugfs_root, NULL,
1896 				&eeh_force_recover_fops);
1897 		eeh_cache_debugfs_init();
1898 #endif
1899 	}
1900 
1901 	return 0;
1902 }
1903 __initcall(eeh_init_proc);
1904