xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision d7a3d85e)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
148 
149 static int __init eeh_setup(char *str)
150 {
151 	if (!strcmp(str, "off"))
152 		eeh_add_flag(EEH_FORCE_DISABLED);
153 	else if (!strcmp(str, "early_log"))
154 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
155 
156 	return 1;
157 }
158 __setup("eeh=", eeh_setup);
159 
160 /*
161  * This routine captures assorted PCI configuration space data
162  * for the indicated PCI device, and puts them into a buffer
163  * for RTAS error logging.
164  */
165 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166 {
167 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
168 	u32 cfg;
169 	int cap, i;
170 	int n = 0, l = 0;
171 	char buffer[128];
172 
173 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
174 		       edev->phb->global_number, pdn->busno,
175 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
176 	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
177 		edev->phb->global_number, pdn->busno,
178 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
179 
180 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
181 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
182 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
183 
184 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
185 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
186 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
187 
188 	/* Gather bridge-specific registers */
189 	if (edev->mode & EEH_DEV_BRIDGE) {
190 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
191 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
192 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
193 
194 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
195 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
196 		pr_warn("EEH: Bridge control: %04x\n", cfg);
197 	}
198 
199 	/* Dump out the PCI-X command and status regs */
200 	cap = edev->pcix_cap;
201 	if (cap) {
202 		eeh_ops->read_config(pdn, cap, 4, &cfg);
203 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
204 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
205 
206 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
207 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
208 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
209 	}
210 
211 	/* If PCI-E capable, dump PCI-E cap 10 */
212 	cap = edev->pcie_cap;
213 	if (cap) {
214 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
215 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
216 
217 		for (i=0; i<=8; i++) {
218 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
219 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
220 
221 			if ((i % 4) == 0) {
222 				if (i != 0)
223 					pr_warn("%s\n", buffer);
224 
225 				l = scnprintf(buffer, sizeof(buffer),
226 					      "EEH: PCI-E %02x: %08x ",
227 					      4*i, cfg);
228 			} else {
229 				l += scnprintf(buffer+l, sizeof(buffer)-l,
230 					       "%08x ", cfg);
231 			}
232 
233 		}
234 
235 		pr_warn("%s\n", buffer);
236 	}
237 
238 	/* If AER capable, dump it */
239 	cap = edev->aer_cap;
240 	if (cap) {
241 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
242 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
243 
244 		for (i=0; i<=13; i++) {
245 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
246 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
247 
248 			if ((i % 4) == 0) {
249 				if (i != 0)
250 					pr_warn("%s\n", buffer);
251 
252 				l = scnprintf(buffer, sizeof(buffer),
253 					      "EEH: PCI-E AER %02x: %08x ",
254 					      4*i, cfg);
255 			} else {
256 				l += scnprintf(buffer+l, sizeof(buffer)-l,
257 					       "%08x ", cfg);
258 			}
259 		}
260 
261 		pr_warn("%s\n", buffer);
262 	}
263 
264 	return n;
265 }
266 
267 static void *eeh_dump_pe_log(void *data, void *flag)
268 {
269 	struct eeh_pe *pe = data;
270 	struct eeh_dev *edev, *tmp;
271 	size_t *plen = flag;
272 
273 	/* If the PE's config space is blocked, 0xFF's will be
274 	 * returned. It's pointless to collect the log in this
275 	 * case.
276 	 */
277 	if (pe->state & EEH_PE_CFG_BLOCKED)
278 		return NULL;
279 
280 	eeh_pe_for_each_dev(pe, edev, tmp)
281 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
282 					  EEH_PCI_REGS_LOG_LEN - *plen);
283 
284 	return NULL;
285 }
286 
287 /**
288  * eeh_slot_error_detail - Generate combined log including driver log and error log
289  * @pe: EEH PE
290  * @severity: temporary or permanent error log
291  *
292  * This routine should be called to generate the combined log, which
293  * is comprised of driver log and error log. The driver log is figured
294  * out from the config space of the corresponding PCI device, while
295  * the error log is fetched through platform dependent function call.
296  */
297 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
298 {
299 	size_t loglen = 0;
300 
301 	/*
302 	 * When the PHB is fenced or dead, it's pointless to collect
303 	 * the data from PCI config space because it should return
304 	 * 0xFF's. For ER, we still retrieve the data from the PCI
305 	 * config space.
306 	 *
307 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
308 	 * 0xFF's is always returned from PCI config space.
309 	 */
310 	if (!(pe->type & EEH_PE_PHB)) {
311 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
312 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
313 		eeh_ops->configure_bridge(pe);
314 		eeh_pe_restore_bars(pe);
315 
316 		pci_regs_buf[0] = 0;
317 		eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
318 	}
319 
320 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
321 }
322 
323 /**
324  * eeh_token_to_phys - Convert EEH address token to phys address
325  * @token: I/O token, should be address in the form 0xA....
326  *
327  * This routine should be called to convert virtual I/O address
328  * to physical one.
329  */
330 static inline unsigned long eeh_token_to_phys(unsigned long token)
331 {
332 	pte_t *ptep;
333 	unsigned long pa;
334 	int hugepage_shift;
335 
336 	/*
337 	 * We won't find hugepages here(this is iomem). Hence we are not
338 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
339 	 * page table free, because of init_mm.
340 	 */
341 	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
342 	if (!ptep)
343 		return token;
344 	WARN_ON(hugepage_shift);
345 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
346 
347 	return pa | (token & (PAGE_SIZE-1));
348 }
349 
350 /*
351  * On PowerNV platform, we might already have fenced PHB there.
352  * For that case, it's meaningless to recover frozen PE. Intead,
353  * We have to handle fenced PHB firstly.
354  */
355 static int eeh_phb_check_failure(struct eeh_pe *pe)
356 {
357 	struct eeh_pe *phb_pe;
358 	unsigned long flags;
359 	int ret;
360 
361 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
362 		return -EPERM;
363 
364 	/* Find the PHB PE */
365 	phb_pe = eeh_phb_pe_get(pe->phb);
366 	if (!phb_pe) {
367 		pr_warn("%s Can't find PE for PHB#%d\n",
368 			__func__, pe->phb->global_number);
369 		return -EEXIST;
370 	}
371 
372 	/* If the PHB has been in problematic state */
373 	eeh_serialize_lock(&flags);
374 	if (phb_pe->state & EEH_PE_ISOLATED) {
375 		ret = 0;
376 		goto out;
377 	}
378 
379 	/* Check PHB state */
380 	ret = eeh_ops->get_state(phb_pe, NULL);
381 	if ((ret < 0) ||
382 	    (ret == EEH_STATE_NOT_SUPPORT) ||
383 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
384 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
385 		ret = 0;
386 		goto out;
387 	}
388 
389 	/* Isolate the PHB and send event */
390 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
391 	eeh_serialize_unlock(flags);
392 
393 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
394 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 	dump_stack();
396 	eeh_send_failure_event(phb_pe);
397 
398 	return 1;
399 out:
400 	eeh_serialize_unlock(flags);
401 	return ret;
402 }
403 
404 /**
405  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
406  * @edev: eeh device
407  *
408  * Check for an EEH failure for the given device node.  Call this
409  * routine if the result of a read was all 0xff's and you want to
410  * find out if this is due to an EEH slot freeze.  This routine
411  * will query firmware for the EEH status.
412  *
413  * Returns 0 if there has not been an EEH error; otherwise returns
414  * a non-zero value and queues up a slot isolation event notification.
415  *
416  * It is safe to call this routine in an interrupt context.
417  */
418 int eeh_dev_check_failure(struct eeh_dev *edev)
419 {
420 	int ret;
421 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
422 	unsigned long flags;
423 	struct pci_dn *pdn;
424 	struct pci_dev *dev;
425 	struct eeh_pe *pe, *parent_pe, *phb_pe;
426 	int rc = 0;
427 	const char *location = NULL;
428 
429 	eeh_stats.total_mmio_ffs++;
430 
431 	if (!eeh_enabled())
432 		return 0;
433 
434 	if (!edev) {
435 		eeh_stats.no_dn++;
436 		return 0;
437 	}
438 	dev = eeh_dev_to_pci_dev(edev);
439 	pe = eeh_dev_to_pe(edev);
440 
441 	/* Access to IO BARs might get this far and still not want checking. */
442 	if (!pe) {
443 		eeh_stats.ignored_check++;
444 		pr_debug("EEH: Ignored check for %s\n",
445 			eeh_pci_name(dev));
446 		return 0;
447 	}
448 
449 	if (!pe->addr && !pe->config_addr) {
450 		eeh_stats.no_cfg_addr++;
451 		return 0;
452 	}
453 
454 	/*
455 	 * On PowerNV platform, we might already have fenced PHB
456 	 * there and we need take care of that firstly.
457 	 */
458 	ret = eeh_phb_check_failure(pe);
459 	if (ret > 0)
460 		return ret;
461 
462 	/*
463 	 * If the PE isn't owned by us, we shouldn't check the
464 	 * state. Instead, let the owner handle it if the PE has
465 	 * been frozen.
466 	 */
467 	if (eeh_pe_passed(pe))
468 		return 0;
469 
470 	/* If we already have a pending isolation event for this
471 	 * slot, we know it's bad already, we don't need to check.
472 	 * Do this checking under a lock; as multiple PCI devices
473 	 * in one slot might report errors simultaneously, and we
474 	 * only want one error recovery routine running.
475 	 */
476 	eeh_serialize_lock(&flags);
477 	rc = 1;
478 	if (pe->state & EEH_PE_ISOLATED) {
479 		pe->check_count++;
480 		if (pe->check_count % EEH_MAX_FAILS == 0) {
481 			pdn = eeh_dev_to_pdn(edev);
482 			if (pdn->node)
483 				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
484 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
485 				"location=%s driver=%s pci addr=%s\n",
486 				pe->check_count,
487 				location ? location : "unknown",
488 				eeh_driver_name(dev), eeh_pci_name(dev));
489 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
490 				eeh_driver_name(dev));
491 			dump_stack();
492 		}
493 		goto dn_unlock;
494 	}
495 
496 	/*
497 	 * Now test for an EEH failure.  This is VERY expensive.
498 	 * Note that the eeh_config_addr may be a parent device
499 	 * in the case of a device behind a bridge, or it may be
500 	 * function zero of a multi-function device.
501 	 * In any case they must share a common PHB.
502 	 */
503 	ret = eeh_ops->get_state(pe, NULL);
504 
505 	/* Note that config-io to empty slots may fail;
506 	 * they are empty when they don't have children.
507 	 * We will punt with the following conditions: Failure to get
508 	 * PE's state, EEH not support and Permanently unavailable
509 	 * state, PE is in good state.
510 	 */
511 	if ((ret < 0) ||
512 	    (ret == EEH_STATE_NOT_SUPPORT) ||
513 	    ((ret & active_flags) == active_flags)) {
514 		eeh_stats.false_positives++;
515 		pe->false_positives++;
516 		rc = 0;
517 		goto dn_unlock;
518 	}
519 
520 	/*
521 	 * It should be corner case that the parent PE has been
522 	 * put into frozen state as well. We should take care
523 	 * that at first.
524 	 */
525 	parent_pe = pe->parent;
526 	while (parent_pe) {
527 		/* Hit the ceiling ? */
528 		if (parent_pe->type & EEH_PE_PHB)
529 			break;
530 
531 		/* Frozen parent PE ? */
532 		ret = eeh_ops->get_state(parent_pe, NULL);
533 		if (ret > 0 &&
534 		    (ret & active_flags) != active_flags)
535 			pe = parent_pe;
536 
537 		/* Next parent level */
538 		parent_pe = parent_pe->parent;
539 	}
540 
541 	eeh_stats.slot_resets++;
542 
543 	/* Avoid repeated reports of this failure, including problems
544 	 * with other functions on this device, and functions under
545 	 * bridges.
546 	 */
547 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
548 	eeh_serialize_unlock(flags);
549 
550 	/* Most EEH events are due to device driver bugs.  Having
551 	 * a stack trace will help the device-driver authors figure
552 	 * out what happened.  So print that out.
553 	 */
554 	phb_pe = eeh_phb_pe_get(pe->phb);
555 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
556 	       pe->phb->global_number, pe->addr);
557 	pr_err("EEH: PE location: %s, PHB location: %s\n",
558 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
559 	dump_stack();
560 
561 	eeh_send_failure_event(pe);
562 
563 	return 1;
564 
565 dn_unlock:
566 	eeh_serialize_unlock(flags);
567 	return rc;
568 }
569 
570 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
571 
572 /**
573  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
574  * @token: I/O address
575  *
576  * Check for an EEH failure at the given I/O address. Call this
577  * routine if the result of a read was all 0xff's and you want to
578  * find out if this is due to an EEH slot freeze event. This routine
579  * will query firmware for the EEH status.
580  *
581  * Note this routine is safe to call in an interrupt context.
582  */
583 int eeh_check_failure(const volatile void __iomem *token)
584 {
585 	unsigned long addr;
586 	struct eeh_dev *edev;
587 
588 	/* Finding the phys addr + pci device; this is pretty quick. */
589 	addr = eeh_token_to_phys((unsigned long __force) token);
590 	edev = eeh_addr_cache_get_dev(addr);
591 	if (!edev) {
592 		eeh_stats.no_device++;
593 		return 0;
594 	}
595 
596 	return eeh_dev_check_failure(edev);
597 }
598 EXPORT_SYMBOL(eeh_check_failure);
599 
600 
601 /**
602  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
603  * @pe: EEH PE
604  *
605  * This routine should be called to reenable frozen MMIO or DMA
606  * so that it would work correctly again. It's useful while doing
607  * recovery or log collection on the indicated device.
608  */
609 int eeh_pci_enable(struct eeh_pe *pe, int function)
610 {
611 	int active_flag, rc;
612 
613 	/*
614 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
615 	 * Also, it's pointless to enable them on unfrozen PE. So
616 	 * we have to check before enabling IO or DMA.
617 	 */
618 	switch (function) {
619 	case EEH_OPT_THAW_MMIO:
620 		active_flag = EEH_STATE_MMIO_ACTIVE;
621 		break;
622 	case EEH_OPT_THAW_DMA:
623 		active_flag = EEH_STATE_DMA_ACTIVE;
624 		break;
625 	case EEH_OPT_DISABLE:
626 	case EEH_OPT_ENABLE:
627 	case EEH_OPT_FREEZE_PE:
628 		active_flag = 0;
629 		break;
630 	default:
631 		pr_warn("%s: Invalid function %d\n",
632 			__func__, function);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check if IO or DMA has been enabled before
638 	 * enabling them.
639 	 */
640 	if (active_flag) {
641 		rc = eeh_ops->get_state(pe, NULL);
642 		if (rc < 0)
643 			return rc;
644 
645 		/* Needn't enable it at all */
646 		if (rc == EEH_STATE_NOT_SUPPORT)
647 			return 0;
648 
649 		/* It's already enabled */
650 		if (rc & active_flag)
651 			return 0;
652 	}
653 
654 
655 	/* Issue the request */
656 	rc = eeh_ops->set_option(pe, function);
657 	if (rc)
658 		pr_warn("%s: Unexpected state change %d on "
659 			"PHB#%d-PE#%x, err=%d\n",
660 			__func__, function, pe->phb->global_number,
661 			pe->addr, rc);
662 
663 	/* Check if the request is finished successfully */
664 	if (active_flag) {
665 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
666 		if (rc <= 0)
667 			return rc;
668 
669 		if (rc & active_flag)
670 			return 0;
671 
672 		return -EIO;
673 	}
674 
675 	return rc;
676 }
677 
678 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
679 {
680 	struct eeh_dev *edev = data;
681 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
682 	struct pci_dev *dev = userdata;
683 
684 	/*
685 	 * The caller should have disabled and saved the
686 	 * state for the specified device
687 	 */
688 	if (!pdev || pdev == dev)
689 		return NULL;
690 
691 	/* Ensure we have D0 power state */
692 	pci_set_power_state(pdev, PCI_D0);
693 
694 	/* Save device state */
695 	pci_save_state(pdev);
696 
697 	/*
698 	 * Disable device to avoid any DMA traffic and
699 	 * interrupt from the device
700 	 */
701 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
702 
703 	return NULL;
704 }
705 
706 static void *eeh_restore_dev_state(void *data, void *userdata)
707 {
708 	struct eeh_dev *edev = data;
709 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
710 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
711 	struct pci_dev *dev = userdata;
712 
713 	if (!pdev)
714 		return NULL;
715 
716 	/* Apply customization from firmware */
717 	if (pdn && eeh_ops->restore_config)
718 		eeh_ops->restore_config(pdn);
719 
720 	/* The caller should restore state for the specified device */
721 	if (pdev != dev)
722 		pci_save_state(pdev);
723 
724 	return NULL;
725 }
726 
727 /**
728  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
729  * @dev: pci device struct
730  * @state: reset state to enter
731  *
732  * Return value:
733  * 	0 if success
734  */
735 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736 {
737 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
739 
740 	if (!pe) {
741 		pr_err("%s: No PE found on PCI device %s\n",
742 			__func__, pci_name(dev));
743 		return -EINVAL;
744 	}
745 
746 	switch (state) {
747 	case pcie_deassert_reset:
748 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749 		eeh_unfreeze_pe(pe, false);
750 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
751 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
752 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
753 		break;
754 	case pcie_hot_reset:
755 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
756 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
757 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
758 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
759 		eeh_ops->reset(pe, EEH_RESET_HOT);
760 		break;
761 	case pcie_warm_reset:
762 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
763 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
764 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
765 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
766 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
767 		break;
768 	default:
769 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
770 		return -EINVAL;
771 	};
772 
773 	return 0;
774 }
775 
776 /**
777  * eeh_set_pe_freset - Check the required reset for the indicated device
778  * @data: EEH device
779  * @flag: return value
780  *
781  * Each device might have its preferred reset type: fundamental or
782  * hot reset. The routine is used to collected the information for
783  * the indicated device and its children so that the bunch of the
784  * devices could be reset properly.
785  */
786 static void *eeh_set_dev_freset(void *data, void *flag)
787 {
788 	struct pci_dev *dev;
789 	unsigned int *freset = (unsigned int *)flag;
790 	struct eeh_dev *edev = (struct eeh_dev *)data;
791 
792 	dev = eeh_dev_to_pci_dev(edev);
793 	if (dev)
794 		*freset |= dev->needs_freset;
795 
796 	return NULL;
797 }
798 
799 /**
800  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
801  * @pe: EEH PE
802  *
803  * Assert the PCI #RST line for 1/4 second.
804  */
805 static void eeh_reset_pe_once(struct eeh_pe *pe)
806 {
807 	unsigned int freset = 0;
808 
809 	/* Determine type of EEH reset required for
810 	 * Partitionable Endpoint, a hot-reset (1)
811 	 * or a fundamental reset (3).
812 	 * A fundamental reset required by any device under
813 	 * Partitionable Endpoint trumps hot-reset.
814 	 */
815 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
816 
817 	if (freset)
818 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
819 	else
820 		eeh_ops->reset(pe, EEH_RESET_HOT);
821 
822 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
823 }
824 
825 /**
826  * eeh_reset_pe - Reset the indicated PE
827  * @pe: EEH PE
828  *
829  * This routine should be called to reset indicated device, including
830  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
831  * might be involved as well.
832  */
833 int eeh_reset_pe(struct eeh_pe *pe)
834 {
835 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
836 	int i, state, ret;
837 
838 	/* Mark as reset and block config space */
839 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
840 
841 	/* Take three shots at resetting the bus */
842 	for (i = 0; i < 3; i++) {
843 		eeh_reset_pe_once(pe);
844 
845 		/*
846 		 * EEH_PE_ISOLATED is expected to be removed after
847 		 * BAR restore.
848 		 */
849 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
850 		if ((state & flags) == flags) {
851 			ret = 0;
852 			goto out;
853 		}
854 
855 		if (state < 0) {
856 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
857 				__func__, pe->phb->global_number, pe->addr);
858 			ret = -ENOTRECOVERABLE;
859 			goto out;
860 		}
861 
862 		/* We might run out of credits */
863 		ret = -EIO;
864 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
865 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
866 	}
867 
868 out:
869 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
870 	return ret;
871 }
872 
873 /**
874  * eeh_save_bars - Save device bars
875  * @edev: PCI device associated EEH device
876  *
877  * Save the values of the device bars. Unlike the restore
878  * routine, this routine is *not* recursive. This is because
879  * PCI devices are added individually; but, for the restore,
880  * an entire slot is reset at a time.
881  */
882 void eeh_save_bars(struct eeh_dev *edev)
883 {
884 	struct pci_dn *pdn;
885 	int i;
886 
887 	pdn = eeh_dev_to_pdn(edev);
888 	if (!pdn)
889 		return;
890 
891 	for (i = 0; i < 16; i++)
892 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
893 
894 	/*
895 	 * For PCI bridges including root port, we need enable bus
896 	 * master explicitly. Otherwise, it can't fetch IODA table
897 	 * entries correctly. So we cache the bit in advance so that
898 	 * we can restore it after reset, either PHB range or PE range.
899 	 */
900 	if (edev->mode & EEH_DEV_BRIDGE)
901 		edev->config_space[1] |= PCI_COMMAND_MASTER;
902 }
903 
904 /**
905  * eeh_ops_register - Register platform dependent EEH operations
906  * @ops: platform dependent EEH operations
907  *
908  * Register the platform dependent EEH operation callback
909  * functions. The platform should call this function before
910  * any other EEH operations.
911  */
912 int __init eeh_ops_register(struct eeh_ops *ops)
913 {
914 	if (!ops->name) {
915 		pr_warn("%s: Invalid EEH ops name for %p\n",
916 			__func__, ops);
917 		return -EINVAL;
918 	}
919 
920 	if (eeh_ops && eeh_ops != ops) {
921 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
922 			__func__, eeh_ops->name, ops->name);
923 		return -EEXIST;
924 	}
925 
926 	eeh_ops = ops;
927 
928 	return 0;
929 }
930 
931 /**
932  * eeh_ops_unregister - Unreigster platform dependent EEH operations
933  * @name: name of EEH platform operations
934  *
935  * Unregister the platform dependent EEH operation callback
936  * functions.
937  */
938 int __exit eeh_ops_unregister(const char *name)
939 {
940 	if (!name || !strlen(name)) {
941 		pr_warn("%s: Invalid EEH ops name\n",
942 			__func__);
943 		return -EINVAL;
944 	}
945 
946 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
947 		eeh_ops = NULL;
948 		return 0;
949 	}
950 
951 	return -EEXIST;
952 }
953 
954 static int eeh_reboot_notifier(struct notifier_block *nb,
955 			       unsigned long action, void *unused)
956 {
957 	eeh_clear_flag(EEH_ENABLED);
958 	return NOTIFY_DONE;
959 }
960 
961 static struct notifier_block eeh_reboot_nb = {
962 	.notifier_call = eeh_reboot_notifier,
963 };
964 
965 /**
966  * eeh_init - EEH initialization
967  *
968  * Initialize EEH by trying to enable it for all of the adapters in the system.
969  * As a side effect we can determine here if eeh is supported at all.
970  * Note that we leave EEH on so failed config cycles won't cause a machine
971  * check.  If a user turns off EEH for a particular adapter they are really
972  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
973  * grant access to a slot if EEH isn't enabled, and so we always enable
974  * EEH for all slots/all devices.
975  *
976  * The eeh-force-off option disables EEH checking globally, for all slots.
977  * Even if force-off is set, the EEH hardware is still enabled, so that
978  * newer systems can boot.
979  */
980 int eeh_init(void)
981 {
982 	struct pci_controller *hose, *tmp;
983 	struct pci_dn *pdn;
984 	static int cnt = 0;
985 	int ret = 0;
986 
987 	/*
988 	 * We have to delay the initialization on PowerNV after
989 	 * the PCI hierarchy tree has been built because the PEs
990 	 * are figured out based on PCI devices instead of device
991 	 * tree nodes
992 	 */
993 	if (machine_is(powernv) && cnt++ <= 0)
994 		return ret;
995 
996 	/* Register reboot notifier */
997 	ret = register_reboot_notifier(&eeh_reboot_nb);
998 	if (ret) {
999 		pr_warn("%s: Failed to register notifier (%d)\n",
1000 			__func__, ret);
1001 		return ret;
1002 	}
1003 
1004 	/* call platform initialization function */
1005 	if (!eeh_ops) {
1006 		pr_warn("%s: Platform EEH operation not found\n",
1007 			__func__);
1008 		return -EEXIST;
1009 	} else if ((ret = eeh_ops->init()))
1010 		return ret;
1011 
1012 	/* Initialize EEH event */
1013 	ret = eeh_event_init();
1014 	if (ret)
1015 		return ret;
1016 
1017 	/* Enable EEH for all adapters */
1018 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1019 		pdn = hose->pci_data;
1020 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1021 	}
1022 
1023 	/*
1024 	 * Call platform post-initialization. Actually, It's good chance
1025 	 * to inform platform that EEH is ready to supply service if the
1026 	 * I/O cache stuff has been built up.
1027 	 */
1028 	if (eeh_ops->post_init) {
1029 		ret = eeh_ops->post_init();
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	if (eeh_enabled())
1035 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1036 	else
1037 		pr_warn("EEH: No capable adapters found\n");
1038 
1039 	return ret;
1040 }
1041 
1042 core_initcall_sync(eeh_init);
1043 
1044 /**
1045  * eeh_add_device_early - Enable EEH for the indicated device node
1046  * @pdn: PCI device node for which to set up EEH
1047  *
1048  * This routine must be used to perform EEH initialization for PCI
1049  * devices that were added after system boot (e.g. hotplug, dlpar).
1050  * This routine must be called before any i/o is performed to the
1051  * adapter (inluding any config-space i/o).
1052  * Whether this actually enables EEH or not for this device depends
1053  * on the CEC architecture, type of the device, on earlier boot
1054  * command-line arguments & etc.
1055  */
1056 void eeh_add_device_early(struct pci_dn *pdn)
1057 {
1058 	struct pci_controller *phb;
1059 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1060 
1061 	if (!edev || !eeh_enabled())
1062 		return;
1063 
1064 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1065 		return;
1066 
1067 	/* USB Bus children of PCI devices will not have BUID's */
1068 	phb = edev->phb;
1069 	if (NULL == phb ||
1070 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1071 		return;
1072 
1073 	eeh_ops->probe(pdn, NULL);
1074 }
1075 
1076 /**
1077  * eeh_add_device_tree_early - Enable EEH for the indicated device
1078  * @pdn: PCI device node
1079  *
1080  * This routine must be used to perform EEH initialization for the
1081  * indicated PCI device that was added after system boot (e.g.
1082  * hotplug, dlpar).
1083  */
1084 void eeh_add_device_tree_early(struct pci_dn *pdn)
1085 {
1086 	struct pci_dn *n;
1087 
1088 	if (!pdn)
1089 		return;
1090 
1091 	list_for_each_entry(n, &pdn->child_list, list)
1092 		eeh_add_device_tree_early(n);
1093 	eeh_add_device_early(pdn);
1094 }
1095 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1096 
1097 /**
1098  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1099  * @dev: pci device for which to set up EEH
1100  *
1101  * This routine must be used to complete EEH initialization for PCI
1102  * devices that were added after system boot (e.g. hotplug, dlpar).
1103  */
1104 void eeh_add_device_late(struct pci_dev *dev)
1105 {
1106 	struct pci_dn *pdn;
1107 	struct eeh_dev *edev;
1108 
1109 	if (!dev || !eeh_enabled())
1110 		return;
1111 
1112 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1113 
1114 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1115 	edev = pdn_to_eeh_dev(pdn);
1116 	if (edev->pdev == dev) {
1117 		pr_debug("EEH: Already referenced !\n");
1118 		return;
1119 	}
1120 
1121 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1122 		eeh_ops->probe(pdn, NULL);
1123 
1124 	/*
1125 	 * The EEH cache might not be removed correctly because of
1126 	 * unbalanced kref to the device during unplug time, which
1127 	 * relies on pcibios_release_device(). So we have to remove
1128 	 * that here explicitly.
1129 	 */
1130 	if (edev->pdev) {
1131 		eeh_rmv_from_parent_pe(edev);
1132 		eeh_addr_cache_rmv_dev(edev->pdev);
1133 		eeh_sysfs_remove_device(edev->pdev);
1134 		edev->mode &= ~EEH_DEV_SYSFS;
1135 
1136 		/*
1137 		 * We definitely should have the PCI device removed
1138 		 * though it wasn't correctly. So we needn't call
1139 		 * into error handler afterwards.
1140 		 */
1141 		edev->mode |= EEH_DEV_NO_HANDLER;
1142 
1143 		edev->pdev = NULL;
1144 		dev->dev.archdata.edev = NULL;
1145 	}
1146 
1147 	edev->pdev = dev;
1148 	dev->dev.archdata.edev = edev;
1149 
1150 	eeh_addr_cache_insert_dev(dev);
1151 }
1152 
1153 /**
1154  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1155  * @bus: PCI bus
1156  *
1157  * This routine must be used to perform EEH initialization for PCI
1158  * devices which are attached to the indicated PCI bus. The PCI bus
1159  * is added after system boot through hotplug or dlpar.
1160  */
1161 void eeh_add_device_tree_late(struct pci_bus *bus)
1162 {
1163 	struct pci_dev *dev;
1164 
1165 	list_for_each_entry(dev, &bus->devices, bus_list) {
1166 		eeh_add_device_late(dev);
1167 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1168 			struct pci_bus *subbus = dev->subordinate;
1169 			if (subbus)
1170 				eeh_add_device_tree_late(subbus);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1175 
1176 /**
1177  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1178  * @bus: PCI bus
1179  *
1180  * This routine must be used to add EEH sysfs files for PCI
1181  * devices which are attached to the indicated PCI bus. The PCI bus
1182  * is added after system boot through hotplug or dlpar.
1183  */
1184 void eeh_add_sysfs_files(struct pci_bus *bus)
1185 {
1186 	struct pci_dev *dev;
1187 
1188 	list_for_each_entry(dev, &bus->devices, bus_list) {
1189 		eeh_sysfs_add_device(dev);
1190 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1191 			struct pci_bus *subbus = dev->subordinate;
1192 			if (subbus)
1193 				eeh_add_sysfs_files(subbus);
1194 		}
1195 	}
1196 }
1197 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1198 
1199 /**
1200  * eeh_remove_device - Undo EEH setup for the indicated pci device
1201  * @dev: pci device to be removed
1202  *
1203  * This routine should be called when a device is removed from
1204  * a running system (e.g. by hotplug or dlpar).  It unregisters
1205  * the PCI device from the EEH subsystem.  I/O errors affecting
1206  * this device will no longer be detected after this call; thus,
1207  * i/o errors affecting this slot may leave this device unusable.
1208  */
1209 void eeh_remove_device(struct pci_dev *dev)
1210 {
1211 	struct eeh_dev *edev;
1212 
1213 	if (!dev || !eeh_enabled())
1214 		return;
1215 	edev = pci_dev_to_eeh_dev(dev);
1216 
1217 	/* Unregister the device with the EEH/PCI address search system */
1218 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1219 
1220 	if (!edev || !edev->pdev || !edev->pe) {
1221 		pr_debug("EEH: Not referenced !\n");
1222 		return;
1223 	}
1224 
1225 	/*
1226 	 * During the hotplug for EEH error recovery, we need the EEH
1227 	 * device attached to the parent PE in order for BAR restore
1228 	 * a bit later. So we keep it for BAR restore and remove it
1229 	 * from the parent PE during the BAR resotre.
1230 	 */
1231 	edev->pdev = NULL;
1232 	dev->dev.archdata.edev = NULL;
1233 	if (!(edev->pe->state & EEH_PE_KEEP))
1234 		eeh_rmv_from_parent_pe(edev);
1235 	else
1236 		edev->mode |= EEH_DEV_DISCONNECTED;
1237 
1238 	/*
1239 	 * We're removing from the PCI subsystem, that means
1240 	 * the PCI device driver can't support EEH or not
1241 	 * well. So we rely on hotplug completely to do recovery
1242 	 * for the specific PCI device.
1243 	 */
1244 	edev->mode |= EEH_DEV_NO_HANDLER;
1245 
1246 	eeh_addr_cache_rmv_dev(dev);
1247 	eeh_sysfs_remove_device(dev);
1248 	edev->mode &= ~EEH_DEV_SYSFS;
1249 }
1250 
1251 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1252 {
1253 	int ret;
1254 
1255 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1256 	if (ret) {
1257 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1258 			__func__, ret, pe->phb->global_number, pe->addr);
1259 		return ret;
1260 	}
1261 
1262 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1263 	if (ret) {
1264 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1265 			__func__, ret, pe->phb->global_number, pe->addr);
1266 		return ret;
1267 	}
1268 
1269 	/* Clear software isolated state */
1270 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1271 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1272 
1273 	return ret;
1274 }
1275 
1276 
1277 static struct pci_device_id eeh_reset_ids[] = {
1278 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1279 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1280 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1281 	{ 0 }
1282 };
1283 
1284 static int eeh_pe_change_owner(struct eeh_pe *pe)
1285 {
1286 	struct eeh_dev *edev, *tmp;
1287 	struct pci_dev *pdev;
1288 	struct pci_device_id *id;
1289 	int flags, ret;
1290 
1291 	/* Check PE state */
1292 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1293 	ret = eeh_ops->get_state(pe, NULL);
1294 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1295 		return 0;
1296 
1297 	/* Unfrozen PE, nothing to do */
1298 	if ((ret & flags) == flags)
1299 		return 0;
1300 
1301 	/* Frozen PE, check if it needs PE level reset */
1302 	eeh_pe_for_each_dev(pe, edev, tmp) {
1303 		pdev = eeh_dev_to_pci_dev(edev);
1304 		if (!pdev)
1305 			continue;
1306 
1307 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1308 			if (id->vendor != PCI_ANY_ID &&
1309 			    id->vendor != pdev->vendor)
1310 				continue;
1311 			if (id->device != PCI_ANY_ID &&
1312 			    id->device != pdev->device)
1313 				continue;
1314 			if (id->subvendor != PCI_ANY_ID &&
1315 			    id->subvendor != pdev->subsystem_vendor)
1316 				continue;
1317 			if (id->subdevice != PCI_ANY_ID &&
1318 			    id->subdevice != pdev->subsystem_device)
1319 				continue;
1320 
1321 			goto reset;
1322 		}
1323 	}
1324 
1325 	return eeh_unfreeze_pe(pe, true);
1326 
1327 reset:
1328 	return eeh_pe_reset_and_recover(pe);
1329 }
1330 
1331 /**
1332  * eeh_dev_open - Increase count of pass through devices for PE
1333  * @pdev: PCI device
1334  *
1335  * Increase count of passed through devices for the indicated
1336  * PE. In the result, the EEH errors detected on the PE won't be
1337  * reported. The PE owner will be responsible for detection
1338  * and recovery.
1339  */
1340 int eeh_dev_open(struct pci_dev *pdev)
1341 {
1342 	struct eeh_dev *edev;
1343 	int ret = -ENODEV;
1344 
1345 	mutex_lock(&eeh_dev_mutex);
1346 
1347 	/* No PCI device ? */
1348 	if (!pdev)
1349 		goto out;
1350 
1351 	/* No EEH device or PE ? */
1352 	edev = pci_dev_to_eeh_dev(pdev);
1353 	if (!edev || !edev->pe)
1354 		goto out;
1355 
1356 	/*
1357 	 * The PE might have been put into frozen state, but we
1358 	 * didn't detect that yet. The passed through PCI devices
1359 	 * in frozen PE won't work properly. Clear the frozen state
1360 	 * in advance.
1361 	 */
1362 	ret = eeh_pe_change_owner(edev->pe);
1363 	if (ret)
1364 		goto out;
1365 
1366 	/* Increase PE's pass through count */
1367 	atomic_inc(&edev->pe->pass_dev_cnt);
1368 	mutex_unlock(&eeh_dev_mutex);
1369 
1370 	return 0;
1371 out:
1372 	mutex_unlock(&eeh_dev_mutex);
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL_GPL(eeh_dev_open);
1376 
1377 /**
1378  * eeh_dev_release - Decrease count of pass through devices for PE
1379  * @pdev: PCI device
1380  *
1381  * Decrease count of pass through devices for the indicated PE. If
1382  * there is no passed through device in PE, the EEH errors detected
1383  * on the PE will be reported and handled as usual.
1384  */
1385 void eeh_dev_release(struct pci_dev *pdev)
1386 {
1387 	struct eeh_dev *edev;
1388 
1389 	mutex_lock(&eeh_dev_mutex);
1390 
1391 	/* No PCI device ? */
1392 	if (!pdev)
1393 		goto out;
1394 
1395 	/* No EEH device ? */
1396 	edev = pci_dev_to_eeh_dev(pdev);
1397 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1398 		goto out;
1399 
1400 	/* Decrease PE's pass through count */
1401 	atomic_dec(&edev->pe->pass_dev_cnt);
1402 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1403 	eeh_pe_change_owner(edev->pe);
1404 out:
1405 	mutex_unlock(&eeh_dev_mutex);
1406 }
1407 EXPORT_SYMBOL(eeh_dev_release);
1408 
1409 #ifdef CONFIG_IOMMU_API
1410 
1411 static int dev_has_iommu_table(struct device *dev, void *data)
1412 {
1413 	struct pci_dev *pdev = to_pci_dev(dev);
1414 	struct pci_dev **ppdev = data;
1415 	struct iommu_table *tbl;
1416 
1417 	if (!dev)
1418 		return 0;
1419 
1420 	tbl = get_iommu_table_base(dev);
1421 	if (tbl && tbl->it_group) {
1422 		*ppdev = pdev;
1423 		return 1;
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1431  * @group: IOMMU group
1432  *
1433  * The routine is called to convert IOMMU group to EEH PE.
1434  */
1435 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1436 {
1437 	struct pci_dev *pdev = NULL;
1438 	struct eeh_dev *edev;
1439 	int ret;
1440 
1441 	/* No IOMMU group ? */
1442 	if (!group)
1443 		return NULL;
1444 
1445 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1446 	if (!ret || !pdev)
1447 		return NULL;
1448 
1449 	/* No EEH device or PE ? */
1450 	edev = pci_dev_to_eeh_dev(pdev);
1451 	if (!edev || !edev->pe)
1452 		return NULL;
1453 
1454 	return edev->pe;
1455 }
1456 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1457 
1458 #endif /* CONFIG_IOMMU_API */
1459 
1460 /**
1461  * eeh_pe_set_option - Set options for the indicated PE
1462  * @pe: EEH PE
1463  * @option: requested option
1464  *
1465  * The routine is called to enable or disable EEH functionality
1466  * on the indicated PE, to enable IO or DMA for the frozen PE.
1467  */
1468 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1469 {
1470 	int ret = 0;
1471 
1472 	/* Invalid PE ? */
1473 	if (!pe)
1474 		return -ENODEV;
1475 
1476 	/*
1477 	 * EEH functionality could possibly be disabled, just
1478 	 * return error for the case. And the EEH functinality
1479 	 * isn't expected to be disabled on one specific PE.
1480 	 */
1481 	switch (option) {
1482 	case EEH_OPT_ENABLE:
1483 		if (eeh_enabled()) {
1484 			ret = eeh_pe_change_owner(pe);
1485 			break;
1486 		}
1487 		ret = -EIO;
1488 		break;
1489 	case EEH_OPT_DISABLE:
1490 		break;
1491 	case EEH_OPT_THAW_MMIO:
1492 	case EEH_OPT_THAW_DMA:
1493 		if (!eeh_ops || !eeh_ops->set_option) {
1494 			ret = -ENOENT;
1495 			break;
1496 		}
1497 
1498 		ret = eeh_pci_enable(pe, option);
1499 		break;
1500 	default:
1501 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1502 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1503 		ret = -EINVAL;
1504 	}
1505 
1506 	return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1509 
1510 /**
1511  * eeh_pe_get_state - Retrieve PE's state
1512  * @pe: EEH PE
1513  *
1514  * Retrieve the PE's state, which includes 3 aspects: enabled
1515  * DMA, enabled IO and asserted reset.
1516  */
1517 int eeh_pe_get_state(struct eeh_pe *pe)
1518 {
1519 	int result, ret = 0;
1520 	bool rst_active, dma_en, mmio_en;
1521 
1522 	/* Existing PE ? */
1523 	if (!pe)
1524 		return -ENODEV;
1525 
1526 	if (!eeh_ops || !eeh_ops->get_state)
1527 		return -ENOENT;
1528 
1529 	result = eeh_ops->get_state(pe, NULL);
1530 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1531 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1532 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1533 
1534 	if (rst_active)
1535 		ret = EEH_PE_STATE_RESET;
1536 	else if (dma_en && mmio_en)
1537 		ret = EEH_PE_STATE_NORMAL;
1538 	else if (!dma_en && !mmio_en)
1539 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1540 	else if (!dma_en && mmio_en)
1541 		ret = EEH_PE_STATE_STOPPED_DMA;
1542 	else
1543 		ret = EEH_PE_STATE_UNAVAIL;
1544 
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1548 
1549 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1550 {
1551 	struct eeh_dev *edev, *tmp;
1552 	struct pci_dev *pdev;
1553 	int ret = 0;
1554 
1555 	/* Restore config space */
1556 	eeh_pe_restore_bars(pe);
1557 
1558 	/*
1559 	 * Reenable PCI devices as the devices passed
1560 	 * through are always enabled before the reset.
1561 	 */
1562 	eeh_pe_for_each_dev(pe, edev, tmp) {
1563 		pdev = eeh_dev_to_pci_dev(edev);
1564 		if (!pdev)
1565 			continue;
1566 
1567 		ret = pci_reenable_device(pdev);
1568 		if (ret) {
1569 			pr_warn("%s: Failure %d reenabling %s\n",
1570 				__func__, ret, pci_name(pdev));
1571 			return ret;
1572 		}
1573 	}
1574 
1575 	/* The PE is still in frozen state */
1576 	return eeh_unfreeze_pe(pe, true);
1577 }
1578 
1579 /**
1580  * eeh_pe_reset - Issue PE reset according to specified type
1581  * @pe: EEH PE
1582  * @option: reset type
1583  *
1584  * The routine is called to reset the specified PE with the
1585  * indicated type, either fundamental reset or hot reset.
1586  * PE reset is the most important part for error recovery.
1587  */
1588 int eeh_pe_reset(struct eeh_pe *pe, int option)
1589 {
1590 	int ret = 0;
1591 
1592 	/* Invalid PE ? */
1593 	if (!pe)
1594 		return -ENODEV;
1595 
1596 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1597 		return -ENOENT;
1598 
1599 	switch (option) {
1600 	case EEH_RESET_DEACTIVATE:
1601 		ret = eeh_ops->reset(pe, option);
1602 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1603 		if (ret)
1604 			break;
1605 
1606 		ret = eeh_pe_reenable_devices(pe);
1607 		break;
1608 	case EEH_RESET_HOT:
1609 	case EEH_RESET_FUNDAMENTAL:
1610 		/*
1611 		 * Proactively freeze the PE to drop all MMIO access
1612 		 * during reset, which should be banned as it's always
1613 		 * cause recursive EEH error.
1614 		 */
1615 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1616 
1617 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1618 		ret = eeh_ops->reset(pe, option);
1619 		break;
1620 	default:
1621 		pr_debug("%s: Unsupported option %d\n",
1622 			__func__, option);
1623 		ret = -EINVAL;
1624 	}
1625 
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1629 
1630 /**
1631  * eeh_pe_configure - Configure PCI bridges after PE reset
1632  * @pe: EEH PE
1633  *
1634  * The routine is called to restore the PCI config space for
1635  * those PCI devices, especially PCI bridges affected by PE
1636  * reset issued previously.
1637  */
1638 int eeh_pe_configure(struct eeh_pe *pe)
1639 {
1640 	int ret = 0;
1641 
1642 	/* Invalid PE ? */
1643 	if (!pe)
1644 		return -ENODEV;
1645 
1646 	return ret;
1647 }
1648 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1649 
1650 static int proc_eeh_show(struct seq_file *m, void *v)
1651 {
1652 	if (!eeh_enabled()) {
1653 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1654 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1655 	} else {
1656 		seq_printf(m, "EEH Subsystem is enabled\n");
1657 		seq_printf(m,
1658 				"no device=%llu\n"
1659 				"no device node=%llu\n"
1660 				"no config address=%llu\n"
1661 				"check not wanted=%llu\n"
1662 				"eeh_total_mmio_ffs=%llu\n"
1663 				"eeh_false_positives=%llu\n"
1664 				"eeh_slot_resets=%llu\n",
1665 				eeh_stats.no_device,
1666 				eeh_stats.no_dn,
1667 				eeh_stats.no_cfg_addr,
1668 				eeh_stats.ignored_check,
1669 				eeh_stats.total_mmio_ffs,
1670 				eeh_stats.false_positives,
1671 				eeh_stats.slot_resets);
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static int proc_eeh_open(struct inode *inode, struct file *file)
1678 {
1679 	return single_open(file, proc_eeh_show, NULL);
1680 }
1681 
1682 static const struct file_operations proc_eeh_operations = {
1683 	.open      = proc_eeh_open,
1684 	.read      = seq_read,
1685 	.llseek    = seq_lseek,
1686 	.release   = single_release,
1687 };
1688 
1689 #ifdef CONFIG_DEBUG_FS
1690 static int eeh_enable_dbgfs_set(void *data, u64 val)
1691 {
1692 	if (val)
1693 		eeh_clear_flag(EEH_FORCE_DISABLED);
1694 	else
1695 		eeh_add_flag(EEH_FORCE_DISABLED);
1696 
1697 	/* Notify the backend */
1698 	if (eeh_ops->post_init)
1699 		eeh_ops->post_init();
1700 
1701 	return 0;
1702 }
1703 
1704 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1705 {
1706 	if (eeh_enabled())
1707 		*val = 0x1ul;
1708 	else
1709 		*val = 0x0ul;
1710 	return 0;
1711 }
1712 
1713 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1714 {
1715 	eeh_max_freezes = val;
1716 	return 0;
1717 }
1718 
1719 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1720 {
1721 	*val = eeh_max_freezes;
1722 	return 0;
1723 }
1724 
1725 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1726 			eeh_enable_dbgfs_set, "0x%llx\n");
1727 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1728 			eeh_freeze_dbgfs_set, "0x%llx\n");
1729 #endif
1730 
1731 static int __init eeh_init_proc(void)
1732 {
1733 	if (machine_is(pseries) || machine_is(powernv)) {
1734 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1735 #ifdef CONFIG_DEBUG_FS
1736 		debugfs_create_file("eeh_enable", 0600,
1737                                     powerpc_debugfs_root, NULL,
1738                                     &eeh_enable_dbgfs_ops);
1739 		debugfs_create_file("eeh_max_freezes", 0600,
1740 				    powerpc_debugfs_root, NULL,
1741 				    &eeh_freeze_dbgfs_ops);
1742 #endif
1743 	}
1744 
1745 	return 0;
1746 }
1747 __initcall(eeh_init_proc);
1748