xref: /openbmc/linux/arch/powerpc/kernel/eeh.c (revision a2fb4d78)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rbtree.h>
31 #include <linux/reboot.h>
32 #include <linux/seq_file.h>
33 #include <linux/spinlock.h>
34 #include <linux/export.h>
35 #include <linux/of.h>
36 
37 #include <linux/atomic.h>
38 #include <asm/eeh.h>
39 #include <asm/eeh_event.h>
40 #include <asm/io.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/rtas.h>
44 
45 
46 /** Overview:
47  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
48  *  dealing with PCI bus errors that can't be dealt with within the
49  *  usual PCI framework, except by check-stopping the CPU.  Systems
50  *  that are designed for high-availability/reliability cannot afford
51  *  to crash due to a "mere" PCI error, thus the need for EEH.
52  *  An EEH-capable bridge operates by converting a detected error
53  *  into a "slot freeze", taking the PCI adapter off-line, making
54  *  the slot behave, from the OS'es point of view, as if the slot
55  *  were "empty": all reads return 0xff's and all writes are silently
56  *  ignored.  EEH slot isolation events can be triggered by parity
57  *  errors on the address or data busses (e.g. during posted writes),
58  *  which in turn might be caused by low voltage on the bus, dust,
59  *  vibration, humidity, radioactivity or plain-old failed hardware.
60  *
61  *  Note, however, that one of the leading causes of EEH slot
62  *  freeze events are buggy device drivers, buggy device microcode,
63  *  or buggy device hardware.  This is because any attempt by the
64  *  device to bus-master data to a memory address that is not
65  *  assigned to the device will trigger a slot freeze.   (The idea
66  *  is to prevent devices-gone-wild from corrupting system memory).
67  *  Buggy hardware/drivers will have a miserable time co-existing
68  *  with EEH.
69  *
70  *  Ideally, a PCI device driver, when suspecting that an isolation
71  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
72  *  whether this is the case, and then take appropriate steps to
73  *  reset the PCI slot, the PCI device, and then resume operations.
74  *  However, until that day,  the checking is done here, with the
75  *  eeh_check_failure() routine embedded in the MMIO macros.  If
76  *  the slot is found to be isolated, an "EEH Event" is synthesized
77  *  and sent out for processing.
78  */
79 
80 /* If a device driver keeps reading an MMIO register in an interrupt
81  * handler after a slot isolation event, it might be broken.
82  * This sets the threshold for how many read attempts we allow
83  * before printing an error message.
84  */
85 #define EEH_MAX_FAILS	2100000
86 
87 /* Time to wait for a PCI slot to report status, in milliseconds */
88 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
89 
90 /* Platform dependent EEH operations */
91 struct eeh_ops *eeh_ops = NULL;
92 
93 bool eeh_subsystem_enabled = false;
94 EXPORT_SYMBOL(eeh_subsystem_enabled);
95 
96 /*
97  * EEH probe mode support. The intention is to support multiple
98  * platforms for EEH. Some platforms like pSeries do PCI emunation
99  * based on device tree. However, other platforms like powernv probe
100  * PCI devices from hardware. The flag is used to distinguish that.
101  * In addition, struct eeh_ops::probe would be invoked for particular
102  * OF node or PCI device so that the corresponding PE would be created
103  * there.
104  */
105 int eeh_probe_mode;
106 
107 /* Lock to avoid races due to multiple reports of an error */
108 DEFINE_RAW_SPINLOCK(confirm_error_lock);
109 
110 /* Buffer for reporting pci register dumps. Its here in BSS, and
111  * not dynamically alloced, so that it ends up in RMO where RTAS
112  * can access it.
113  */
114 #define EEH_PCI_REGS_LOG_LEN 4096
115 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
116 
117 /*
118  * The struct is used to maintain the EEH global statistic
119  * information. Besides, the EEH global statistics will be
120  * exported to user space through procfs
121  */
122 struct eeh_stats {
123 	u64 no_device;		/* PCI device not found		*/
124 	u64 no_dn;		/* OF node not found		*/
125 	u64 no_cfg_addr;	/* Config address not found	*/
126 	u64 ignored_check;	/* EEH check skipped		*/
127 	u64 total_mmio_ffs;	/* Total EEH checks		*/
128 	u64 false_positives;	/* Unnecessary EEH checks	*/
129 	u64 slot_resets;	/* PE reset			*/
130 };
131 
132 static struct eeh_stats eeh_stats;
133 
134 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
135 
136 /**
137  * eeh_gather_pci_data - Copy assorted PCI config space registers to buff
138  * @edev: device to report data for
139  * @buf: point to buffer in which to log
140  * @len: amount of room in buffer
141  *
142  * This routine captures assorted PCI configuration space data,
143  * and puts them into a buffer for RTAS error logging.
144  */
145 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
146 {
147 	struct device_node *dn = eeh_dev_to_of_node(edev);
148 	struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
149 	u32 cfg;
150 	int cap, i;
151 	int n = 0;
152 
153 	n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
154 	printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
155 
156 	eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
157 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
158 	printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
159 
160 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
161 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
162 	printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
163 
164 	if (!dev) {
165 		printk(KERN_WARNING "EEH: no PCI device for this of node\n");
166 		return n;
167 	}
168 
169 	/* Gather bridge-specific registers */
170 	if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
171 		eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
172 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
173 		printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
174 
175 		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
176 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
177 		printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
178 	}
179 
180 	/* Dump out the PCI-X command and status regs */
181 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
182 	if (cap) {
183 		eeh_ops->read_config(dn, cap, 4, &cfg);
184 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
185 		printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
186 
187 		eeh_ops->read_config(dn, cap+4, 4, &cfg);
188 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
189 		printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
190 	}
191 
192 	/* If PCI-E capable, dump PCI-E cap 10, and the AER */
193 	if (pci_is_pcie(dev)) {
194 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
195 		printk(KERN_WARNING
196 		       "EEH: PCI-E capabilities and status follow:\n");
197 
198 		for (i=0; i<=8; i++) {
199 			eeh_ops->read_config(dn, dev->pcie_cap+4*i, 4, &cfg);
200 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
201 			printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
202 		}
203 
204 		cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
205 		if (cap) {
206 			n += scnprintf(buf+n, len-n, "pci-e AER:\n");
207 			printk(KERN_WARNING
208 			       "EEH: PCI-E AER capability register set follows:\n");
209 
210 			for (i=0; i<14; i++) {
211 				eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
212 				n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
213 				printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
214 			}
215 		}
216 	}
217 
218 	return n;
219 }
220 
221 /**
222  * eeh_slot_error_detail - Generate combined log including driver log and error log
223  * @pe: EEH PE
224  * @severity: temporary or permanent error log
225  *
226  * This routine should be called to generate the combined log, which
227  * is comprised of driver log and error log. The driver log is figured
228  * out from the config space of the corresponding PCI device, while
229  * the error log is fetched through platform dependent function call.
230  */
231 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
232 {
233 	size_t loglen = 0;
234 	struct eeh_dev *edev, *tmp;
235 	bool valid_cfg_log = true;
236 
237 	/*
238 	 * When the PHB is fenced or dead, it's pointless to collect
239 	 * the data from PCI config space because it should return
240 	 * 0xFF's. For ER, we still retrieve the data from the PCI
241 	 * config space.
242 	 */
243 	if (eeh_probe_mode_dev() &&
244 	    (pe->type & EEH_PE_PHB) &&
245 	    (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)))
246 		valid_cfg_log = false;
247 
248 	if (valid_cfg_log) {
249 		eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
250 		eeh_ops->configure_bridge(pe);
251 		eeh_pe_restore_bars(pe);
252 
253 		pci_regs_buf[0] = 0;
254 		eeh_pe_for_each_dev(pe, edev, tmp) {
255 			loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen,
256 						      EEH_PCI_REGS_LOG_LEN - loglen);
257 		}
258 	}
259 
260 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
261 }
262 
263 /**
264  * eeh_token_to_phys - Convert EEH address token to phys address
265  * @token: I/O token, should be address in the form 0xA....
266  *
267  * This routine should be called to convert virtual I/O address
268  * to physical one.
269  */
270 static inline unsigned long eeh_token_to_phys(unsigned long token)
271 {
272 	pte_t *ptep;
273 	unsigned long pa;
274 	int hugepage_shift;
275 
276 	/*
277 	 * We won't find hugepages here, iomem
278 	 */
279 	ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
280 	if (!ptep)
281 		return token;
282 	WARN_ON(hugepage_shift);
283 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
284 
285 	return pa | (token & (PAGE_SIZE-1));
286 }
287 
288 /*
289  * On PowerNV platform, we might already have fenced PHB there.
290  * For that case, it's meaningless to recover frozen PE. Intead,
291  * We have to handle fenced PHB firstly.
292  */
293 static int eeh_phb_check_failure(struct eeh_pe *pe)
294 {
295 	struct eeh_pe *phb_pe;
296 	unsigned long flags;
297 	int ret;
298 
299 	if (!eeh_probe_mode_dev())
300 		return -EPERM;
301 
302 	/* Find the PHB PE */
303 	phb_pe = eeh_phb_pe_get(pe->phb);
304 	if (!phb_pe) {
305 		pr_warning("%s Can't find PE for PHB#%d\n",
306 			   __func__, pe->phb->global_number);
307 		return -EEXIST;
308 	}
309 
310 	/* If the PHB has been in problematic state */
311 	eeh_serialize_lock(&flags);
312 	if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) {
313 		ret = 0;
314 		goto out;
315 	}
316 
317 	/* Check PHB state */
318 	ret = eeh_ops->get_state(phb_pe, NULL);
319 	if ((ret < 0) ||
320 	    (ret == EEH_STATE_NOT_SUPPORT) ||
321 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
322 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
323 		ret = 0;
324 		goto out;
325 	}
326 
327 	/* Isolate the PHB and send event */
328 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
329 	eeh_serialize_unlock(flags);
330 
331 	pr_err("EEH: PHB#%x failure detected\n",
332 		phb_pe->phb->global_number);
333 	dump_stack();
334 	eeh_send_failure_event(phb_pe);
335 
336 	return 1;
337 out:
338 	eeh_serialize_unlock(flags);
339 	return ret;
340 }
341 
342 /**
343  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
344  * @edev: eeh device
345  *
346  * Check for an EEH failure for the given device node.  Call this
347  * routine if the result of a read was all 0xff's and you want to
348  * find out if this is due to an EEH slot freeze.  This routine
349  * will query firmware for the EEH status.
350  *
351  * Returns 0 if there has not been an EEH error; otherwise returns
352  * a non-zero value and queues up a slot isolation event notification.
353  *
354  * It is safe to call this routine in an interrupt context.
355  */
356 int eeh_dev_check_failure(struct eeh_dev *edev)
357 {
358 	int ret;
359 	unsigned long flags;
360 	struct device_node *dn;
361 	struct pci_dev *dev;
362 	struct eeh_pe *pe;
363 	int rc = 0;
364 	const char *location;
365 
366 	eeh_stats.total_mmio_ffs++;
367 
368 	if (!eeh_enabled())
369 		return 0;
370 
371 	if (!edev) {
372 		eeh_stats.no_dn++;
373 		return 0;
374 	}
375 	dn = eeh_dev_to_of_node(edev);
376 	dev = eeh_dev_to_pci_dev(edev);
377 	pe = edev->pe;
378 
379 	/* Access to IO BARs might get this far and still not want checking. */
380 	if (!pe) {
381 		eeh_stats.ignored_check++;
382 		pr_debug("EEH: Ignored check for %s %s\n",
383 			eeh_pci_name(dev), dn->full_name);
384 		return 0;
385 	}
386 
387 	if (!pe->addr && !pe->config_addr) {
388 		eeh_stats.no_cfg_addr++;
389 		return 0;
390 	}
391 
392 	/*
393 	 * On PowerNV platform, we might already have fenced PHB
394 	 * there and we need take care of that firstly.
395 	 */
396 	ret = eeh_phb_check_failure(pe);
397 	if (ret > 0)
398 		return ret;
399 
400 	/* If we already have a pending isolation event for this
401 	 * slot, we know it's bad already, we don't need to check.
402 	 * Do this checking under a lock; as multiple PCI devices
403 	 * in one slot might report errors simultaneously, and we
404 	 * only want one error recovery routine running.
405 	 */
406 	eeh_serialize_lock(&flags);
407 	rc = 1;
408 	if (pe->state & EEH_PE_ISOLATED) {
409 		pe->check_count++;
410 		if (pe->check_count % EEH_MAX_FAILS == 0) {
411 			location = of_get_property(dn, "ibm,loc-code", NULL);
412 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
413 				"location=%s driver=%s pci addr=%s\n",
414 				pe->check_count, location,
415 				eeh_driver_name(dev), eeh_pci_name(dev));
416 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
417 				eeh_driver_name(dev));
418 			dump_stack();
419 		}
420 		goto dn_unlock;
421 	}
422 
423 	/*
424 	 * Now test for an EEH failure.  This is VERY expensive.
425 	 * Note that the eeh_config_addr may be a parent device
426 	 * in the case of a device behind a bridge, or it may be
427 	 * function zero of a multi-function device.
428 	 * In any case they must share a common PHB.
429 	 */
430 	ret = eeh_ops->get_state(pe, NULL);
431 
432 	/* Note that config-io to empty slots may fail;
433 	 * they are empty when they don't have children.
434 	 * We will punt with the following conditions: Failure to get
435 	 * PE's state, EEH not support and Permanently unavailable
436 	 * state, PE is in good state.
437 	 */
438 	if ((ret < 0) ||
439 	    (ret == EEH_STATE_NOT_SUPPORT) ||
440 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
441 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
442 		eeh_stats.false_positives++;
443 		pe->false_positives++;
444 		rc = 0;
445 		goto dn_unlock;
446 	}
447 
448 	eeh_stats.slot_resets++;
449 
450 	/* Avoid repeated reports of this failure, including problems
451 	 * with other functions on this device, and functions under
452 	 * bridges.
453 	 */
454 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
455 	eeh_serialize_unlock(flags);
456 
457 	/* Most EEH events are due to device driver bugs.  Having
458 	 * a stack trace will help the device-driver authors figure
459 	 * out what happened.  So print that out.
460 	 */
461 	pr_err("EEH: Frozen PE#%x detected on PHB#%x\n",
462 		pe->addr, pe->phb->global_number);
463 	dump_stack();
464 
465 	eeh_send_failure_event(pe);
466 
467 	return 1;
468 
469 dn_unlock:
470 	eeh_serialize_unlock(flags);
471 	return rc;
472 }
473 
474 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
475 
476 /**
477  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
478  * @token: I/O token, should be address in the form 0xA....
479  * @val: value, should be all 1's (XXX why do we need this arg??)
480  *
481  * Check for an EEH failure at the given token address.  Call this
482  * routine if the result of a read was all 0xff's and you want to
483  * find out if this is due to an EEH slot freeze event.  This routine
484  * will query firmware for the EEH status.
485  *
486  * Note this routine is safe to call in an interrupt context.
487  */
488 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
489 {
490 	unsigned long addr;
491 	struct eeh_dev *edev;
492 
493 	/* Finding the phys addr + pci device; this is pretty quick. */
494 	addr = eeh_token_to_phys((unsigned long __force) token);
495 	edev = eeh_addr_cache_get_dev(addr);
496 	if (!edev) {
497 		eeh_stats.no_device++;
498 		return val;
499 	}
500 
501 	eeh_dev_check_failure(edev);
502 	return val;
503 }
504 
505 EXPORT_SYMBOL(eeh_check_failure);
506 
507 
508 /**
509  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
510  * @pe: EEH PE
511  *
512  * This routine should be called to reenable frozen MMIO or DMA
513  * so that it would work correctly again. It's useful while doing
514  * recovery or log collection on the indicated device.
515  */
516 int eeh_pci_enable(struct eeh_pe *pe, int function)
517 {
518 	int rc;
519 
520 	rc = eeh_ops->set_option(pe, function);
521 	if (rc)
522 		pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n",
523 			__func__, function, pe->phb->global_number, pe->addr, rc);
524 
525 	rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
526 	if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
527 	   (function == EEH_OPT_THAW_MMIO))
528 		return 0;
529 
530 	return rc;
531 }
532 
533 /**
534  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
535  * @dev: pci device struct
536  * @state: reset state to enter
537  *
538  * Return value:
539  * 	0 if success
540  */
541 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
542 {
543 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
544 	struct eeh_pe *pe = edev->pe;
545 
546 	if (!pe) {
547 		pr_err("%s: No PE found on PCI device %s\n",
548 			__func__, pci_name(dev));
549 		return -EINVAL;
550 	}
551 
552 	switch (state) {
553 	case pcie_deassert_reset:
554 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
555 		break;
556 	case pcie_hot_reset:
557 		eeh_ops->reset(pe, EEH_RESET_HOT);
558 		break;
559 	case pcie_warm_reset:
560 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
561 		break;
562 	default:
563 		return -EINVAL;
564 	};
565 
566 	return 0;
567 }
568 
569 /**
570  * eeh_set_pe_freset - Check the required reset for the indicated device
571  * @data: EEH device
572  * @flag: return value
573  *
574  * Each device might have its preferred reset type: fundamental or
575  * hot reset. The routine is used to collected the information for
576  * the indicated device and its children so that the bunch of the
577  * devices could be reset properly.
578  */
579 static void *eeh_set_dev_freset(void *data, void *flag)
580 {
581 	struct pci_dev *dev;
582 	unsigned int *freset = (unsigned int *)flag;
583 	struct eeh_dev *edev = (struct eeh_dev *)data;
584 
585 	dev = eeh_dev_to_pci_dev(edev);
586 	if (dev)
587 		*freset |= dev->needs_freset;
588 
589 	return NULL;
590 }
591 
592 /**
593  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
594  * @pe: EEH PE
595  *
596  * Assert the PCI #RST line for 1/4 second.
597  */
598 static void eeh_reset_pe_once(struct eeh_pe *pe)
599 {
600 	unsigned int freset = 0;
601 
602 	/* Determine type of EEH reset required for
603 	 * Partitionable Endpoint, a hot-reset (1)
604 	 * or a fundamental reset (3).
605 	 * A fundamental reset required by any device under
606 	 * Partitionable Endpoint trumps hot-reset.
607 	 */
608 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
609 
610 	if (freset)
611 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
612 	else
613 		eeh_ops->reset(pe, EEH_RESET_HOT);
614 
615 	/* The PCI bus requires that the reset be held high for at least
616 	 * a 100 milliseconds. We wait a bit longer 'just in case'.
617 	 */
618 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
619 	msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
620 
621 	/* We might get hit with another EEH freeze as soon as the
622 	 * pci slot reset line is dropped. Make sure we don't miss
623 	 * these, and clear the flag now.
624 	 */
625 	eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
626 
627 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
628 
629 	/* After a PCI slot has been reset, the PCI Express spec requires
630 	 * a 1.5 second idle time for the bus to stabilize, before starting
631 	 * up traffic.
632 	 */
633 #define PCI_BUS_SETTLE_TIME_MSEC 1800
634 	msleep(PCI_BUS_SETTLE_TIME_MSEC);
635 }
636 
637 /**
638  * eeh_reset_pe - Reset the indicated PE
639  * @pe: EEH PE
640  *
641  * This routine should be called to reset indicated device, including
642  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
643  * might be involved as well.
644  */
645 int eeh_reset_pe(struct eeh_pe *pe)
646 {
647 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
648 	int i, rc;
649 
650 	/* Take three shots at resetting the bus */
651 	for (i=0; i<3; i++) {
652 		eeh_reset_pe_once(pe);
653 
654 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
655 		if ((rc & flags) == flags)
656 			return 0;
657 
658 		if (rc < 0) {
659 			pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
660 				__func__, pe->phb->global_number, pe->addr);
661 			return -1;
662 		}
663 		pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n",
664 			i+1, pe->phb->global_number, pe->addr, rc);
665 	}
666 
667 	return -1;
668 }
669 
670 /**
671  * eeh_save_bars - Save device bars
672  * @edev: PCI device associated EEH device
673  *
674  * Save the values of the device bars. Unlike the restore
675  * routine, this routine is *not* recursive. This is because
676  * PCI devices are added individually; but, for the restore,
677  * an entire slot is reset at a time.
678  */
679 void eeh_save_bars(struct eeh_dev *edev)
680 {
681 	int i;
682 	struct device_node *dn;
683 
684 	if (!edev)
685 		return;
686 	dn = eeh_dev_to_of_node(edev);
687 
688 	for (i = 0; i < 16; i++)
689 		eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
690 
691 	/*
692 	 * For PCI bridges including root port, we need enable bus
693 	 * master explicitly. Otherwise, it can't fetch IODA table
694 	 * entries correctly. So we cache the bit in advance so that
695 	 * we can restore it after reset, either PHB range or PE range.
696 	 */
697 	if (edev->mode & EEH_DEV_BRIDGE)
698 		edev->config_space[1] |= PCI_COMMAND_MASTER;
699 }
700 
701 /**
702  * eeh_ops_register - Register platform dependent EEH operations
703  * @ops: platform dependent EEH operations
704  *
705  * Register the platform dependent EEH operation callback
706  * functions. The platform should call this function before
707  * any other EEH operations.
708  */
709 int __init eeh_ops_register(struct eeh_ops *ops)
710 {
711 	if (!ops->name) {
712 		pr_warning("%s: Invalid EEH ops name for %p\n",
713 			__func__, ops);
714 		return -EINVAL;
715 	}
716 
717 	if (eeh_ops && eeh_ops != ops) {
718 		pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
719 			__func__, eeh_ops->name, ops->name);
720 		return -EEXIST;
721 	}
722 
723 	eeh_ops = ops;
724 
725 	return 0;
726 }
727 
728 /**
729  * eeh_ops_unregister - Unreigster platform dependent EEH operations
730  * @name: name of EEH platform operations
731  *
732  * Unregister the platform dependent EEH operation callback
733  * functions.
734  */
735 int __exit eeh_ops_unregister(const char *name)
736 {
737 	if (!name || !strlen(name)) {
738 		pr_warning("%s: Invalid EEH ops name\n",
739 			__func__);
740 		return -EINVAL;
741 	}
742 
743 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
744 		eeh_ops = NULL;
745 		return 0;
746 	}
747 
748 	return -EEXIST;
749 }
750 
751 static int eeh_reboot_notifier(struct notifier_block *nb,
752 			       unsigned long action, void *unused)
753 {
754 	eeh_set_enable(false);
755 	return NOTIFY_DONE;
756 }
757 
758 static struct notifier_block eeh_reboot_nb = {
759 	.notifier_call = eeh_reboot_notifier,
760 };
761 
762 /**
763  * eeh_init - EEH initialization
764  *
765  * Initialize EEH by trying to enable it for all of the adapters in the system.
766  * As a side effect we can determine here if eeh is supported at all.
767  * Note that we leave EEH on so failed config cycles won't cause a machine
768  * check.  If a user turns off EEH for a particular adapter they are really
769  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
770  * grant access to a slot if EEH isn't enabled, and so we always enable
771  * EEH for all slots/all devices.
772  *
773  * The eeh-force-off option disables EEH checking globally, for all slots.
774  * Even if force-off is set, the EEH hardware is still enabled, so that
775  * newer systems can boot.
776  */
777 int eeh_init(void)
778 {
779 	struct pci_controller *hose, *tmp;
780 	struct device_node *phb;
781 	static int cnt = 0;
782 	int ret = 0;
783 
784 	/*
785 	 * We have to delay the initialization on PowerNV after
786 	 * the PCI hierarchy tree has been built because the PEs
787 	 * are figured out based on PCI devices instead of device
788 	 * tree nodes
789 	 */
790 	if (machine_is(powernv) && cnt++ <= 0)
791 		return ret;
792 
793 	/* Register reboot notifier */
794 	ret = register_reboot_notifier(&eeh_reboot_nb);
795 	if (ret) {
796 		pr_warn("%s: Failed to register notifier (%d)\n",
797 			__func__, ret);
798 		return ret;
799 	}
800 
801 	/* call platform initialization function */
802 	if (!eeh_ops) {
803 		pr_warning("%s: Platform EEH operation not found\n",
804 			__func__);
805 		return -EEXIST;
806 	} else if ((ret = eeh_ops->init())) {
807 		pr_warning("%s: Failed to call platform init function (%d)\n",
808 			__func__, ret);
809 		return ret;
810 	}
811 
812 	/* Initialize EEH event */
813 	ret = eeh_event_init();
814 	if (ret)
815 		return ret;
816 
817 	/* Enable EEH for all adapters */
818 	if (eeh_probe_mode_devtree()) {
819 		list_for_each_entry_safe(hose, tmp,
820 			&hose_list, list_node) {
821 			phb = hose->dn;
822 			traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
823 		}
824 	} else if (eeh_probe_mode_dev()) {
825 		list_for_each_entry_safe(hose, tmp,
826 			&hose_list, list_node)
827 			pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
828 	} else {
829 		pr_warning("%s: Invalid probe mode %d\n",
830 			   __func__, eeh_probe_mode);
831 		return -EINVAL;
832 	}
833 
834 	/*
835 	 * Call platform post-initialization. Actually, It's good chance
836 	 * to inform platform that EEH is ready to supply service if the
837 	 * I/O cache stuff has been built up.
838 	 */
839 	if (eeh_ops->post_init) {
840 		ret = eeh_ops->post_init();
841 		if (ret)
842 			return ret;
843 	}
844 
845 	if (eeh_enabled())
846 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
847 	else
848 		pr_warning("EEH: No capable adapters found\n");
849 
850 	return ret;
851 }
852 
853 core_initcall_sync(eeh_init);
854 
855 /**
856  * eeh_add_device_early - Enable EEH for the indicated device_node
857  * @dn: device node for which to set up EEH
858  *
859  * This routine must be used to perform EEH initialization for PCI
860  * devices that were added after system boot (e.g. hotplug, dlpar).
861  * This routine must be called before any i/o is performed to the
862  * adapter (inluding any config-space i/o).
863  * Whether this actually enables EEH or not for this device depends
864  * on the CEC architecture, type of the device, on earlier boot
865  * command-line arguments & etc.
866  */
867 void eeh_add_device_early(struct device_node *dn)
868 {
869 	struct pci_controller *phb;
870 
871 	/*
872 	 * If we're doing EEH probe based on PCI device, we
873 	 * would delay the probe until late stage because
874 	 * the PCI device isn't available this moment.
875 	 */
876 	if (!eeh_probe_mode_devtree())
877 		return;
878 
879 	if (!of_node_to_eeh_dev(dn))
880 		return;
881 	phb = of_node_to_eeh_dev(dn)->phb;
882 
883 	/* USB Bus children of PCI devices will not have BUID's */
884 	if (NULL == phb || 0 == phb->buid)
885 		return;
886 
887 	eeh_ops->of_probe(dn, NULL);
888 }
889 
890 /**
891  * eeh_add_device_tree_early - Enable EEH for the indicated device
892  * @dn: device node
893  *
894  * This routine must be used to perform EEH initialization for the
895  * indicated PCI device that was added after system boot (e.g.
896  * hotplug, dlpar).
897  */
898 void eeh_add_device_tree_early(struct device_node *dn)
899 {
900 	struct device_node *sib;
901 
902 	for_each_child_of_node(dn, sib)
903 		eeh_add_device_tree_early(sib);
904 	eeh_add_device_early(dn);
905 }
906 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
907 
908 /**
909  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
910  * @dev: pci device for which to set up EEH
911  *
912  * This routine must be used to complete EEH initialization for PCI
913  * devices that were added after system boot (e.g. hotplug, dlpar).
914  */
915 void eeh_add_device_late(struct pci_dev *dev)
916 {
917 	struct device_node *dn;
918 	struct eeh_dev *edev;
919 
920 	if (!dev || !eeh_enabled())
921 		return;
922 
923 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
924 
925 	dn = pci_device_to_OF_node(dev);
926 	edev = of_node_to_eeh_dev(dn);
927 	if (edev->pdev == dev) {
928 		pr_debug("EEH: Already referenced !\n");
929 		return;
930 	}
931 
932 	/*
933 	 * The EEH cache might not be removed correctly because of
934 	 * unbalanced kref to the device during unplug time, which
935 	 * relies on pcibios_release_device(). So we have to remove
936 	 * that here explicitly.
937 	 */
938 	if (edev->pdev) {
939 		eeh_rmv_from_parent_pe(edev);
940 		eeh_addr_cache_rmv_dev(edev->pdev);
941 		eeh_sysfs_remove_device(edev->pdev);
942 		edev->mode &= ~EEH_DEV_SYSFS;
943 
944 		/*
945 		 * We definitely should have the PCI device removed
946 		 * though it wasn't correctly. So we needn't call
947 		 * into error handler afterwards.
948 		 */
949 		edev->mode |= EEH_DEV_NO_HANDLER;
950 
951 		edev->pdev = NULL;
952 		dev->dev.archdata.edev = NULL;
953 	}
954 
955 	edev->pdev = dev;
956 	dev->dev.archdata.edev = edev;
957 
958 	/*
959 	 * We have to do the EEH probe here because the PCI device
960 	 * hasn't been created yet in the early stage.
961 	 */
962 	if (eeh_probe_mode_dev())
963 		eeh_ops->dev_probe(dev, NULL);
964 
965 	eeh_addr_cache_insert_dev(dev);
966 }
967 
968 /**
969  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
970  * @bus: PCI bus
971  *
972  * This routine must be used to perform EEH initialization for PCI
973  * devices which are attached to the indicated PCI bus. The PCI bus
974  * is added after system boot through hotplug or dlpar.
975  */
976 void eeh_add_device_tree_late(struct pci_bus *bus)
977 {
978 	struct pci_dev *dev;
979 
980 	list_for_each_entry(dev, &bus->devices, bus_list) {
981 		eeh_add_device_late(dev);
982 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
983 			struct pci_bus *subbus = dev->subordinate;
984 			if (subbus)
985 				eeh_add_device_tree_late(subbus);
986 		}
987 	}
988 }
989 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
990 
991 /**
992  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
993  * @bus: PCI bus
994  *
995  * This routine must be used to add EEH sysfs files for PCI
996  * devices which are attached to the indicated PCI bus. The PCI bus
997  * is added after system boot through hotplug or dlpar.
998  */
999 void eeh_add_sysfs_files(struct pci_bus *bus)
1000 {
1001 	struct pci_dev *dev;
1002 
1003 	list_for_each_entry(dev, &bus->devices, bus_list) {
1004 		eeh_sysfs_add_device(dev);
1005 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1006 			struct pci_bus *subbus = dev->subordinate;
1007 			if (subbus)
1008 				eeh_add_sysfs_files(subbus);
1009 		}
1010 	}
1011 }
1012 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1013 
1014 /**
1015  * eeh_remove_device - Undo EEH setup for the indicated pci device
1016  * @dev: pci device to be removed
1017  *
1018  * This routine should be called when a device is removed from
1019  * a running system (e.g. by hotplug or dlpar).  It unregisters
1020  * the PCI device from the EEH subsystem.  I/O errors affecting
1021  * this device will no longer be detected after this call; thus,
1022  * i/o errors affecting this slot may leave this device unusable.
1023  */
1024 void eeh_remove_device(struct pci_dev *dev)
1025 {
1026 	struct eeh_dev *edev;
1027 
1028 	if (!dev || !eeh_enabled())
1029 		return;
1030 	edev = pci_dev_to_eeh_dev(dev);
1031 
1032 	/* Unregister the device with the EEH/PCI address search system */
1033 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1034 
1035 	if (!edev || !edev->pdev || !edev->pe) {
1036 		pr_debug("EEH: Not referenced !\n");
1037 		return;
1038 	}
1039 
1040 	/*
1041 	 * During the hotplug for EEH error recovery, we need the EEH
1042 	 * device attached to the parent PE in order for BAR restore
1043 	 * a bit later. So we keep it for BAR restore and remove it
1044 	 * from the parent PE during the BAR resotre.
1045 	 */
1046 	edev->pdev = NULL;
1047 	dev->dev.archdata.edev = NULL;
1048 	if (!(edev->pe->state & EEH_PE_KEEP))
1049 		eeh_rmv_from_parent_pe(edev);
1050 	else
1051 		edev->mode |= EEH_DEV_DISCONNECTED;
1052 
1053 	/*
1054 	 * We're removing from the PCI subsystem, that means
1055 	 * the PCI device driver can't support EEH or not
1056 	 * well. So we rely on hotplug completely to do recovery
1057 	 * for the specific PCI device.
1058 	 */
1059 	edev->mode |= EEH_DEV_NO_HANDLER;
1060 
1061 	eeh_addr_cache_rmv_dev(dev);
1062 	eeh_sysfs_remove_device(dev);
1063 	edev->mode &= ~EEH_DEV_SYSFS;
1064 }
1065 
1066 static int proc_eeh_show(struct seq_file *m, void *v)
1067 {
1068 	if (!eeh_enabled()) {
1069 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1070 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1071 	} else {
1072 		seq_printf(m, "EEH Subsystem is enabled\n");
1073 		seq_printf(m,
1074 				"no device=%llu\n"
1075 				"no device node=%llu\n"
1076 				"no config address=%llu\n"
1077 				"check not wanted=%llu\n"
1078 				"eeh_total_mmio_ffs=%llu\n"
1079 				"eeh_false_positives=%llu\n"
1080 				"eeh_slot_resets=%llu\n",
1081 				eeh_stats.no_device,
1082 				eeh_stats.no_dn,
1083 				eeh_stats.no_cfg_addr,
1084 				eeh_stats.ignored_check,
1085 				eeh_stats.total_mmio_ffs,
1086 				eeh_stats.false_positives,
1087 				eeh_stats.slot_resets);
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static int proc_eeh_open(struct inode *inode, struct file *file)
1094 {
1095 	return single_open(file, proc_eeh_show, NULL);
1096 }
1097 
1098 static const struct file_operations proc_eeh_operations = {
1099 	.open      = proc_eeh_open,
1100 	.read      = seq_read,
1101 	.llseek    = seq_lseek,
1102 	.release   = single_release,
1103 };
1104 
1105 static int __init eeh_init_proc(void)
1106 {
1107 	if (machine_is(pseries) || machine_is(powernv))
1108 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1109 	return 0;
1110 }
1111 __initcall(eeh_init_proc);
1112